1
|
Franklin JM, Dubocanin D, Chittenden C, Barillas A, Lee RJ, Ghosh RP, Gerton JL, Guan KL, Altemose N. Human Satellite 3 DNA encodes megabase-scale transcription factor binding platforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.22.616524. [PMID: 39484556 PMCID: PMC11526998 DOI: 10.1101/2024.10.22.616524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Eukaryotic genomes frequently contain large arrays of tandem repeats, called satellite DNA. While some satellite DNAs participate in centromere function, others do not. For example, Human Satellite 3 (HSat3) forms the largest satellite DNA arrays in the human genome, but these multi-megabase regions were almost fully excluded from genome assemblies until recently, and their potential functions remain understudied and largely unknown. To address this, we performed a systematic screen for HSat3 binding proteins. Our work revealed that HSat3 contains millions of copies of transcription factor (TF) motifs bound by over a dozen TFs from various signaling pathways, including the growth-regulating transcription effector family TEAD1-4 from the Hippo pathway. Imaging experiments show that TEAD recruits the co-activator YAP to HSat3 regions in a cell-state specific manner. Using synthetic reporter assays, targeted repression of HSat3, inducible degradation of YAP, and super-resolution microscopy, we show that HSat3 arrays can localize YAP/TEAD inside the nucleolus, enhancing RNA Polymerase I activity. Beyond discovering a direct relationship between the Hippo pathway and ribosomal DNA regulation, this work demonstrates that satellite DNA can encode multiple transcription factor binding motifs, defining an important functional role for these enormous genomic elements.
Collapse
Affiliation(s)
| | - Danilo Dubocanin
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Cy Chittenden
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Ashlie Barillas
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Rosa Jooyoung Lee
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Rajarshi P. Ghosh
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | | | - Kun-Liang Guan
- Westlake University, School of Life Sciences, Hangzhou, Zhejiang, China
| | - Nicolas Altemose
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Waldron R, Rodriguez MDLAB, Williams JM, Ning Z, Ahmed A, Lindsay A, Moore T. JRK binds satellite III DNA and is necessary for the heat shock response. Cell Biol Int 2024; 48:1212-1222. [PMID: 38946594 DOI: 10.1002/cbin.12216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
JRK is a DNA-binding protein of the pogo superfamily of transposons, which includes the well-known centromere binding protein B (CENP-B). Jrk null mice exhibit epilepsy, and growth and reproductive disorders, consistent with its relatively high expression in the brain and reproductive tissues. Human JRK DNA variants and gene expression levels are implicated in cancers and neuropsychiatric disorders. JRK protein modulates β-catenin-TCF activity but little is known of its cellular functions. Based on its homology to CENP-B, we determined whether JRK binds centromeric or other satellite DNAs. We show that human JRK binds satellite III DNA, which is abundant at the chromosome 9q12 juxtacentromeric region and on Yq12, both sites of nuclear stress body assembly. Human JRK-GFP overexpressed in HeLa cells strongly localises to 9q12. Using an anti-JRK antiserum we show that endogenous JRK co-localises with a subset of centromeres in non-stressed cells, and with heat shock factor 1 following heat shock. Knockdown of JRK in HeLa cells proportionately reduces heat shock protein gene expression in heat-shocked cells. A role for JRK in regulating the heat shock response is consistent with the mouse Jrk null phenotype and suggests that human JRK may act as a modifier of diseases with a cellular stress component.
