1
|
Mbiydzenyuy NE, Qulu LA. Stress, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis, and aggression. Metab Brain Dis 2024; 39:1613-1636. [PMID: 39083184 PMCID: PMC11535056 DOI: 10.1007/s11011-024-01393-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/08/2024] [Indexed: 11/05/2024]
Abstract
This comprehensive review explores the intricate relationship between the hypothalamic-pituitary-adrenal (HPA) axis, the hypothalamic-pituitary-gonadal (HPG) axis, and aggression. It provides a detailed overview of the physiology and functioning of these axes, as well as the implications for aggressive behavior. The HPA axis, responsible for the stress response, is activated in response to various stressors and can influence aggressive behavior. Glucocorticoids, such as cortisol, play a crucial role in stress-induced activation of the HPA axis and have been implicated in aggressive tendencies. Chronic stress can dysregulate the HPA axis, leading to alterations in cortisol levels and potentially contributing to aggressive behavior. The HPG axis, particularly the androgen hormone testosterone, is also closely linked to aggression. Animal and human studies have consistently shown a positive association between testosterone levels and aggression. The androgen receptors in the brain's neural circuitry play a critical role in modulating aggressive behavior. Interactions between the HPA and HPG axes further contribute to the regulation of aggression. Feedback mechanisms and crosstalk between these axes provide a complex system for the modulation of both stress and reproductive functions, which can impact aggressive behavior. Additionally,the influence of stress on reproductive functions, particularly the role of androgens in stress-induced aggression, adds further complexity to this relationship. The review also discusses the future directions and implications for clinical interventions. Understanding the neurobiological mechanisms underlying aggression requires integrating molecular, cellular, and circuit-level approaches. Translational perspectives, including animal models and human studies, can bridge the gap between basic research and clinical applications. Finally, therapeutic strategies for aggression-related disorders are explored, highlighting the importance of targeted interventions based on a comprehensive understanding of the interactions between the HPA and HPG axes. In conclusion, this review provides a comprehensive overview of the physiological and neurobiological mechanisms underlying aggression, with a specific focus on the interplay between the HPA and HPG axes. By elucidating the complex interactions between stress, hormones, and aggressive behavior, this research paves the way for future investigations and potential therapeutic interventions for aggression-related disorders.
Collapse
Affiliation(s)
- Ngala Elvis Mbiydzenyuy
- Basic Science Department, School of Medicine, Copperbelt University, P.O Box 71191, Ndola, Zambia
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town, South Africa
| | - Lihle-Appiah Qulu
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town, South Africa.
| |
Collapse
|
2
|
Gerra MC, Dallabona C, Cecchi R. Epigenetic analyses in forensic medicine: future and challenges. Int J Legal Med 2024; 138:701-719. [PMID: 38242965 PMCID: PMC11003920 DOI: 10.1007/s00414-024-03165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The possibility of using epigenetics in forensic investigation has gradually risen over the last few years. Epigenetic changes with their dynamic nature can either be inherited or accumulated throughout a lifetime and be reversible, prompting investigation of their use across various fields. In forensic sciences, multiple applications have been proposed, such as the discrimination of monozygotic twins, identifying the source of a biological trace left at a crime scene, age prediction, determination of body fluids and tissues, human behavior association, wound healing progression, and determination of the post-mortem interval (PMI). Despite all these applications, not all the studies considered the impact of PMI and post-sampling effects on the epigenetic modifications and the tissue-specificity of the epigenetic marks.This review aims to highlight the substantial forensic significance that epigenetics could support in various forensic investigations. First, basic concepts in epigenetics, describing the main epigenetic modifications and their functions, in particular, DNA methylation, histone modifications, and non-coding RNA, with a particular focus on forensic applications, were covered. For each epigenetic marker, post-mortem stability and tissue-specificity, factors that should be carefully considered in the study of epigenetic biomarkers in the forensic context, have been discussed. The advantages and limitations of using post-mortem tissues have been also addressed, proposing directions for these innovative strategies to analyze forensic specimens.
Collapse
Affiliation(s)
- Maria Carla Gerra
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy.
| | - Rossana Cecchi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, PR, Italy
| |
Collapse
|
3
|
Meijer M, Franke B, Sandi C, Klein M. Epigenome-wide DNA methylation in externalizing behaviours: A review and combined analysis. Neurosci Biobehav Rev 2023; 145:104997. [PMID: 36566803 PMCID: PMC12042733 DOI: 10.1016/j.neubiorev.2022.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
DNA methylation (DNAm) is one of the most frequently studied epigenetic mechanisms facilitating the interplay of genomic and environmental factors, which can contribute to externalizing behaviours and related psychiatric disorders. Previous epigenome-wide association studies (EWAS) for externalizing behaviours have been limited in sample size, and, therefore, candidate genes and biomarkers with robust evidence are still lacking. We 1) performed a systematic literature review of EWAS of attention-deficit/hyperactivity disorder (ADHD)- and aggression-related behaviours conducted in peripheral tissue and cord blood and 2) combined the most strongly associated DNAm sites observed in individual studies (p < 10-3) to identify candidate genes and biological systems for ADHD and aggressive behaviours. We observed enrichment for neuronal processes and neuronal cell marker genes for ADHD. Astrocyte and granulocytes cell markers among genes annotated to DNAm sites were relevant for both ADHD and aggression-related behaviours. Only 1 % of the most significant epigenetic findings for ADHD/ADHD symptoms were likely to be directly explained by genetic factors involved in ADHD. Finally, we discuss how the field would greatly benefit from larger sample sizes and harmonization of assessment instruments.
