1
|
Xu Y, Wang H, Li H, Wei C, Zhu Z, Zhao Y, Zhu J, Lei M, Sun Y, Yang Q. Nicotinamide Riboside Supplementation Alleviates Testicular Aging Induced by Disruption of Qprt-Dependent NAD + De Novo Synthesis in Mice. Aging Cell 2025:e70004. [PMID: 39902575 DOI: 10.1111/acel.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
Recent studies have shown that disruptions in the nicotinamide adenine dinucleotide (NAD+) de novo synthesis pathway accelerate ovarian aging, yet its role in spermatogenesis remains largely unknown. In this study, we investigated the impact of the NAD+ de novo synthesis pathway on spermatogenesis by generating Qprt-deficient mice using CRISPR-Cas9 to target quinolinate phosphoribosyl transferase (Qprt), a key enzyme predominantly expressed in spermatocytes. Our results revealed that the deletion of Qprt did not affect NAD+ levels or spermatogenesis in the testes of 3-month-old mice. However, from 6 months of age onward, Qprt-deficient mice exhibited significantly reduced NAD+ levels in the testes compared to wild-type (WT) controls, along with a notable decrease in germ cell numbers and increased apoptosis. Additionally, these mice demonstrated mitochondrial dysfunction in spermatocytes, impaired progression through prophase I of meiosis, defective double-strand break (DSB) repair, and abnormal meiotic sex chromosome inactivation. Importantly, supplementation with the NAD+ precursor nicotinamide riboside (NR) in Qprt-deficient mice restored NAD+ levels and rescued the spermatogenic defects. These findings underscore the critical role of NAD+ de novo synthesis in maintaining NAD+ homeostasis and highlight its importance in meiotic recombination and meiotic sex chromosome inactivation in spermatogenesis.
Collapse
Affiliation(s)
- Yining Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenlu Wei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenye Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqing Zhao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiajia Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Lei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Perales IE, Jones SD, Piaszynski KM, Geyer PK. Developmental changes in nuclear lamina components during germ cell differentiation. Nucleus 2024; 15:2339214. [PMID: 38597409 PMCID: PMC11008544 DOI: 10.1080/19491034.2024.2339214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
The nuclear lamina (NL) changes composition for regulation of nuclear events. We investigated changes that occur in Drosophila oogenesis, revealing switches in NL composition during germ cell differentiation. Germline stem cells (GSCs) express only LamB and predominantly emerin, whereas differentiating nurse cells predominantly express LamC and emerin2. A change in LamC-specific localization also occurs, wherein phosphorylated LamC redistributes to the nuclear interior only in the oocyte, prior to transcriptional reactivation of the meiotic genome. These changes support existing concepts that LamC promotes differentiation, a premise that was tested. Remarkably ectopic LamC production in GSCs did not promote premature differentiation. Increased LamC levels in differentiating germ cells altered internal nuclear structure, increased RNA production, and reduced female fertility due to defects in eggshell formation. These studies suggest differences between Drosophila lamins are regulatory, not functional, and reveal an unexpected robustness to level changes of a major scaffolding component of the NL.
Collapse
Affiliation(s)
- Isabella E. Perales
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Samuel D. Jones
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| | | | - Pamela K. Geyer
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Hughes SE, Price A, Briggs S, Staber C, James M, Anderson M, Hawley RS. A transcriptomics-based RNAi screen for regulators of meiosis and early stages of oocyte development in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae028. [PMID: 38333961 PMCID: PMC10989863 DOI: 10.1093/g3journal/jkae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
A properly regulated series of developmental and meiotic events must occur to ensure the successful production of gametes. In Drosophila melanogaster ovaries, these early developmental and meiotic events include the production of the 16-cell cyst, meiotic entry, synaptonemal complex (SC) formation, recombination, and oocyte specification. In order to identify additional genes involved in early oocyte development and meiosis, we reanalyzed 3 published single-cell RNA-seq datasets from Drosophila ovaries, using vasa (germline) together with c(3)G, cona, and corolla (SC) as markers. Our analysis generated a list of 2,743 co-expressed genes. Many known SC-related and early oocyte development genes fell within the top 500 genes on this list, as ranked by the abundance and specificity of each gene's expression across individual analyses. We tested 526 available RNAi lines containing shRNA constructs in germline-compatible vectors representing 331 of the top 500 genes. We assessed targeted ovaries for SC formation and maintenance, oocyte specification, cyst development, and double-strand break dynamics. Six uncharacterized genes exhibited early developmental defects. SC and developmental defects were observed for additional genes not well characterized in the early ovary. Interestingly, in some lines with developmental delays, meiotic events could still be completed once oocyte specificity occurred indicating plasticity in meiotic timing. These data indicate that a transcriptomics approach can be used to identify genes involved in functions in a specific cell type in the Drosophila ovary.
