1
|
Song M, Zhou Y, Zhao C, Song F, Hou Y. YHP: Y-chromosome Haplogroup Predictor for predicting male lineages based on Y-STRs. Forensic Sci Int 2024; 361:112113. [PMID: 38936202 DOI: 10.1016/j.forsciint.2024.112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/24/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
Human Y chromosome reflects the evolutionary process of males. Male lineage tracing by Y chromosome is of great use in evolutionary, forensic, and anthropological studies. Identifying the male lineage based on the specific distribution of Y haplogroups narrows down the investigation scope, which has been used in forensic scenarios. However, existing software aids in familial searching using Y-STRs (Y-chromosome short tandem repeats) to predict Y-SNP (Y-chromosome single nucleotide polymorphism) haplogroups, they often lack resolution. In this study, we developed YHP (Y Haplogroup Predictor), a novel software offering high-resolution haplogroup inference without requiring extensive Y-SNP sequencing. Leveraging existing datasets (219 haplogroups, 4064 samples in total), YHP predicts haplogroups with 0.923 accuracy under the highest haplogroup resolution, employing a random forest algorithm. YHP, available on Github (https://github.com/cissy123/YHP-Y-Haplogroup-Predictor-), facilitates high-resolution haplogroup prediction, haplotype mismatch analysis, and haplotype similarity comparison. Notably, it demonstrates efficacy in East Asian populations, benefiting from training data from eight distinct East Asian ethnic populations. Moreover, it enables seamless integration of additional training sets, extending its utility to diverse populations.
Collapse
Affiliation(s)
- Mengyuan Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxiang Zhou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chenxi Zhao
- College of Computer Science, Sichuan University, Chengdu, China
| | - Feng Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yiping Hou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Zhou Y, Wang Y, Song M, Jiang L, Sun C, Wang S, Yao H, Wang Z, Wang X, Liu C, Luo H, Song F. A high-throughput droplet digital PCR system aiming eight DNA methylation targets for age prediction. J Pharm Biomed Anal 2024; 240:115943. [PMID: 38181558 DOI: 10.1016/j.jpba.2023.115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/07/2024]
Abstract
The droplet digital Polymerase Chain Reaction (ddPCR) has garnered recognition for its distinctive attribute of absolute quantification. And it has found practical utility in age prediction through DNA methylation profiles. However, a prevalent limitation in current ddPCR methodologies is the restricted capacity to detect only two targets concurrently in most instruments, leading to high costs, sample wastage, and labor-intensive procedures. To address the limitations, a novel high-throughput ddPCR system allowing for the simultaneous detection of eight targets was developed. Through the implementation of a new 8-plex ddPCR assay, coupled with comprehensive linear regression analyses involving primers and probes ratios, diverse inputs of single CpG sites with distinct primers and probes, and varying plex assay configurations, stable DNA methylation values for four CpGs and stable measurement precisions for distinct multiplex systems were consistently observed. These findings pave the way for advancing the field of chemistry science by enabling more efficient and cost-effective methods. Furthermore, the comparative validation of ddPCR and SNaPshot demonstrated a remarkable concordance in results, and the system also displayed well in the field of various aspects, including species specificity, DNA input, and aged samples. In this study, the recommended input of bisulfite-converted DNA was determined to be 10-50 ng due to the double-positive droplets. Notably, the Pearson correlation coefficient squared values of four CpGs were 0.4878 (ASPA), 0.4832 (IGSF1), 0.6881 (COL1A1), and 0.6475 (MEIS1-AS3). And the testing set exhibited a mean absolute error of 4.5923 years, indicating the robustness and accuracy of the age-predictive model.
