1
|
Szücs B, Selvan R, Lisby M. High-throughput classification of S. cerevisiae tetrads using deep learning. Yeast 2024; 41:423-436. [PMID: 38850080 DOI: 10.1002/yea.3965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Meiotic crossovers play a vital role in proper chromosome segregation and evolution of most sexually reproducing organisms. Meiotic recombination can be visually observed in Saccharomyces cerevisiae tetrads using linked spore-autonomous fluorescent markers placed at defined intervals within the genome, which allows for analysis of meiotic segregation without the need for tetrad dissection. To automate the analysis, we developed a deep learning-based image recognition and classification pipeline for high-throughput tetrad detection and meiotic crossover classification. As a proof of concept, we analyzed a large image data set from wild-type and selected gene knock-out mutants to quantify crossover frequency, interference, chromosome missegregation, and gene conversion events. The deep learning-based method has the potential to accelerate the discovery of new genes involved in meiotic recombination in S. cerevisiae such as the underlying factors controlling crossover frequency and interference.
Collapse
Affiliation(s)
- Balint Szücs
- Section for Functional Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Raghavendra Selvan
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Michael Lisby
- Section for Functional Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
TOR targets an RNA processing network to regulate facultative heterochromatin, developmental gene expression and cell proliferation. Nat Cell Biol 2021; 23:243-256. [PMID: 33574613 PMCID: PMC9260697 DOI: 10.1038/s41556-021-00631-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023]
Abstract
Cell proliferation and differentiation require signalling pathways that enforce appropriate and timely gene expression. We find that Tor2, the catalytic subunit of the TORC1 complex in fission yeast, targets a conserved nuclear RNA elimination network, particularly the serine and proline-rich protein Pir1, to control gene expression through RNA decay and facultative heterochromatin assembly. Phosphorylation by Tor2 protects Pir1 from degradation by the ubiquitin-proteasome system involving the polyubiquitin Ubi4 stress-response protein and the Cul4-Ddb1 E3 ligase. This pathway suppresses widespread and untimely gene expression and is critical for sustaining cell proliferation. Moreover, we find that the dynamic nature of Tor2-mediated control of RNA elimination machinery defines gene expression patterns that coordinate fundamental chromosomal events during gametogenesis, such as meiotic double-strand-break formation and chromosome segregation. These findings have important implications for understanding how the TOR signalling pathway reprogrammes gene expression patterns and contributes to diseases such as cancer.
Collapse
|
3
|
Muhtadi R, Lorenz A, Mpaulo SJ, Siebenwirth C, Scherthan H. Catalase T-Deficient Fission Yeast Meiocytes Show Resistance to Ionizing Radiation. Antioxidants (Basel) 2020; 9:antiox9090881. [PMID: 32957622 PMCID: PMC7555645 DOI: 10.3390/antiox9090881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Environmental stress, reactive oxygen species (ROS), or ionizing radiation (IR) can induce adverse effects in organisms and their cells, including mutations and premature aging. DNA damage and its faulty repair can lead to cell death or promote cancer through the accumulation of mutations. Misrepair in germ cells is particularly dangerous as it may lead to alterations in developmental programs and genetic disease in the offspring. DNA damage pathways and radical defense mechanisms mediate resistance to genotoxic stresses. Here, we investigated, in the fission yeast Schizosaccharomyces pombe, the role of the H2O2-detoxifying enzyme cytosolic catalase T (Ctt1) and the Fe2+/Mn2+ symporter Pcl1 in protecting meiotic chromosome dynamics and gamete formation from radicals generated by ROS and IR. We found that wild-type and pcl1-deficient cells respond similarly to X ray doses of up to 300 Gy, while ctt1∆ meiocytes showed a moderate sensitivity to IR but a hypersensitivity to hydrogen peroxide with cells dying at >0.4 mM H2O2. Meiocytes deficient for pcl1, on the other hand, showed a resistance to hydrogen peroxide similar to that of the wild type, surviving doses >40 mM. In all, it appears that in the absence of the main H2O2-detoxifying pathway S. pombe meiocytes are able to survive significant doses of IR-induced radicals.
Collapse
Affiliation(s)
- Razan Muhtadi
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (R.M.); (C.S.)
| | - Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (A.L.); (S.J.M.)
| | - Samantha J. Mpaulo
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (A.L.); (S.J.M.)
| | - Christian Siebenwirth
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (R.M.); (C.S.)
| | - Harry Scherthan
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (R.M.); (C.S.)
