1
|
Berezina TA, Berezin AE. Cell-free DNA as a plausible biomarker of chronic kidney disease. Epigenomics 2023; 15:879-890. [PMID: 37791402 DOI: 10.2217/epi-2023-0255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Circulating cell-free DNA (cf-DNA) is released from dead and/or apoptotic leukocytes and due to neutrophil extracellular traps contributing to an inflammatory response. Previous clinical studies have reported that the peak concentrations and dynamic changes of cf-DNA may be used as a noninvasive biomarker of worsening kidney function as well as a guide to the management of kidney allograft rejection. We hypothesized that the pattern and dynamic changes of cf-DNA might be a plausible predictive biomarker for patients at risk of chronic kidney disease (CKD), including individuals with type 2 diabetes mellitus, heart failure, cardiovascular disease and established CKD. Along with it, pre- and posthemodialysis levels of serum cf-DNA appear to be a independent predictor for all-cause mortality in patients with end-stage kidney disease.
Collapse
Affiliation(s)
- Tetiana A Berezina
- VitaCenter, Department of Internal Medicine and Nephrology, Zaporozhye, 69000, Ukraine
| | - Alexander E Berezin
- Paracelsus Medical University, Department of Internal Medicine II, Division of Cardiology, Salzburg, 5020, Austria
| |
Collapse
|
2
|
An Y, Zhao X, Zhang Z, Xia Z, Yang M, Ma L, Zhao Y, Xu G, Du S, Wu X, Zhang S, Hong X, Jin X, Sun K. DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation. Nat Commun 2023; 14:287. [PMID: 36653380 PMCID: PMC9849216 DOI: 10.1038/s41467-023-35959-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Plasma cell-free DNA (cfDNA) are small molecules generated through a non-random fragmentation procedure. Despite commendable translational values in cancer liquid biopsy, however, the biology of cfDNA, especially the principles of cfDNA fragmentation, remains largely elusive. Through orientation-aware analyses of cfDNA fragmentation patterns against the nucleosome structure and integration with multidimensional functional genomics data, here we report a DNA methylation - nuclease preference - cutting end - size distribution axis, demonstrating the role of DNA methylation as a functional molecular regulator of cfDNA fragmentation. Hence, low-level DNA methylation could increase nucleosome accessibility and alter the cutting activities of nucleases during DNA fragmentation, which further leads to variation in cutting sites and size distribution of cfDNA. We further develop a cfDNA ending preference-based metric for cancer diagnosis, whose performance has been validated by multiple pan-cancer datasets. Our work sheds light on the molecular basis of cfDNA fragmentation towards broader applications in cancer liquid biopsy.
Collapse
Affiliation(s)
- Yunyun An
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Xin Zhao
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Ziteng Zhang
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Zhaohua Xia
- Thoracic Surgical Department, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Li Ma
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, 518107, Shenzhen, China
| | - Gang Xu
- Department of Liver Surgery and Liver Transplant Center, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Xiang'an Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Shuowen Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, 518083, Shenzhen, China.
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China.
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China.
| |
Collapse
|
3
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, Uhlig C, Pfister H, Mayer Z, Holdenrieder S. New Perspectives on the Importance of Cell-Free DNA Biology. Diagnostics (Basel) 2022; 12:2147. [PMID: 36140548 PMCID: PMC9497998 DOI: 10.3390/diagnostics12092147] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research.
Collapse
Affiliation(s)
- Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| | | | | | | | | | | | | | | | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| |
Collapse
|
4
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Holdenrieder S. The rising tide of cell-free DNA profiling: from snapshot to temporal genome analysis. J LAB MED 2022; 46:207-224. [DOI: 10.1515/labmed-2022-0030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Abstract
Genomes of diverse origins are continuously shed into human body fluids in the form of fragmented cell-free DNA (cfDNA). These molecules maintain the genetic and epigenetic codes of their originating source, and often carry additional layers of unique information in newly discovered physico-chemical features. Characterization of cfDNA thus presents the opportunity to non-invasively reconstruct major parts of the host- and metagenome in silico. Data from a single specimen can be leveraged to detect a broad range of disease-specific signatures and has already enabled the development of many pioneering diagnostic tests. Moreover, data from serial sampling may allow unparalleled mapping of the scantily explored landscape of temporal genomic changes as it relates to various changes in different physiological and pathological states of individuals. In this review, we explore how this vast dimension of biological information accessible through cfDNA analysis is being tapped towards the development of increasingly powerful molecular assays and how it is shaping emerging technologies. We also discuss how this departure from traditional paradigms of snapshot genetic testing may pave the way for an onrush of new and exciting discoveries in human biology.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| | - Vida Ungerer
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| | - Angela Oberhofer
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| | - Stefan Holdenrieder
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| |
Collapse
|
5
|
Yuwono NL, Warton K, Ford CE. The influence of biological and lifestyle factors on circulating cell-free DNA in blood plasma. eLife 2021; 10:e69679. [PMID: 34752217 PMCID: PMC8577835 DOI: 10.7554/elife.69679] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023] Open
Abstract
Research and clinical use of circulating cell-free DNA (cirDNA) is expanding rapidly; however, there remain large gaps in our understanding of the influence of lifestyle and biological factors on the amount of cirDNA present in blood. Here, we review 66 individual studies of cirDNA levels and lifestyle and biological factors, including exercise (acute and chronic), alcohol consumption, occupational hazard exposure, smoking, body mass index, menstruation, hypertension, circadian rhythm, stress, biological sex and age. Despite technical and methodological inconsistences across studies, we identify acute exercise as a significant influence on cirDNA levels. Given the large increase in cirDNA induced by acute exercise, we recommend that controlling for physical activity prior to blood collection is routinely incorporated into study design when total cirDNA levels are of interest. We also highlight appropriate selection and complete reporting of laboratory protocols as important for improving the reproducibility cirDNA studies and ability to critically evaluate the results.