Collapse
Affiliation(s)
- Rosalie Waldron
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - John M Williams
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Zhenfei Ning
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Abrar Ahmed
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew Lindsay
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Genomic instability genes in lung and colon adenocarcinoma indicate organ specificity of transcriptomic impact on Copy Number Alterations. Sci Rep 2022; 12:11739. [PMID: 35817785 PMCID: PMC9273645 DOI: 10.1038/s41598-022-15692-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
Genomic instability (GI) in cancer facilitates cancer evolution and is an exploitable target for therapy purposes. However, specific genes involved in cancer GI remain elusive. Causal genes for GI via expressions have not been comprehensively identified in colorectal cancers (CRCs). To fill the gap in knowledge, we developed a data mining strategy (Gene Expression to Copy Number Alterations; "GE-CNA"). Here we applied the GE-CNA approach to 592 TCGA CRC datasets, and identified 500 genes whose expression levels associate with CNA. Among these, 18 were survival-critical (i.e., expression levels correlate with significant differences in patients' survival). Comparison with previous results indicated striking differences between lung adenocarcinoma and CRC: (a) less involvement of overexpression of mitotic genes in generating genomic instability in the colon and (b) the presence of CNA-suppressing pathways, including immune-surveillance, was only partly similar to those in the lung. Following 13 genes (TIGD6, TMED6, APOBEC3D, EP400NL, B3GNT4, ZNF683, FOXD4, FOXD4L1, PKIB, DDB2, MT1G, CLCN3, CAPS) were evaluated as potential drug development targets (hazard ratio [> 1.3 or < 0.5]). Identification of specific CRC genomic instability genes enables researchers to develop GI targeting approach. The new results suggest that the "targeting genomic instability and/or aneuploidy" approach must be tailored for specific organs.
Collapse
|
4
|
Abstract
Centromeres, the chromosomal loci where spindle fibers attach during cell division to segregate chromosomes, are typically found within satellite arrays in plants and animals. Satellite arrays have been difficult to analyze because they comprise megabases of tandem head-to-tail highly repeated DNA sequences. Much evidence suggests that centromeres are epigenetically defined by the location of nucleosomes containing the centromere-specific histone H3 variant cenH3, independently of the DNA sequences where they are located; however, the reason that cenH3 nucleosomes are generally found on rapidly evolving satellite arrays has remained unclear. Recently, long-read sequencing technology has clarified the structures of satellite arrays and sparked rethinking of how they evolve, and new experiments and analyses have helped bring both understanding and further speculation about the role these highly repeated sequences play in centromere identification.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
5
|
Abstract
Centromeric proteins are the foundation for assembling the kinetochore, a macromolecular complex that is essential for accurate chromosome segregation during mitosis. Anti-centromere antibodies (ACAs) are polyclonal autoantibodies targeting centromeric proteins (CENP-A, CENP-B, CENP-C), predominantly CENP-B, and are highly associated with rheumatologic disease (lcSSc/CREST syndrome). CENP-B autoantibodies have also been reported in cancer patients without symptoms of rheumatologic disease. The rise of oncoimmunotherapy stimulates inquiry into how and why anti-CENP-B autoantibodies are formed. In this review, we describe the clinical correlations between anti-CENP-B autoantibodies, rheumatologic disease, and cancer; the molecular features of CENP-B; possible explanations for autoantigenicity; and, finally, a possible mechanism for induction of autoantibody formation.
