1
|
McIntyre KL, Waters SA, Zhong L, Hart-Smith G, Raftery M, Chew ZA, Patel HR, Graves JAM, Waters PD. Identification of the RSX interactome in a marsupial shows functional coherence with the Xist interactome during X inactivation. Genome Biol 2024; 25:134. [PMID: 38783307 PMCID: PMC11112854 DOI: 10.1186/s13059-024-03280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The marsupial specific RSX lncRNA is the functional analogue of the eutherian specific XIST, which coordinates X chromosome inactivation. We characterized the RSX interactome in a marsupial representative (the opossum Monodelphis domestica), identifying 135 proteins, of which 54 had orthologues in the XIST interactome. Both interactomes were enriched for biological pathways related to RNA processing, regulation of translation, and epigenetic transcriptional silencing. This represents a remarkable example showcasing the functional coherence of independently evolved lncRNAs in distantly related mammalian lineages.
Collapse
Affiliation(s)
- Kim L McIntyre
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gene Hart-Smith
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Mark Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zahra A Chew
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, 2601, Australia
| | - Hardip R Patel
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, 2601, Australia
| | | | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
2
|
Krueger K, Lamenza F, Gu H, El-Hodiri H, Wester J, Oberdick J, Fischer AJ, Oghumu S. Sex differences in susceptibility to substance use disorder: Role for X chromosome inactivation and escape? Mol Cell Neurosci 2023; 125:103859. [PMID: 37207894 PMCID: PMC10286730 DOI: 10.1016/j.mcn.2023.103859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
There is a sex-based disparity associated with substance use disorders (SUDs) as demonstrated by clinical and preclinical studies. Females are known to escalate from initial drug use to compulsive drug-taking behavior (telescoping) more rapidly, and experience greater negative withdrawal effects than males. Although these biological differences have largely been attributed to sex hormones, there is evidence for non-hormonal factors, such as the influence of the sex chromosome, which underlie sex disparities in addiction behavior. However, genetic and epigenetic mechanisms underlying sex chromosome influences on substance abuse behavior are not completely understood. In this review, we discuss the role that escape from X-chromosome inactivation (XCI) in females plays in sex-associated differences in addiction behavior. Females have two X chromosomes (XX), and during XCI, one X chromosome is randomly chosen to be transcriptionally silenced. However, some X-linked genes escape XCI and display biallelic gene expression. We generated a mouse model using an X-linked gene specific bicistronic dual reporter mouse as a tool to visualize allelic usage and measure XCI escape in a cell specific manner. Our results revealed a previously undiscovered X-linked gene XCI escaper (CXCR3), which is variable and cell type dependent. This illustrates the highly complex and context dependent nature of XCI escape which is largely understudied in the context of SUD. Novel approaches such as single cell RNA sequencing will provide a global molecular landscape and impact of XCI escape in addiction and facilitate our understanding of the contribution of XCI escape to sex disparities in SUD.
Collapse
Affiliation(s)
- Kate Krueger
- Department of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Felipe Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Howard Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Heithem El-Hodiri
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Jason Wester
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - John Oberdick
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
3
|
Trotman JB, Braceros KCA, Cherney RE, Murvin MM, Calabrese JM. The control of polycomb repressive complexes by long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1657. [PMID: 33861025 PMCID: PMC8500928 DOI: 10.1002/wrna.1657] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The polycomb repressive complexes 1 and 2 (PRCs; PRC1 and PRC2) are conserved histone-modifying enzymes that often function cooperatively to repress gene expression. The PRCs are regulated by long noncoding RNAs (lncRNAs) in complex ways. On the one hand, specific lncRNAs cause the PRCs to engage with chromatin and repress gene expression over genomic regions that can span megabases. On the other hand, the PRCs bind RNA with seemingly little sequence specificity, and at least in the case of PRC2, direct RNA-binding has the effect of inhibiting the enzyme. Thus, some RNAs appear to promote PRC activity, while others may inhibit it. The reasons behind this apparent dichotomy are unclear. The most potent PRC-activating lncRNAs associate with chromatin and are predominantly unspliced or harbor unusually long exons. Emerging data imply that these lncRNAs promote PRC activity through internal RNA sequence elements that arise and disappear rapidly in evolutionary time. These sequence elements may function by interacting with common subsets of RNA-binding proteins that recruit or stabilize PRCs on chromatin. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keean C. A. Braceros
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel E. Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - McKenzie M. Murvin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Navarro-Cobos MJ, Balaton BP, Brown CJ. Genes that escape from X-chromosome inactivation: Potential contributors to Klinefelter syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:226-238. [PMID: 32441398 PMCID: PMC7384012 DOI: 10.1002/ajmg.c.31800] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
Abstract
One of the two X chromosomes in females is epigenetically inactivated, thereby compensating for the dosage difference in X-linked genes between XX females and XY males. Not all X-linked genes are completely inactivated, however, with 12% of genes escaping X chromosome inactivation and another 15% of genes varying in their X chromosome inactivation status across individuals, tissues or cells. Expression of these genes from the second and otherwise inactive X chromosome may underlie sex differences between males and females, and feature in many of the symptoms of XXY Klinefelter males, who have both an inactive X and a Y chromosome. We review the approaches used to identify genes that escape from X-chromosome inactivation and discuss the nature of their sex-biased expression. These genes are enriched on the short arm of the X chromosome, and, in addition to genes in the pseudoautosomal regions, include genes with and without Y-chromosomal counterparts. We highlight candidate escape genes for some of the features of Klinefelter syndrome and discuss our current understanding of the mechanisms underlying silencing and escape on the X chromosome as well as additional differences between the X in males and females that may contribute to Klinefelter syndrome.