Collapse
Affiliation(s)
- Nicole Laurencia Yuwono
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women's and Children's Health, Faculty of Medicine & Health, University of New South WalesSydneyAustralia
| | - Kristina Warton
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women's and Children's Health, Faculty of Medicine & Health, University of New South WalesSydneyAustralia
| | - Caroline Elizabeth Ford
- Gynaecological Cancer Research Group, Adult Cancer Program, Lowy Cancer Research Centre, Department of Obstetrics & Gynaecology, School of Women's and Children's Health, Faculty of Medicine & Health, University of New South WalesSydneyAustralia
| |
Collapse
|
6
|
Mondelo‐Macía P, García‐González J, León‐Mateos L, Anido U, Aguín S, Abdulkader I, Sánchez‐Ares M, Abalo A, Rodríguez‐Casanova A, Díaz‐Lagares Á, Lago‐Lestón RM, Muinelo‐Romay L, López‐López R, Díaz‐Peña R. Clinical potential of circulating free DNA and circulating tumour cells in patients with metastatic non-small-cell lung cancer treated with pembrolizumab. Mol Oncol 2021; 15:2923-2940. [PMID: 34465006 PMCID: PMC8564635 DOI: 10.1002/1878-0261.13094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors, such as pembrolizumab, are revolutionizing therapeutic strategies for different cancer types, including non-small-cell lung cancer (NSCLC). However, only a subset of patients benefits from this therapy, and new biomarkers are needed to select better candidates. In this study, we explored the value of liquid biopsy analyses, including circulating free DNA (cfDNA) and circulating tumour cells (CTCs), as a prognostic or predictive tool to guide pembrolizumab therapy. For this purpose, a total of 109 blood samples were collected from 50 patients with advanced NSCLC prior to treatment onset and at 6 and 12 weeks after the initiation of pembrolizumab. Plasma cfDNA was measured using hTERT quantitative PCR assay. The CTC levels at baseline were also analysed using two enrichment technologies (CellSearch® and Parsortix systems) to evaluate the efficacy of both approaches at detecting the presence of programmed cell death ligand 1 on CTCs. Notably, patients with high baseline hTERT cfDNA levels had significantly shorter progression-free survival (PFS) and overall survival (OS) than those with low baseline levels. Moreover, patients with unfavourable changes in the hTERT cfDNA levels from baseline to 12 weeks showed a higher risk of disease progression. Additionally, patients in whom CTCs were detected using the CellSearch® system had significantly shorter PFS and OS than patients who had no CTCs. Finally, multivariate regression analyses confirmed the value of the combination of CTCs and cfDNA levels as an early independent predictor of disease progression, identifying a subgroup of patients who were negative for CTCs, who presented low levels of cfDNA and who particularly benefited from the treatment.