Collapse
Affiliation(s)
- Mandy Meijer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carmen Sandi
- Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
4
|
Acute cannabidiol treatment attenuates ethanol-induced place preference and reduces aggressivity in group-housed male rats. Pharmacol Biochem Behav 2021; 211:173290. [PMID: 34662589 DOI: 10.1016/j.pbb.2021.173290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
Alcohol abuse is a widespread cause of aggressive and impulsive behaviors that impact the users as well as their entourage. However, only a few medications are effective. Recently, cannabidiol has been reported to improve mood disorders and recovery from substance abuse, yet the psychopharmacologic effects of cannabidiol in ethanol-induced drug reward and aggressivity remain unexplored. In the present study, we investigated the effects of cannabidiol on ethanol-induced place preference and aggressivity in individually and group-housed male rats using the conditioned place preference test, and intruder evoc aggression test, respectively. The obtained results showed that ethanol significantly increased locomotor activity, induced conditioned place preference in all animals, and, specifically, increased aggressivity in individually housed rats. These behavioural impairments induced by ethanol were associated with decreased glucocorticoid and mineralocorticoid receptors transcription in the prefrontal cortex. Notwithstanding, cannabidiol at a dose of 10 mg/kg significantly inhibited Et-OH-induced place preference in group-housed, but not in individually housed rats, and markedly inhibited the aggressive behaviour. These findings suggest that ethanol-induced behavioural impairments are dependent on the housing condition that may affect corticosterone receptors expression and subsequently the animal responsivity to cannabidiol treatment.
Collapse
|
5
|
Duclot F, Kabbaj M. Epigenetics of Aggression. Curr Top Behav Neurosci 2021; 54:283-310. [PMID: 34595741 DOI: 10.1007/7854_2021_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aggression is a complex behavioral trait modulated by both genetic and environmental influences on gene expression. By controlling gene expression in a reversible yet potentially lasting manner in response to environmental stimulation, epigenetic mechanisms represent prime candidates in explaining both individual differences in aggression and the development of elevated aggressive behaviors following life adversity. In this manuscript, we review the evidence for an epigenetic basis in the development and expression of aggression in both humans and related preclinical animal models. In particular, we discuss reports linking DNA methylation, histone post-translational modifications, as well as non-coding RNA, to the regulation of a variety of genes implicated in the neurobiology of aggression including neuropeptides, the serotoninergic and dopaminergic systems, and stress response related systems. While clinical reports do reveal interesting patterns of DNA methylation underlying individual differences and experience-induced aggressive behaviors, they do, in general, face the challenge of linking peripheral observations to central nervous system regulations. Preclinical studies, on the other hand, provide detailed mechanistic insights into the epigenetic reprogramming of gene expression following life adversities. Although the functional link to aggression remains unclear in most, these studies together do highlight the involvement of epigenetic events driven by DNA methylation, histone modifications, and non-coding RNA in the neuroadaptations underlying the development and expression of aggression.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
6
|
Qing L, Gao C, Ji A, Lü X, Zhou L, Nie S. Association of mineralocorticoid receptor gene (NR3C2) hypermethylation in adult males with aggressive behavior. Behav Brain Res 2020; 398:112980. [PMID: 33250445 DOI: 10.1016/j.bbr.2020.112980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022]
Abstract
Aggressive behavior may have adaptive value under some environmental conditions. However, when it is extreme or improper, it may also lead to maladaptive results, seriously threatening human and social well-being. Aggressive behavior is a multifactorial disease, and the etiology is largely unknown. The stress-related hypothalamic-pituitary-adrenal (HPA) axis is a crucial system in the stress response that has emerged as a potential mechanism of aggressive behavior. The NR3C2 gene is an important regulator of the HPA axis: it is involved in regulating HPA axis activity and behavioral adaptation to stressors. Moreover, the epigenetic mechanism of DNA methylation has been suggested to mediate the development of aggressive behavior. However, the association between NR3C2 methylation and aggressive behavior has not been studied. In the present study, we assessed NR3C2 methylation (including three regions: promoter P1, exon 1α, and the sequence downstream of exon 1α) in peripheral blood DNA of adult males with aggressive behavior (n = 106) and healthy controls (n = 104). We found the NR3C2 gene to be associated with aggressive behavior, with hypermethylation detected in the entire aggressive behavior group as well as in the robbery subgroup compared to controls. In addition, analysis of methylation at 75 CpG sites revealed that some important CpG sites are associated with aggressive behavior. Our results suggest that HPA axis-related gene NR3C2 methylation is associated with aggressive behavior. These results lend support for using NR3C2 DNA methylation as a potential biomarker of aggressive behavior.
Collapse
Affiliation(s)
- Lili Qing
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Changqing Gao
- Mental Health Center of Yunnan Province, Kunming, Yunnan Province, People's Republic of China
| | - Aicen Ji
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Xin Lü
- Mental Health Center of Yunnan Province, Kunming, Yunnan Province, People's Republic of China
| | - Li Zhou
- Mental Health Center of Yunnan Province, Kunming, Yunnan Province, People's Republic of China.
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| |
Collapse
|