Collapse
Affiliation(s)
- Maria Jose Navarro-Cobos
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Bradley P Balaton
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Zou H, Yu D, Du X, Wang J, Chen L, Wang Y, Xu H, Zhao Y, Zhao S, Pang Y, Liu Y, Hao H, Zhao X, Du W, Dai Y, Li N, Wu S, Zhu H. No imprinted XIST expression in pigs: biallelic XIST expression in early embryos and random X inactivation in placentas. Cell Mol Life Sci 2019; 76:4525-4538. [PMID: 31139846 PMCID: PMC11105601 DOI: 10.1007/s00018-019-03123-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/12/2019] [Accepted: 04/29/2019] [Indexed: 11/29/2022]
Abstract
Dosage compensation, which is achieved by X-chromosome inactivation (XCI) in female mammals, ensures balanced X-linked gene expression levels between the sexes. Although eutherian mammals commonly display random XCI in embryonic and adult tissues, imprinted XCI has also been identified in extraembryonic tissues of mouse, rat, and cow. Little is known about XCI in pigs. Here, we sequenced the porcine XIST gene and identified an insertion/deletion mutation between Asian- and Western-origin pig breeds. Allele-specific analysis revealed biallelic XIST expression in porcine ICSI blastocysts. To investigate the XCI pattern in porcine placentas, we performed allele-specific RNA sequencing analysis on individuals from reciprocal crosses between Duroc and Rongchang pigs. Our results were the first to reveal that random XCI occurs in the placentas of pigs. Next, we investigated the H3K27me3 histone pattern in porcine blastocysts, showing that only 17-31.8% cells have attained XCI. The hypomethylation status of an important XIST DMR (differentially methylated region) in gametes and early embryos demonstrated that no methylation is pre-deposited on XIST in pigs. Our findings reveal that the XCI regulation mechanism in pigs is different from that in mice and highlight the importance of further study of the mechanisms regulating XCI during early porcine embryo development.
Collapse
Affiliation(s)
- Huiying Zou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuguang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jing Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lei Chen
- Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Yangyang Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huitao Xu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunxuan Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanjiang Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunwei Pang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yan Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haisheng Hao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueming Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weihua Du
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunping Dai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.
| | - Huabin Zhu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Posynick BJ, Brown CJ. Escape From X-Chromosome Inactivation: An Evolutionary Perspective. Front Cell Dev Biol 2019; 7:241. [PMID: 31696116 PMCID: PMC6817483 DOI: 10.3389/fcell.2019.00241] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Sex chromosomes originate as a pair of homologus autosomes that then follow a general pattern of divergence. This is evident in mammalian sex chromosomes, which have undergone stepwise recombination suppression events that left footprints of evolutionary strata on the X chromosome. The loss of genes on the Y chromosome led to Ohno’s hypothesis of dosage equivalence between XY males and XX females, which is achieved through X-chromosome inactivation (XCI). This process transcriptionally silences all but one X chromosome in each female cell, although 15–30% of human X-linked genes still escape inactivation. There are multiple evolutionary pathways that may lead to a gene escaping XCI, including remaining Y chromosome homology, or female advantage to escape. The conservation of some escape genes across multiple species and the ability of the mouse inactive X to recapitulate human escape status both suggest that escape from XCI is controlled by conserved processes. Evolutionary pressures to minimize dosage imbalances have led to the accumulation of genetic elements that favor either silencing or escape; lack of dosage sensitivity might also allow for the escape of flanking genes near another escapee, if a boundary element is not present between them. Delineation of the elements involved in escape is progressing, but mechanistic understanding of how they interact to allow escape from XCI is still lacking. Although increasingly well-studied in humans and mice, non-trivial challenges to studying escape have impeded progress in other species. Mouse models that can dissect the role of the sex chromosomes distinct from sex of the organism reveal an important contribution for escape genes to multiple diseases. In humans, with their elevated number of escape genes, the phenotypic consequences of sex chromosome aneuplodies and sexual dimorphism in disease both highlight the importance of escape genes.