Collapse
Affiliation(s)
- Patricia Mondelo‐Macía
- Liquid Biopsy Analysis UnitTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
- Universidade de Santiago de Compostela (USC)Santiago de CompostelaSpain
| | - Jorge García‐González
- Department of Medical OncologyComplexo Hospitalario Universitario de Santiago de Compostela (SERGAS)Santiago de CompostelaSpain
- Translational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSantiago de CompostelaSpain
| | - Luis León‐Mateos
- Department of Medical OncologyComplexo Hospitalario Universitario de Santiago de Compostela (SERGAS)Santiago de CompostelaSpain
- Translational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSantiago de CompostelaSpain
| | - Urbano Anido
- Department of Medical OncologyComplexo Hospitalario Universitario de Santiago de Compostela (SERGAS)Santiago de CompostelaSpain
- Translational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - Santiago Aguín
- Department of Medical OncologyComplexo Hospitalario Universitario de Santiago de Compostela (SERGAS)Santiago de CompostelaSpain
- Translational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - Ihab Abdulkader
- Department of PathologyComplexo Hospital Universitario de Santiago de Compostela (SERGAS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - María Sánchez‐Ares
- Department of PathologyComplexo Hospital Universitario de Santiago de Compostela (SERGAS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Alicia Abalo
- Liquid Biopsy Analysis UnitTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - Aitor Rodríguez‐Casanova
- Cancer EpigenomicsTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
- Roche‐CHUS Joint UnitTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - Ángel Díaz‐Lagares
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSantiago de CompostelaSpain
- Cancer EpigenomicsTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - Ramón Manuel Lago‐Lestón
- Liquid Biopsy Analysis UnitTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - Laura Muinelo‐Romay
- Liquid Biopsy Analysis UnitTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSantiago de CompostelaSpain
| | - Rafael López‐López
- Department of Medical OncologyComplexo Hospitalario Universitario de Santiago de Compostela (SERGAS)Santiago de CompostelaSpain
- Translational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSantiago de CompostelaSpain
| | - Roberto Díaz‐Peña
- Liquid Biopsy Analysis UnitTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSantiago de CompostelaSpain
| |
Collapse
|
7
|
Celec P, Janovičová Ĺ, Gurecká R, Koborová I, Gardlík R, Šebeková K. Circulating extracellular DNA is in association with continuous metabolic syndrome score in healthy adolescents. Physiol Genomics 2021; 53:309-318. [PMID: 34097532 DOI: 10.1152/physiolgenomics.00029.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Obesity is associated with chronic low-grade inflammation that eventually leads to metabolic complications. Extracellular DNA (ecDNA) is a damage-associated molecular pattern. Extracellular mitochondrial DNA can activate innate immunity. We hypothesized that ecDNA, especially of mitochondrial origin, could be associated with components of the metabolic syndrome in young healthy probands. In a cross-sectional study, healthy adolescents (n = 1,249) provided blood samples. Anthropometric data, blood pressure, and blood counts were assessed. In addition, biochemical analysis of sera or plasma was conducted, including the quantification of advanced oxidation protein products (AOPPs) as a marker of oxidative stress induced by neutrophil or monocyte activation. Plasma ecDNA was isolated and measured by fluorometry. Nuclear and mitochondrial DNA were quantified by real-time PCR. Males had higher total plasma ecDNA [15 (11-21) vs. 11 (8-17) ng/mL; median (interquartile range)], nuclear [1,760 (956-3,273) vs. 1,153 (600-2,292) genome equivalents (GE)/mL], and mitochondrial [37,181 (14,836-90,896) vs. 30,089 (12,587-72,286) GE/mL] DNA. ecDNA correlated positively with the continuous metabolic syndrome score (r = 0.158 for males and r = 0.134 for females). Stronger correlations were found between ecDNA of mitochondrial origin and AOPP (r = 0.202 and 0.186 for males and females, respectively). Multivariate regression analysis revealed associations of nuclear DNA with leukocyte and erythrocyte counts. The results of this study of healthy adolescents show that circulating ecDNA is associated with the risk of metabolic syndrome, not with obesity per se. The association between mitochondrial ecDNA and AOPP requires further attention as it supports a potential role of mitochondria-induced sterile inflammation in the pathogenesis of the metabolic syndrome.
Collapse
Affiliation(s)
- Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ĺubica Janovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Radana Gurecká
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Ivana Koborová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Roman Gardlík
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
8
|
Circulating Free DNA and Its Emerging Role in Autoimmune Diseases. J Pers Med 2021; 11:jpm11020151. [PMID: 33672659 PMCID: PMC7924199 DOI: 10.3390/jpm11020151] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Liquid biopsies can be used to analyse tissue-derived information, including cell-free DNA (cfDNA), circulating rare cells, and circulating extracellular vesicles in the blood or other bodily fluids, representing a new way to guide therapeutic decisions in cancer. Among the new challenges of liquid biopsy, we found clinical application in nontumour pathologies, including autoimmune diseases. Since the discovery of the presence of high levels of cfDNA in patients with systemic lupus erythaematosus (SLE) in the 1960s, cfDNA research in autoimmune diseases has mainly focused on the overall quantification of cfDNA and its association with disease activity. However, with technological advancements and the increasing understanding of the role of DNA sensing receptors in inflammation and autoimmunity, interest in cfDNA and autoimmune diseases has not expanded until recently. In this review, we provide an overview of the basic biology of cfDNA in the context of autoimmune diseases as a biomarker of disease activity, progression, and prediction of the treatment response. We discuss and integrate available information about these important aspects.
Collapse
|