Collapse
|
6
|
Dupeyron M, Baril T, Bass C, Hayward A. Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. Mob DNA 2020; 11:21. [PMID: 32612713 PMCID: PMC7325037 DOI: 10.1186/s13100-020-00212-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/08/2020] [Indexed: 01/18/2023] Open
Abstract
Background Tc1/mariner transposons are widespread DNA transposable elements (TEs) that have made important contributions to the evolution of host genomic complexity in metazoans. However, the evolution and diversity of the Tc1/mariner superfamily remains poorly understood. Following recent developments in genome sequencing and the availability of a wealth of new genomes, Tc1/mariner TEs have been identified in many new taxa across the eukaryotic tree of life. To date, the majority of studies focussing on Tc1/mariner elements have considered only a single host lineage or just a small number of host lineages. Thus, much remains to be learnt about the evolution of Tc1/mariner TEs by performing analyses that consider elements that originate from across host diversity. Results We mined the non-redundant database of NCBI using BLASTp searches, with transposase sequences from a diverse set of reference Tc1/mariner elements as queries. A total of 5158 Tc1/mariner elements were retrieved and used to reconstruct evolutionary relationships within the superfamily. The resulting phylogeny is well resolved and includes several new groups of Tc1/mariner elements. In particular, we identify a new family of plant-genome restricted Tc1/mariner elements, which we call PlantMar. We also show that the pogo family is much larger and more diverse than previously appreciated, and we review evidence for a potential revision of its status to become a separate superfamily. Conclusions Our study provides an overview of Tc1-mariner phylogeny and summarises the impressive diversity of Tc1-mariner TEs among sequenced eukaryotes. Tc1/mariner TEs are successful in a wide range of eukaryotes, especially unikonts (the taxonomic supergroup containing Amoebozoa, Opisthokonta, Breviatea, and Apusomonadida). In particular, ecdysozoa, and especially arthropods, emerge as important hosts for Tc1/mariner elements (except the PlantMar family). Meanwhile, the pogo family, which is by far the largest Tc1/mariner family, also includes many elements from fungal and chordate genomes. Moreover, there is evidence of the repeated exaptation of pogo elements in vertebrates, including humans, in addition to the well-known example of CENP-B. Collectively, our findings provide a considerable advancement in understanding of Tc1/mariner elements, and more generally they suggest that much work remains to improve understanding of the diversity and evolution of DNA TEs.
Collapse
Affiliation(s)
- Mathilde Dupeyron
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| | - Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| |
Collapse
|
7
|
Dumont M, Fachinetti D. DNA Sequences in Centromere Formation and Function. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:305-336. [PMID: 28840243 DOI: 10.1007/978-3-319-58592-5_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Faithful chromosome segregation during cell division depends on the centromere, a complex DNA/protein structure that links chromosomes to spindle microtubules. This chromosomal domain has to be marked throughout cell division and its chromosomal localization preserved across cell generations. From fission yeast to human, centromeres are established on a series of repetitive DNA sequences and on specialized centromeric chromatin. This chromatin is enriched with the histone H3 variant, named CENP-A, that was demonstrated to be the epigenetic mark that maintains centromere identity and function indefinitely. Although centromere identity is thought to be exclusively epigenetic, the presence of specific DNA sequences in the majority of eukaryotes and of the centromeric protein CENP-B that binds to these sequences, suggests the existence of a genetic component as well. In this review, we will highlight the importance of centromeric sequences for centromere formation and function, and discuss the centromere DNA sequence/CENP-B paradox.
Collapse
Affiliation(s)
- M Dumont
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France
| | - D Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
8
|
Drinnenberg IA, Henikoff S, Malik HS. Evolutionary Turnover of Kinetochore Proteins: A Ship of Theseus? Trends Cell Biol 2016; 26:498-510. [PMID: 26877204 PMCID: PMC4914419 DOI: 10.1016/j.tcb.2016.01.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
The kinetochore is a multiprotein complex that mediates the attachment of a eukaryotic chromosome to the mitotic spindle. The protein composition of kinetochores is similar across species as divergent as yeast and human. However, recent findings have revealed an unexpected degree of compositional diversity in kinetochores. For example, kinetochore proteins that are essential in some species have been lost in others, whereas new kinetochore proteins have emerged in other lineages. Even in lineages with similar kinetochore composition, individual kinetochore proteins have functionally diverged to acquire either essential or redundant roles. Thus, despite functional conservation, the repertoire of kinetochore proteins has undergone recurrent evolutionary turnover.
Collapse
Affiliation(s)
- Ines A Drinnenberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Current address: Chromatin Dynamics Unit, UMR2664, Institut Curie, Paris, France.