Collapse
Affiliation(s)
- Bronwyn J Posynick
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Oghumu S, Varikuti S, Stock JC, Volpedo G, Saljoughian N, Terrazas CA, Satoskar AR. Cutting Edge: CXCR3 Escapes X Chromosome Inactivation in T Cells during Infection: Potential Implications for Sex Differences in Immune Responses. THE JOURNAL OF IMMUNOLOGY 2019; 203:789-794. [PMID: 31253729 DOI: 10.4049/jimmunol.1800931] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
CXCR3, an X-linked gene, is subject to X chromosome inactivation (XCI), but it is unclear whether CXCR3 escapes XCI in immune cells. We determined whether CXCR3 escapes XCI in vivo, evaluated the contribution of allelic CXCR3 expression to the phenotypic properties of T cells during experimental infection with Leishmania, and examined the potential implications to sex differences in immune responses. We used a bicistronic CXCR3 dual-reporter mouse, with each CXCR3 allele linked to a green or red fluorescent reporter without affecting endogenous CXCR3 expression. Our results show that CXCR3 escapes XCI, biallelic CXCR3-expressing T cells produce more CXCR3 protein than monoallelic CXCR3-expressing cells, and biallelic CXCR3-expressing T cells produce more IFN-γ, IL-2, and CD69 compared with T cells that express CXCR3 from one allele during Leishmania mexicana infection. These results demonstrate that XCI escape by CXCR3 potentially contributes to the sex-associated bias observed during infection.
Collapse
Affiliation(s)
- Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Sanjay Varikuti
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - James C Stock
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Greta Volpedo
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Noushin Saljoughian
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Cesar A Terrazas
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| |
Collapse
|
8
|
Abstract
X chromosome inactivation silences one X chromosome in female mammals. However, this silencing is incomplete, and some genes escape X inactivation. We describe methods to determine the chromosome-wide X inactivation status of genes in tissues or cell lines derived from mice using a combination of skewing of X inactivation and allele-specific analyses of gene expression based on RNA-seq.
Collapse
|
9
|
TAFAZOLI A, BEHJATI F, FARHUD DD, ABBASZADEGAN MR. Combination of Genetics and Nanotechnology for Down Syndrome Modification: A Potential Hypothesis and Review of the Literature. IRANIAN JOURNAL OF PUBLIC HEALTH 2019; 48:371-378. [PMID: 31223563 PMCID: PMC6570805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/07/2018] [Indexed: 11/13/2022]
Abstract
Down syndrome (DS) is one of the most prevalent genetic disorders in humans. The use of new approaches in genetic engineering and nanotechnology methods in combination with natural cellular phenomenon can modify the disease in affected people. We consider two CRISPR/Cas9 systems to cut a specific region from short arm of the chromosome 21 (Chr21) and replace it with a novel designed DNA construct, containing the essential genes in chromatin remodeling for inactivating of an extra Chr21. This requires mimicking of the natural cellular pattern for inactivation of the extra X chromosome in females. By means of controlled dosage of an appropriate Nano-carrier (a surface engineered Poly D, L-lactide-co-glycolide (PLGA) for integrating the relevant construct in Trisomy21 brain cell culture media and then in DS mouse model, we would be able to evaluate the modification and the reduction of the active extra Chr21 and in turn reduce substantial adverse effects of the disease, like intellectual disabilities. The hypothesis and study seek new insights in Down syndrome modification.
Collapse
Affiliation(s)
- Alireza TAFAZOLI
- Department of Analysis and Bioanalysis of Medicine, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Clinical Research Center, Medical University of Bialystok, Bialystok, Poland
| | - Farkhondeh BEHJATI
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Dariush D. FARHUD
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
10
|
Duan JE, Flock K, Jue N, Zhang M, Jones A, Seesi SA, Mandoiu I, Pillai S, Hoffman M, O'Neill R, Zinn S, Govoni K, Reed S, Jiang H, Jiang ZC, Tian XC. Dosage Compensation and Gene Expression of the X Chromosome in Sheep. G3 (BETHESDA, MD.) 2019; 9:305-314. [PMID: 30482800 PMCID: PMC6325915 DOI: 10.1534/g3.118.200815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Ohno's hypothesis predicts that the expression of the single X chromosome in males needs compensatory upregulation to balance its dosage with that of the diploid autosomes. Additionally, X chromosome inactivation ensures that quadruple expression of the two X chromosomes is avoided in females. These mechanisms have been actively studied in mice and humans but lag behind in domestic species. Using RNA sequencing data, we analyzed the X chromosome upregulation in sheep fetal tissues from day 135 of gestation under control, over or restricted maternal diets (100%, 140% and 60% of National Research Council Total Digestible Nutrients), and in conceptuses, juvenile, and adult somatic tissues. By computing the mean expression ratio of all X-linked genes to all autosomal genes (X:A), we found that all samples displayed some levels of X chromosome upregulation. The degrees of X upregulation were not significant (P-value = 0.74) between ovine females and males in the same somatic tissues. Brain, however, displayed complete X upregulation. Interestingly, the male and female reproduction-related tissues exhibited divergent X dosage upregulation. Moreover, expression upregulation of the X chromosome in fetal tissues was not affected by maternal diets. Maternal nutrition, however, did change expression levels of several X-linked genes, such as sex determination genes SOX3 and NR0B1 In summary, our results showed that X chromosome upregulation occurred in nearly all sheep somatic tissues analyzed, thus support Ohno's hypothesis in a new species. However, the levels of upregulation differed by different subgroups of genes such as those that are house-keeping and "dosage-sensitive".