Collapse
Affiliation(s)
- Stacie E Hughes
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Andrew Price
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Salam Briggs
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Cynthia Staber
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Morgan James
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Madelyn Anderson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Bogolyubov DS, Shabelnikov SV, Travina AO, Sulatsky MI, Bogolyubova IO. Special Nuclear Structures in the Germinal Vesicle of the Common Frog with Emphasis on the So-Called Karyosphere Capsule. J Dev Biol 2023; 11:44. [PMID: 38132712 PMCID: PMC10744300 DOI: 10.3390/jdb11040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The karyosphere (karyosome) is a structure that forms in the oocyte nucleus-germinal vesicle (GV)-at the diplotene stage of meiotic prophase due to the assembly of all chromosomes in a limited portion of the GV. In some organisms, the karyosphere has an extrachromosomal external capsule, the marker protein of which is nuclear F-actin. Despite many years of theories about the formation of the karyosphere capsule (KC) in the GV of the common frog Rana temporaria, we present data that cast doubt on its existence, at least in this species. Specific extrachromosomal strands, which had been considered the main elements of the frog's KC, do not form a continuous layer around the karyosphere and, according to immunogold labeling, do not contain structural proteins, such as actin and lamin B. At the same time, F-actin is indeed noticeably concentrated around the karyosphere, creating the illusion of a capsule at the light microscopy/fluorescence level. The barrier-to-autointegration factor (BAF) and one of its functional partners-LEMD2, an inner nuclear membrane protein-are not localized in the strands, suggesting that the strands are not functional counterparts of the nuclear envelope. The presence of characteristic strands in the GV of R. temporaria late oocytes may reflect an excess of SMC1 involved in the structural maintenance of diplotene oocyte chromosomes at the karyosphere stage, since SMC1 has been shown to be the most abundant protein in the strands. Other characteristic microstructures-the so-called annuli, very similar in ultrastructure to the nuclear pore complexes-do not contain nucleoporins Nup35 and Nup93, and, therefore, they cannot be considered autonomous pore complexes, as previously thought. Taken together, our data indicate that traditional ideas about the existence of the R. temporaria KC as a special structural compartment of the GV are to be revisited.
Collapse
Affiliation(s)
- Dmitry S. Bogolyubov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.V.S.); (A.O.T.); (M.I.S.); (I.O.B.)
| | | | | | | | | |
Collapse
|
5
|
Cabrita B, Martinho RG. Genetic and Epigenetic Regulation of Drosophila Oocyte Determination. J Dev Biol 2023; 11:21. [PMID: 37367475 DOI: 10.3390/jdb11020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023] Open
Abstract
Primary oocyte determination occurs in many organisms within a germ line cyst, a multicellular structure composed of interconnected germ cells. However, the structure of the cyst is itself highly diverse, which raises intriguing questions about the benefits of this stereotypical multicellular environment for female gametogenesis. Drosophila melanogaster is a well-studied model for female gametogenesis, and numerous genes and pathways critical for the determination and differentiation of a viable female gamete have been identified. This review provides an up-to-date overview of Drosophila oocyte determination, with a particular emphasis on the mechanisms that regulate germ line gene expression.
Collapse
Affiliation(s)
- Brigite Cabrita
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Rui Gonçalo Martinho
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| |
Collapse
|