- Correspondence: ; Tel.: +49-89-992692-2272
| |
Collapse
|
4
|
Special issue on "recent advances in meiosis from DNA replication to chromosome segregation". Chromosoma 2020; 128:177-180. [PMID: 31616989 DOI: 10.1007/s00412-019-00726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Meiosis is the special division that produces haploid gametes, such as sperm and eggs. It involves a complex series of events that integrate large structural changes at the chromosome scale with fine regulation of recombination events in localized regions. To evaluate the complexity of these processes, the meiosis field covers a variety of disciplines and model organisms, making it an exciting and rapidly changing area of research. The field as a whole highlights both the conserved aspects of meiosis, as well as the marked diversity of the means taken to ensure that, ultimately, gametes will contain a balanced number of chromosomes and genetic diversity will have been produced. Studying meiosis is also critically important for the improvement of our human condition as errors of meiosis are a leading cause of infertility, miscarriage, and developmental disabilities. Finally, the complex chromosome behavior of meiosis is a genetically tractable paradigm, the study of which improves our understanding of many fundamental cellular processes including DNA repair, genome stability, cancer etiology, chromatin structure, and chromosome dynamics.This special issue on meiosis contains twenty-two papers, of which five are in-depth reviews that complement and put in context the experimental data presented in the seventeen original research articles. The content of this issue illustrates the diversity of topics covered by researchers in the field, ranging from the effects of environment and external factors on the success of meiosis, the cell cycle actors that control the meiotic divisions, the mechanism of chromosome segregation, and the mechanisms that ensure proper homologous chromosome pairing, recombination, and synapsis. Multiple organisms are covered. Also evident is the fact that more and more studies use multicellular organisms as a model system, in large part due to the increased availability of tools that were previously restricted to studies in budding and fission yeasts.
Collapse
|
5
|
Lim EC, Kim J, Park J, Kim EJ, Kim J, Park YM, Cho HS, Byun D, Henderson IR, Copenhaver GP, Hwang I, Choi K. DeepTetrad: high-throughput image analysis of meiotic tetrads by deep learning in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:473-483. [PMID: 31536659 DOI: 10.1111/tpj.14543] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Meiotic crossovers facilitate chromosome segregation and create new combinations of alleles in gametes. Crossover frequency varies along chromosomes and crossover interference limits the coincidence of closely spaced crossovers. Crossovers can be measured by observing the inheritance of linked transgenes expressing different colors of fluorescent protein in Arabidopsis pollen tetrads. Here we establish DeepTetrad, a deep learning-based image recognition package for pollen tetrad analysis that enables high-throughput measurements of crossover frequency and interference in individual plants. DeepTetrad will accelerate the genetic dissection of mechanisms that control meiotic recombination.
Collapse
Affiliation(s)
- Eun-Cheon Lim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Jaeil Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Jihye Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Eun-Jung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Juhyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Yeong Mi Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Hyun Seob Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Dohwan Byun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| |
Collapse
|
6
|
Li D, Roca M, Yuecel R, Lorenz A. Immediate visualization of recombination events and chromosome segregation defects in fission yeast meiosis. Chromosoma 2019; 128:385-396. [PMID: 30739171 PMCID: PMC6823302 DOI: 10.1007/s00412-019-00691-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
Abstract
Schizosaccharomyces pombe, also known as fission yeast, is an established model for studying chromosome biological processes. Over the years, research employing fission yeast has made important contributions to our knowledge about chromosome segregation during meiosis, as well as meiotic recombination and its regulation. Quantification of meiotic recombination frequency is not a straightforward undertaking, either requiring viable progeny for a genetic plating assay, or relying on laborious Southern blot analysis of recombination intermediates. Neither of these methods lends itself to high-throughput screens to identify novel meiotic factors. Here, we establish visual assays novel to Sz. pombe for characterizing chromosome segregation and meiotic recombination phenotypes. Genes expressing red, yellow, and/or cyan fluorophores from spore-autonomous promoters have been integrated into the fission yeast genomes, either close to the centromere of chromosome 1 to monitor chromosome segregation, or on the arm of chromosome 3 to form a genetic interval at which recombination frequency can be determined. The visual recombination assay allows straightforward and immediate assessment of the genetic outcome of a single meiosis by epi-fluorescence microscopy without requiring tetrad dissection. We also demonstrate that the recombination frequency analysis can be automatized by utilizing imaging flow cytometry to enable high-throughput screens. These assays have several advantages over traditional methods for analyzing meiotic phenotypes.
Collapse
Affiliation(s)
- Dmitriy Li
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Iain Fraser Cytometry Centre (IFCC), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Marianne Roca
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, 06230, Villefranche-sur-Mer, France
| | - Raif Yuecel
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Iain Fraser Cytometry Centre (IFCC), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|