Collapse
Affiliation(s)
| | | | - Nathanial Jue
- School of Natural Sciences, California State University, Monterey Bay, Seaside, CA 93955
| | - Mingyuan Zhang
- Department of Animal Science
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | | | - Sahar Al Seesi
- Smith College Department of Computer Science, Northampton, MA 01063
- Department of Computer Science
| | | | | | | | - Rachel O'Neill
- Department of Molecular and Cell Biology, and University of Connecticut, Storrs, CT, 06269
| | | | | | | | - Hesheng Jiang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China, and
| | - Zongliang Carl Jiang
- Department of Animal Science
- School of Animal Science, Louisiana State University, Baton Rouge, LA 70803
| | | |
Collapse
|
11
|
Mignot C, McMahon AC, Bar C, Campeau PM, Davidson C, Buratti J, Nava C, Jacquemont ML, Tallot M, Milh M, Edery P, Marzin P, Barcia G, Barnerias C, Besmond C, Bienvenu T, Bruel AL, Brunga L, Ceulemans B, Coubes C, Cristancho AG, Cunningham F, Dehouck MB, Donner EJ, Duban-Bedu B, Dubourg C, Gardella E, Gauthier J, Geneviève D, Gobin-Limballe S, Goldberg EM, Hagebeuk E, Hamdan FF, Hančárová M, Hubert L, Ioos C, Ichikawa S, Janssens S, Journel H, Kaminska A, Keren B, Koopmans M, Lacoste C, Laššuthová P, Lederer D, Lehalle D, Marjanovic D, Métreau J, Michaud JL, Miller K, Minassian BA, Morales J, Moutard ML, Munnich A, Ortiz-Gonzalez XR, Pinard JM, Prchalová D, Putoux A, Quelin C, Rosen AR, Roume J, Rossignol E, Simon MEH, Smol T, Shur N, Shelihan I, Štěrbová K, Vyhnálková E, Vilain C, Soblet J, Smits G, Yang SP, van der Smagt JJ, van Hasselt PM, van Kempen M, Weckhuysen S, Helbig I, Villard L, Héron D, Koeleman B, Møller RS, Lesca G, Helbig KL, Nabbout R, Verbeek NE, Depienne C. IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients. Genet Med 2018; 21:837-849. [PMID: 30206421 PMCID: PMC6752297 DOI: 10.1038/s41436-018-0268-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences. Methods We collected the data of 37 unpublished patients (18 males and 19 females) with IQSEC2 pathogenic variants and 5 individuals with variants of unknown significance and reviewed published variants. We compared variant types and phenotypes in males and females and performed an analysis of IQSEC2 isoforms. Results IQSEC2 pathogenic variants mainly led to premature truncation and were scattered throughout the longest brain-specific isoform, encoding the synaptic IQSEC2/BRAG1 protein. Variants occurred de novo in females but were either de novo (2/3) or inherited (1/3) in males, with missense variants being predominantly inherited. Developmental delay and intellectual disability were overall more severe in males than in females. Likewise, seizures were more frequently observed and intractable, and started earlier in males than in females. No correlation was observed between the age at seizure onset and severity of intellectual disability or resistance to antiepileptic treatments. Conclusion This study provides a comprehensive overview of IQSEC2-related encephalopathy in males and females, and suggests that an accurate dosage of IQSEC2 at the synapse is crucial during normal brain development.
Collapse
Affiliation(s)
- Cyril Mignot
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universites, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle epiniere, ICM, Paris, France. .,APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France.
| | - Aoife C McMahon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Claire Bar
- APHP, Reference Centre for Rare Epilepsies, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France.,INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Philippe M Campeau
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Claire Davidson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Julien Buratti
- APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France
| | - Caroline Nava
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universites, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle epiniere, ICM, Paris, France.,APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France
| | | | - Marilyn Tallot
- CHU La Reunion-Groupe Hospitalier Sud Reunion, La Reunion, France
| | - Mathieu Milh
- APHM, Hôpital d'Enfants de La Timone, Service de Neurologie Pediatrique, centre de reference deficiences intellectuelles de cause rare, Marseille, France.,Aix Marseille University, INSERM, MMG, UMR-S 1251, Faculte de medecine, Marseille, France
| | - Patrick Edery
- Service de Genetique, Centre de Reference Anomalies du Developpement, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Universite Claude Bernard Lyon 1, Bron, France.,Claude Bernard Lyon I University, Lyon, France
| | - Pauline Marzin
- APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France
| | - Giulia Barcia
- INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France.,APHP, Service de genetique medicale, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France
| | - Christine Barnerias
- APHP, Unite fonctionnelle de Neurologie, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France
| | - Claude Besmond
- INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Thierry Bienvenu
- APHP, Laboratoire de Genetique et Biologie Moleculaires, Hôpital Cochin, HUPC, Paris, France.,Universite Paris Descartes Paris, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U894, Paris, France
| | - Ange-Line Bruel
- FHU-TRANSLAD, Universite de Bourgogne/CHU Dijon, Dijon, France.,INSERM UMR 1231 GAD team, Genetics of Developmental disorders, Universite de Bourgogne-Franche Comte, Dijon, France
| | - Ledia Brunga
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Berten Ceulemans
- Department of Pediatric Neurology, University Hospital and University of Antwerp, Antwerp, Belgium
| | - Christine Coubes
- Departement de Genetique Medicale, Maladies rares et Medecine Personnalisee, CHU de Montpellier, Montpellier, France