Collapse
Affiliation(s)
- Yuxiang Zhou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, West China Second University Hospital, Sichuan University, China
| | - Mengyuan Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, China; Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, China
| | - Lanrui Jiang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chaoran Sun
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shuangshuang Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hewen Yao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zefei Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xindi Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chunhui Liu
- Scientific Support Center, Sniper Medical Technologies Co., Ltd., Suzhou 215000, China
| | - Haibo Luo
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Feng Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Butler JM. Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019-2022. Forensic Sci Int Synerg 2022; 6:100311. [PMID: 36618991 PMCID: PMC9813539 DOI: 10.1016/j.fsisyn.2022.100311] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review paper covers the forensic-relevant literature in biological sciences from 2019 to 2022 as a part of the 20th INTERPOL International Forensic Science Managers Symposium. Topics reviewed include rapid DNA testing, using law enforcement DNA databases plus investigative genetic genealogy DNA databases along with privacy/ethical issues, forensic biology and body fluid identification, DNA extraction and typing methods, mixture interpretation involving probabilistic genotyping software (PGS), DNA transfer and activity-level evaluations, next-generation sequencing (NGS), DNA phenotyping, lineage markers (Y-chromosome, mitochondrial DNA, X-chromosome), new markers and approaches (microhaplotypes, proteomics, and microbial DNA), kinship analysis and human identification with disaster victim identification (DVI), and non-human DNA testing including wildlife forensics. Available books and review articles are summarized as well as 70 guidance documents to assist in quality control that were published in the past three years by various groups within the United States and around the world.
Collapse
Affiliation(s)
- John M. Butler
- National Institute of Standards and Technology, Special Programs Office, 100 Bureau Drive, Mail Stop 4701, Gaithersburg, MD, USA
| |
Collapse
|
4
|
Song M, Jiang L, Lyu Q, Ying J, Wang Z, Zhou Y, Song F, Luo H, Song X, Ying B. Developmental validation of the Microreader Group Y Direct ID System: A novel six‐dye typing system with 54 Y‐chromosomal loci for forensic application. Electrophoresis 2022; 43:2023-2032. [DOI: 10.1002/elps.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Mengyuan Song
- Department of Laboratory Medicine West China Hospital Sichuan University Chengdu Sichuan P. R. China
| | - Lanrui Jiang
- Department of Forensic Genetics West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan P. R. China
| | - Qiang Lyu
- Department of Clinical Laboratory People's Hospital of Beichuan Qiang Autonomous County Beichuan Sichuan P. R. China
| | - Jun Ying
- Department of Clinical Laboratory Santai People's Hospital Santai Sichuan P. R. China
| | - Zefei Wang
- Department of Forensic Genetics West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan P. R. China
| | - Yuxiang Zhou
- Department of Forensic Genetics West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan P. R. China
| | - Feng Song
- Department of Forensic Genetics West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan P. R. China
| | - Haibo Luo
- Department of Forensic Genetics West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan P. R. China
| | - Xingbo Song
- Department of Laboratory Medicine West China Hospital Sichuan University Chengdu Sichuan P. R. China
- Department of Clinical Laboratory Karamay Hospital of Integrated Traditional Chinese and Western Medicine (Karamay People's Hospital) Karamay Xinjiang P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine West China Hospital Sichuan University Chengdu Sichuan P. R. China
| |
Collapse
|
5
|
Javed F, Shafique M, McNevin D, Javed MU, Shehzadi A, Shahid AA. Empirical Evidence on Enhanced Mutation Rates of 19 RM-YSTRs for Differentiating Paternal Lineages. Genes (Basel) 2022; 13:genes13060946. [PMID: 35741708 PMCID: PMC9222627 DOI: 10.3390/genes13060946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Rapidly mutating Y-chromosomal short tandem repeats (RM Y STRs) with mutation rates ≥ 10−2 per locus per generation are valuable for differentiating amongst male paternal relatives where standard Y STRs with mutation rates of ≤10−3 per locus per generation may not. Although the 13 RM Y STRs commonly found in commercial assays provide higher levels of paternal lineage differentiation than conventional Y STRs, there are many male paternal relatives that still cannot be differentiated. This can be improved by increasing the number of Y STRs or choosing those with high mutation rates. We present a RM Y STR multiplex comprising 19 loci with high mutation rates and its developmental validation (repeatability, sensitivity and male specificity). The multiplex was found to be robust, reproducible, specific and sensitive enough to generate DNA profiles from samples with inhibitors. It was also able to detect all contributor alleles of mixtures in ratios up to 9:1. We provide preliminary evidence for the ability of the multiplex to discriminate between male paternal relatives by analyzing large numbers of male relative pairs (536) separated by one to seven meioses. A total of 96 mutations were observed in 162 meioses of father–son pairs, and other closely related male pairs were able to be differentiated after 1, 2, 3, 4, 5, 6 and 7 meiosis in 44%, 69%, 68%, 85%, 0%, 100% and 100% of cases, respectively. The multiplex offers a noticeable enhancement in the ability to differentiate paternally related males compared with the 13 RM Y STR set. We envision the future application of our 19 RM Yplex in criminal cases for the exclusion of male relatives possessing matching standard Y STR profiles and in familial searching with unknown suspects. It represents a step towards the complete individualization of closely related males.