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
9
|
Fachinetti D, Han JS, McMahon MA, Ly P, Abdullah A, Wong AJ, Cleveland DW. DNA Sequence-Specific Binding of CENP-B Enhances the Fidelity of Human Centromere Function. Dev Cell 2015; 33:314-27. [PMID: 25942623 DOI: 10.1016/j.devcel.2015.03.020] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/09/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
Abstract
Human centromeres are specified by a stably inherited epigenetic mark that maintains centromere position and function through a two-step mechanism relying on self-templating centromeric chromatin assembled with the histone H3 variant CENP-A, followed by CENP-A-dependent nucleation of kinetochore assembly. Nevertheless, natural human centromeres are positioned within specific megabase chromosomal regions containing α-satellite DNA repeats, which contain binding sites for the DNA sequence-specific binding protein CENP-B. We now demonstrate that CENP-B directly binds both CENP-A's amino-terminal tail and CENP-C, a key nucleator of kinetochore assembly. DNA sequence-dependent binding of CENP-B within α-satellite repeats is required to stabilize optimal centromeric levels of CENP-C. Chromosomes bearing centromeres without bound CENP-B, including the human Y chromosome, are shown to mis-segregate in cells at rates several-fold higher than chromosomes with CENP-B-containing centromeres. These data demonstrate a DNA sequence-specific enhancement by CENP-B of the fidelity of epigenetically defined human centromere function.
Collapse
Affiliation(s)
- Daniele Fachinetti
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Joo Seok Han
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Moira A McMahon
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Peter Ly
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Amira Abdullah
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Alex J Wong
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Melters DP, Nye J, Zhao H, Dalal Y. Chromatin Dynamics in Vivo: A Game of Musical Chairs. Genes (Basel) 2015; 6:751-76. [PMID: 26262644 PMCID: PMC4584328 DOI: 10.3390/genes6030751] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/17/2015] [Accepted: 07/28/2015] [Indexed: 01/30/2023] Open
Abstract
Histones are a major component of chromatin, the nucleoprotein complex fundamental to regulating transcription, facilitating cell division, and maintaining genome integrity in almost all eukaryotes. In addition to canonical, replication-dependent histones, replication-independent histone variants exist in most eukaryotes. In recent years, steady progress has been made in understanding how histone variants assemble, their involvement in development, mitosis, transcription, and genome repair. In this review, we will focus on the localization of the major histone variants H3.3, CENP-A, H2A.Z, and macroH2A, as well as how these variants have evolved, their structural differences, and their functional significance in vivo.
Collapse
Affiliation(s)
- Daniël P Melters
- Chromatin Structure and Epigenetics Mechanisms Unit, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA.
| | - Jonathan Nye
- Chromatin Structure and Epigenetics Mechanisms Unit, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA.
| | - Haiqing Zhao
- Chromatin Structure and Epigenetics Mechanisms Unit, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA.
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA.
| | - Yamini Dalal
- Chromatin Structure and Epigenetics Mechanisms Unit, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Mateo L, González J. Pogo-like transposases have been repeatedly domesticated into CENP-B-related proteins. Genome Biol Evol 2014; 6:2008-16. [PMID: 25062917 PMCID: PMC4231638 DOI: 10.1093/gbe/evu153] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2014] [Indexed: 01/03/2023] Open
Abstract
The centromere is a chromatin region that is required for accurate inheritance of eukaryotic chromosomes during cell divisions. Among the different centromere-associated proteins (CENP) identified, CENP-B has been independently domesticated from a pogo-like transposase twice: Once in mammals and once in fission yeast. Recently, a third independent domestication restricted to holocentric lepidoptera has been described. In this work, we take advantage of the high-quality genome sequence and the wealth of functional information available for Drosophila melanogaster to further investigate the possibility of additional independent domestications of pogo-like transposases into host CENP-B related proteins. Our results showed that CENP-B related genes are not restricted to holocentric insects. Furthermore, we showed that at least three independent domestications of pogo-like transposases have occurred in metazoans. Our results highlight the importance of transposable elements as raw material for the recurrent evolution of important cellular functions.
Collapse
Affiliation(s)
- Lidia Mateo
- Institute of Evolutionary Biology (CSIC- Universitat Pompeu Fabra), Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC- Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|