| | - Ana G Cristancho
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Elizabeth J Donner
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Bénédicte Duban-Bedu
- Centre de Genetique Chromosomique, Hôpital St-Vincent-de-Paul, GHICL, Lille, France
| | - Christèle Dubourg
- CHU Rennes, Service de Genetique Moleculaire et Genomique, Rennes, France
| | - Elena Gardella
- Danish Epilepsy Centre Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Julie Gauthier
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - David Geneviève
- Departement de Genetique Medicale, Maladies rares et Medecine Personnalisee, CHU de Montpellier, Montpellier, France.,INSERM U1183, Montpellier, France
| | - Stéphanie Gobin-Limballe
- APHP, Service de genetique medicale, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France
| | - Ethan M Goldberg
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eveline Hagebeuk
- Stichting Epilepsie Instellingen Nederland, SEIN, Zwolle, The Netherlands
| | - Fadi F Hamdan
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Miroslava Hančárová
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Laurence Hubert
- INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Christine Ioos
- APHP, University Hospital of Paris ïle-de-France ouest, Raymond Poincare Hospital, Garches, France
| | - Shoji Ichikawa
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA, USA
| | - Sandra Janssens
- Centre for Medical Genetics Ghent, Ghent University Hospital, C. Heymanslaan 10, Ghent, Belgium
| | - Hubert Journel
- Service de Genetique Medicale, Hôpital Chubert, Vannes, France
| | - Anna Kaminska
- APHP, Department of Clinical Neurophysiology, Necker-Enfants Malades Hospital, Paris, France
| | - Boris Keren
- APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France
| | - Marije Koopmans
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Lacoste
- Departement de Genetique Medicale, APHM, Hopital d'Enfants de La Timone, Marseille, France
| | - Petra Laššuthová
- Child Neurology Department, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - Damien Lederer
- Centre de Genetique Humaine, Institut de Pathologie et de Genetique, Gosselies, Belgium
| | - Daphné Lehalle
- FHU-TRANSLAD, Universite de Bourgogne/CHU Dijon, Dijon, France.,Unite fonctionnelle de genetique clinique, Centre Hospitalier Intercommunal de Creteil, Creteil, France
| | | | - Julia Métreau
- APHP, Service de neurologie pediatrique, Hôpital Universitaire Bicetre, Le Kremlin-Bicetre, France
| | - Jacques L Michaud
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Kathryn Miller
- Department of Pediatrics, Albany Medical Center, Albany, NY, USA
| | - Berge A Minassian
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Joannella Morales
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Marie-Laure Moutard
- APHP, Hôpital Trousseau, service de neuropediatrie, Paris, France.,Sorbonne Universite, GRC n°19, pathologies Congenitales du Cervelet-LeucoDystrophies, APHP, Hôpital Armand Trousseau, Paris, France
| | - Arnold Munnich
- INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France.,APHP, Service de genetique medicale, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France
| | | | - Jean-Marc Pinard
- Division of Neuropediatrics, CHU Raymond Poincare (APHP), Garches, France
| | - Darina Prchalová
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Audrey Putoux
- Service de Genetique, Centre de Reference Anomalies du Developpement, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Universite Claude Bernard Lyon 1, Bron, France.,Claude Bernard Lyon I University, Lyon, France
| | - Chloé Quelin
- Service de Genetique Medicale, CLAD Ouest CHU Hôpital Sud, Rennes, France
| | - Alyssa R Rosen
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joelle Roume
- Unite de Genetique Medicale, Centre de Reference des Maladies rares du Developpement (AnD DI Rares), CHI Poissy-St Germain en Laye, Poissy, France
| | - Elsa Rossignol
- Departments of Pediatrics and Neurosciences, CHU Sainte-Justine and University of Montreal, Montreal, Canada
| | - Marleen E H Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thomas Smol
- Institut de Genetique Medicale, CHRU Lille, Universite de Lille, Lille, France
| | - Natasha Shur
- Department of Pediatrics, Albany Medical Center, Albany, NY, USA
| | - Ivan Shelihan
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Katalin Štěrbová
- Child Neurology Department, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - Emílie Vyhnálková
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Universite Libre de Bruxelles, Brussels, Belgium
| | - Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Universite Libre de Bruxelles, Brussels, Belgium
| | - Guillaume Smits
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Universite Libre de Bruxelles, Brussels, Belgium
| | - Samuel P Yang
- Clinical Genomics & Predictive Medicine, Providence Medical Group, Dayton, WA, USA
| | | | - Peter M van Hasselt
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - Marjan van Kempen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sarah Weckhuysen
- Neurogenetics Group, Center of Molecular Neurology, VIB, Antwerp, Belgium.,Neurology Department, University Hospital Antwerp, Antwerp, Belgium
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laurent Villard
- Aix Marseille University, INSERM, MMG, UMR-S 1251, Faculte de medecine, Marseille, France.,Departement de Genetique Medicale, APHM, Hopital d'Enfants de La Timone, Marseille, France
| | - Delphine Héron
- APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France
| | - Bobby Koeleman
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rikke S Møller
- CHU Rennes, Service de Genetique Moleculaire et Genomique, Rennes, France.,Danish Epilepsy Centre Filadelfia, Dianalund, Denmark
| | - Gaetan Lesca