Collapse
Affiliation(s)
- Faqeeha Javed
- Forensic Research Laboratory, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan; (F.J.); (A.S.); (A.A.S.)
| | - Muhammad Shafique
- Forensic Research Laboratory, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan; (F.J.); (A.S.); (A.A.S.)
- Correspondence:
| | - Dennis McNevin
- Centre for Forensic Science, University of Technology Sydney, Sydney 2007, Australia;
| | - Muhammad Usama Javed
- Faculty of Medicine, Allama Iqbal Medical College, University of Health Sciences, Lahore 54700, Pakistan;
| | - Abida Shehzadi
- Forensic Research Laboratory, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan; (F.J.); (A.S.); (A.A.S.)
| | - Ahmad Ali Shahid
- Forensic Research Laboratory, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan; (F.J.); (A.S.); (A.A.S.)
| |
Collapse
|
6
|
Jin X, Zhang H, Ren Z, Wang Q, Liu Y, Ji J, Zhang H, Yang M, Zhou Y, Huang J. Developmental Validation of a Rapidly Mutating Y-STR Panel Labeled by Six Fluoresceins for Forensic Research. Front Genet 2022; 13:777440. [PMID: 35309136 PMCID: PMC8927084 DOI: 10.3389/fgene.2022.777440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/20/2022] [Indexed: 11/23/2022] Open
Abstract
The male-specific region of the human Y chromosome is a useful genetic marker for genealogical searching, male inheritance testing, and male DNA mixture deconvolution in forensic studies. However, the Y chromosomal short tandem repeats (Y-STRs) are difficult to distinguish among related males due to their low/medium mutation rate. In contrast, rapidly mutating (RM) Y-STRs exhibit unusually high mutation rates and possess great potential for differentiating male lineages. In this study, we developed a novel Y-STRs multiplex amplification assay of 32 RM Y-STRs by fragment analysis using six dye-labeled technologies (FAM, HEX, TAMRA, ROX, VIG, and SIZ). The development and the validation of the kit were carried out in accordance with the Scientific Working Group guidelines on DNA Analysis Methods. Identical allelic profiles of the 32 RM Y-STRs using a DNA 9948 sample as the positive control could be observed at different concentrations of PCR reagents. Further, the RM Y-STRs did not show cross-reactions with other common animal species, and the developed assay could tolerate interferences from common PCR inhibitors and mixed DNA samples. More importantly, the kit showed relatively high sensitivity and could detect trace DNA samples. Genetic distributions of 32 RM Y-STRs in the Guizhou Han population revealed that these RM Y-STRs showed relatively high genetic diversities. In conclusion, the RM Y-STR assay developed here showed good species specificity, high sensitivity, tolerance to inhibitors, and sample compatibility, which can be viewed as a highly efficient tool with high discrimination capacity for forensic male differentiation.
Collapse
Affiliation(s)
- Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yongsong Zhou
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Jiang Huang,
| |
Collapse
|