- Service de Genetique, Centre de Reference Anomalies du Developpement, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Universite Claude Bernard Lyon 1, Bron, France.,Claude Bernard Lyon I University, Lyon, France
| | - Katherine L Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rima Nabbout
- APHP, Reference Centre for Rare Epilepsies, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France.,INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christel Depienne
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universites, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle epiniere, ICM, Paris, France. .,IGBMC, CNRS UMR 7104/INSERM U964/Universite de Strasbourg, Illkirch, France. .,Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
12
|
The Methylome of Vertebrate Sex Chromosomes. Genes (Basel) 2018; 9:genes9050230. [PMID: 29723955 PMCID: PMC5977170 DOI: 10.3390/genes9050230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023] Open
Abstract
DNA methylation is a key epigenetic modification in vertebrate genomes known to be involved in the regulation of gene expression, X chromosome inactivation, genomic imprinting, chromatin structure, and control of transposable elements. DNA methylation is common to all eukaryote genomes, but we still lack a complete understanding of the variation in DNA methylation patterns on sex chromosomes and between the sexes in diverse species. To better understand sex chromosome DNA methylation patterns between different amniote vertebrates, we review literature that has analyzed the genome-wide distribution of DNA methylation in mammals and birds. In each system, we focus on DNA methylation patterns on the autosomes versus the sex chromosomes.
Collapse
|
13
|
Waters SA, Livernois AM, Patel H, O’Meally D, Craig JM, Marshall Graves JA, Suter CM, Waters PD. Landscape of DNA Methylation on the Marsupial X. Mol Biol Evol 2017; 35:431-439. [DOI: 10.1093/molbev/msx297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
14
|
Carrel L, Brown CJ. When the Lyon(ized chromosome) roars: ongoing expression from an inactive X chromosome. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160355. [PMID: 28947654 PMCID: PMC5627157 DOI: 10.1098/rstb.2016.0355] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/21/2022] Open
Abstract
A tribute to Mary Lyon was held in October 2016. Many remarked about Lyon's foresight regarding many intricacies of the X-chromosome inactivation process. One such example is that a year after her original 1961 hypothesis she proposed that genes with Y homologues should escape from X inactivation to achieve dosage compensation between males and females. Fifty-five years later we have learned many details about these escapees that we attempt to summarize in this review, with a particular focus on recent findings. We now know that escapees are not rare, particularly on the human X, and that most lack functionally equivalent Y homologues, leading to their increasingly recognized role in sexually dimorphic traits. Newer sequencing technologies have expanded profiling of primary tissues that will better enable connections to sex-biased disorders as well as provide additional insights into the X-inactivation process. Chromosome organization, nuclear location and chromatin environments distinguish escapees from other X-inactivated genes. Nevertheless, several big questions remain, including what dictates their distinct epigenetic environment, the underlying basis of species differences in escapee regulation, how different classes of escapees are distinguished, and the roles that local sequences and chromosome ultrastructure play in escapee regulation.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Laura Carrel
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Mail code H171, Hershey, PA 17033, USA
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada BC V6T 1Z3
| |
Collapse
|
15
|
Cantone I, Dharmalingam G, Chan YW, Kohler AC, Lenhard B, Merkenschlager M, Fisher AG. Allele-specific analysis of cell fusion-mediated pluripotent reprograming reveals distinct and predictive susceptibilities of human X-linked genes to reactivation. Genome Biol 2017; 18:2. [PMID: 28118853 PMCID: PMC5264468 DOI: 10.1186/s13059-016-1136-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inactivation of one X chromosome is established early in female mammalian development and can be reversed in vivo and in vitro when pluripotency factors are re-expressed. The extent of reactivation along the inactive X chromosome (Xi) and the determinants of locus susceptibility are, however, poorly understood. Here we use cell fusion-mediated pluripotent reprograming to study human Xi reactivation and allele-specific single nucleotide polymorphisms (SNPs) to identify reactivated loci. RESULTS We show that a subset of human Xi genes is rapidly reactivated upon re-expression of the pluripotency network. These genes lie within the most evolutionary recent segments of the human X chromosome that are depleted of LINE1 and enriched for SINE elements, predicted to impair XIST spreading. Interestingly, this cadre of genes displays stochastic Xi expression in human fibroblasts ahead of reprograming. This stochastic variability is evident between clones, by RNA-sequencing, and at the single-cell level, by RNA-FISH, and is not attributable to differences in repressive histone H3K9me3 or H3K27me3 levels. Treatment with the DNA demethylating agent 5-deoxy-azacytidine does not increase Xi expression ahead of reprograming, but instead reveals a second cadre of genes that only become susceptible to reactivation upon induction of pluripotency. CONCLUSIONS Collectively, these data not only underscore the multiple pathways that contribute to maintaining silencing along the human Xi chromosome but also suggest that transcriptional stochasticity among human cells could be useful for predicting and engineering epigenetic strategies to achieve locus-specific or domain-specific human Xi gene reactivation.
Collapse
Affiliation(s)
- Irene Cantone
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Gopuraja Dharmalingam
- Bioinformatics and Computing facility, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Yi-Wah Chan
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Anne-Celine Kohler
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
16
|
Dunford A, Weinstock DM, Savova V, Schumacher SE, Cleary JP, Yoda A, Sullivan TJ, Hess JM, Gimelbrant AA, Beroukhim R, Lawrence MS, Getz G, Lane AA. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat Genet 2016; 49:10-16. [PMID: 27869828 PMCID: PMC5206905 DOI: 10.1038/ng.3726] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/24/2016] [Indexed: 12/14/2022]
Abstract
There is a striking and unexplained male predominance across many cancer types. A subset of X-chromosome genes can escape X-inactivation, which would protect females from complete functional loss by a single mutation. To identify putative 'escape from X-inactivation tumor-suppressor' (EXITS) genes, we examined somatic alterations from >4,100 cancers across 21 tumor types for sex bias. Six of 783 non-pseudoautosomal region (PAR) X-chromosome genes (ATRX, CNKSR2, DDX3X, KDM5C, KDM6A, and MAGEC3) harbored loss-of-function mutations more frequently in males (based on a false discovery rate < 0.1), in comparison to zero of 18,055 autosomal and PAR genes (Fisher's exact P < 0.0001). Male-biased mutations in genes that escape X-inactivation were observed in combined analysis across many cancers and in several individual tumor types, suggesting a generalized phenomenon. We conclude that biallelic expression of EXITS genes in females explains a portion of the reduced cancer incidence in females as compared to males across a variety of tumor types.
Collapse
Affiliation(s)
- Andrew Dunford
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - David M Weinstock
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Virginia Savova
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven E Schumacher
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - John P Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Akinori Yoda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Julian M Hess
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Alexander A Gimelbrant
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Rameen Beroukhim
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael S Lawrence
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gad Getz
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Department of Pathology and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew A Lane
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation. J Genet 2016; 94:567-74. [PMID: 26690510 DOI: 10.1007/s12041-015-0572-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna-and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved.
Collapse
|
18
|
Escape Artists of the X Chromosome. Trends Genet 2016; 32:348-359. [PMID: 27103486 DOI: 10.1016/j.tig.2016.03.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 01/24/2023]
Abstract
Inactivation of one X chromosome in mammalian females achieves dosage compensation between XX females and XY males; however, over 15% of human X-linked genes continue to be expressed from the inactive X chromosome. New genomic methodologies have improved our identification and characterization of these escape genes, revealing the importance of DNA sequence, chromatin structure, and chromosome ultrastructure in regulating expression from an otherwise inactive chromosome. Study of these exceptions to the rule of silencing highlights the interconnectedness of chromatin and chromosome structure in X-chromosome inactivation (XCI). Recent advances also demonstrate the importance of these genes in sexually dimorphic disease risk, particularly cancer.
Collapse
|
19
|
Abstract
Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.
Collapse
|
20
|
Berletch JB, Ma W, Yang F, Shendure J, Noble WS, Disteche CM, Deng X. Escape from X inactivation varies in mouse tissues. PLoS Genet 2015; 11:e1005079. [PMID: 25785854 PMCID: PMC4364777 DOI: 10.1371/journal.pgen.1005079] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/17/2015] [Indexed: 12/22/2022] Open
Abstract
X chromosome inactivation (XCI) silences most genes on one X chromosome in female mammals, but some genes escape XCI. To identify escape genes in vivo and to explore molecular mechanisms that regulate this process we analyzed the allele-specific expression and chromatin structure of X-linked genes in mouse tissues and cells with skewed XCI and distinguishable alleles based on single nucleotide polymorphisms. Using a binomial model to assess allelic expression, we demonstrate a continuum between complete silencing and expression from the inactive X (Xi). The validity of the RNA-seq approach was verified using RT-PCR with species-specific primers or Sanger sequencing. Both common escape genes and genes with significant differences in XCI status between tissues were identified. Such genes may be candidates for tissue-specific sex differences. Overall, few genes (3-7%) escape XCI in any of the mouse tissues examined, suggesting stringent silencing and escape controls. In contrast, an in vitro system represented by the embryonic-kidney-derived Patski cell line showed a higher density of escape genes (21%), representing both kidney-specific escape genes and cell-line specific escape genes. Allele-specific RNA polymerase II occupancy and DNase I hypersensitivity at the promoter of genes on the Xi correlated well with levels of escape, consistent with an open chromatin structure at escape genes. Allele-specific CTCF binding on the Xi clustered at escape genes and was denser in brain compared to the Patski cell line, possibly contributing to a more compartmentalized structure of the Xi and fewer escape genes in brain compared to the cell line where larger domains of escape were observed.
Collapse
Affiliation(s)
- Joel B. Berletch
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Wenxiu Ma
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Fan Yang
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - William S. Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Christine M. Disteche
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Xinxian Deng
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
21
|
Peeters SB, Cotton AM, Brown CJ. Variable escape from X-chromosome inactivation: identifying factors that tip the scales towards expression. Bioessays 2014; 36:746-56. [PMID: 24913292 PMCID: PMC4143967 DOI: 10.1002/bies.201400032] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In humans over 15% of X-linked genes have been shown to ‘escape’ from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome.
Collapse
Affiliation(s)
- Samantha B Peeters
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
22
|
Affiliation(s)
- Jennifer A. Marshall Graves
- La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne 3186, Australia
- Research School of Biology, Australian National University, Canberra 2060, Australia;
- Department of Zoology, University of Melbourne, Melbourne 3010, Australia
| | - Marilyn B. Renfree
- Department of Zoology, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
23
|
Livernois AM, Waters SA, Deakin JE, Marshall Graves JA, Waters PD. Independent evolution of transcriptional inactivation on sex chromosomes in birds and mammals. PLoS Genet 2013; 9:e1003635. [PMID: 23874231 PMCID: PMC3715422 DOI: 10.1371/journal.pgen.1003635] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/30/2013] [Indexed: 01/09/2023] Open
Abstract
X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore, the differentiation of sex chromosomes. Dosage compensation is a mechanism that restores the expression of X chromosome genes back to their original level when Y homologues lose function. In placental and marsupial mammals this is achieved by upregulating the single X in males. The carry-through of overexpression to females would result in functional tetraploidy, so there is subsequent inactivation of one X chromosome in the somatic cells of females, leaving males (XY) and females (XX) with a single upregulated X. In contrast, genes on the five platypus (a monotreme mammal) X chromosomes and the chicken Z chromosome (which are orthologous but independently evolved) are expressed globally at a higher level in female platypus and male chicken respectively, indicating partial dosage compensation. Here, for the first time, we provide evidence for inactivation of genes on the chicken Z chromosome in ZZ males, and on all five Xs in female platypus. Our results suggest that the silencing of genes on sex chromosomes has evolved independently in birds and mammals, and is, therefore, a critical step in the pathway to dosage compensate independently evolved amniote sex chromosomes systems.
Collapse
Affiliation(s)
- Alexandra M. Livernois
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (AML); (PDW)
| | - Shafagh A. Waters
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Janine E. Deakin
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jennifer A. Marshall Graves
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Paul D. Waters
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (AML); (PDW)
| |
Collapse
|
24
|
Abstract
Marsupial and eutherian mammals inactivate one X chromosome in female somatic cells in what is thought to be a means of compensating for the unbalanced X chromosome dosage between XX females and XY males. The hypothesis of X chromosome inactivation (XCI) was first published by Mary Lyon just over 50 years ago, with the discovery of XCI in marsupials occurring a decade later. However, we are still piecing together the evolutionary origins of this fascinating epigenetic mechanism. From the very first studies on marsupial X inactivation, it was apparent that, although there were some similarities between marsupial and eutherian XCI, there were also some striking differences. For instance, the paternally derived X was found to be preferentially silenced in marsupials, although the silencing was often incomplete, which was in contrast to the random and more tightly controlled inactivation of the X chromosome in eutherians. Many of these earlier studies used isozymes to study the activity of just a few genes in marsupials. The sequencing of several marsupial genomes and the advent of molecular cytogenetic techniques have facilitated more in-depth studies into marsupial X chromosome inactivation and allowed more detailed comparisons of the features of XCI to be made. Several important findings have come from such comparisons, among which is the absence of the XIST gene in marsupials, a non-coding RNA gene with a critical role in eutherian XCI, and the discovery of the marsupial RSX gene, which appears to perform a similar role to XIST. Here I review the history of marsupial XCI studies, the latest advances that have been made and the impact they have had towards unravelling the evolution of XCI in mammals.
Collapse
|
25
|
Abstract
Differentiated sex chromosomes evolved because of suppressed recombination once sex became genetically controlled. In XX/XY and ZZ/ZW systems, the heterogametic sex became partially aneuploid after degeneration of the Y or W. Often, aneuploidy causes abnormal levels of gene expression throughout the entire genome. Dosage compensation mechanisms evolved to restore balanced expression of the genome. These mechanisms include upregulation of the heterogametic chromosome as well as repression in the homogametic sex. Remarkably, strategies for dosage compensation differ between species. In organisms where more is known about molecular mechanisms of dosage compensation, specific protein complexes containing noncoding RNAs are targeted to the X chromosome. In addition, the dosage-regulated chromosome often occupies a specific nuclear compartment. Some genes escape dosage compensation, potentially resulting in sex-specific differences in gene expression. This review focuses on dosage compensation in mammals, with comparisons to fruit flies, nematodes, and birds.
Collapse
Affiliation(s)
- Christine M Disteche
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|