1
|
Costa V, Aluan K, Schiavetti I, Bason C, Vigo T, Leveraro E, Cabona C, Prada V, Costagli M, Boccia VD, Ruggiero B, Brichetto G, Salvetti M, Sormani MP, Mancardi G, Inglese M, Battaglia MA. Study protocol: Exploratory trial of Forza™, an osmotin-based nutraceutical as adjuvant for the treatment of progressive multiple sclerosis. PLoS One 2025; 20:e0311214. [PMID: 40014609 PMCID: PMC11867331 DOI: 10.1371/journal.pone.0311214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/13/2024] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) is the first cause of non-traumatic neurological disability in young adults. Primary and secondary progressive MS are still lacking effective treatments. A new nutraceutical product made of lyophilised leaves of bioengineered kiwi plants (Actinidia deliciosa) overexpressing osmotin has recently been developed. Osmotin is a protein associated with stress adaptation in plant cells and it shares anti-inflammatory and neuroprotective properties with mammalian adiponectin. The aim of this study is to explore the safety and the efficacy of osmotin in progressive MS (PMS). METHODS This is a prospective, multicenter, single-arm interventional, baseline vs treatment study that will be carried out by two Italian MS centers, where a total of fifty PMS patients will be recruited. Every patient will take a daily dosage of 5 grams of an osmotin-based nutraceutical, named Forza™ (9th Dimension Biotech, Inc.), for 6 months. Two pre-treatment assessments, at -6 months (-6M) and at baseline visit (M0), and two post-treatment assessments, at month 1 (M1), and at month 6 (M6) will be carried out. ForzaTM safety and activity, assessed by serum Neurofilaments Light (NfL) Chain quantification, are the primary outcomes of the study. Additional assessments will consist of clinical and neuropsychological evaluations, patient reported outcomes (PROs), brain magnetic resonance imaging (MRI), motor evoked potentials (MEPs) and optical coherence tomography (OCT). DISCUSSION Disease modifying treatments in MS usually target inflammatory pathways with excellent results on reducing relapse associated disability but fail in preventing progression independent from relapse activity. This is a proof-of-concept study aimed at exploring the safety and the activity of an osmotin-based nutraceutical as an adjuvant treatment in PMS patients. TRIAL REGISTRATION The trial was registered on July 10th 2023 at www.clinicaltrials.gov having identifier NCT05937802.
Collapse
Affiliation(s)
- Viola Costa
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Kenda Aluan
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Irene Schiavetti
- Department of Health Sciences, Section of Biostatistics, University of Genoa, Genoa, Italy
| | | | - Tiziana Vigo
- IRCCS, Ospedale Policlinico San Martino, Genova, Italy
| | | | - Corrado Cabona
- IRCCS, Ospedale Policlinico San Martino, UOC Neurofisiopatologia, Genoa, Italy
| | - Valeria Prada
- Italian Multiple Sclerosis Society Foundation (FISM), Scientific Research Area, Genoa, Italy
| | - Mauro Costagli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genova, Italy
| | - Vincenzo Daniele Boccia
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Bruno Ruggiero
- 9th Dimension Biotech, Inc, McMinnville, Oregon, United States of America
| | - Giampaolo Brichetto
- Associazione Italiana Sclerosi Multipla (AISM) Rehabilitation Center, Genoa, Italy
| | - Marco Salvetti
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Maria Pia Sormani
- Department of Health Sciences, Section of Biostatistics, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genova, Italy
| | - Gianluigi Mancardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genova, Italy
| | - Mario Alberto Battaglia
- Italian Multiple Sclerosis Society Foundation (FISM), Scientific Research Area, Genoa, Italy
| |
Collapse
|
2
|
Chaves AR, Tremblay S, Pilutti L, Ploughman M. Lowered ratio of corticospinal excitation to inhibition predicts greater disability, poorer motor and cognitive function in multiple sclerosis. Heliyon 2024; 10:e35834. [PMID: 39170378 PMCID: PMC11337054 DOI: 10.1016/j.heliyon.2024.e35834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Objective Investigate excitatory-inhibitory (E/I) (im)balance using transcranial magnetic stimulation (TMS) in individuals with Multiple Sclerosis (MS) and determine its validity as a neurophysiological biomarker of disability. Methods Participants with MS (n = 83) underwent TMS, cognitive, and motor function assessments. TMS-induced motor evoked potential amplitudes (excitability) and cortical silent periods (inhibition) were assessed bilaterally through recruitment curves. The E/I ratio was calculated as the ratio of excitation to inhibition. Results Participants with greater disability (Expanded Disability Status Scale, EDSS≥3) exhibited lower excitability and increased inhibition compared to those with lower disability (EDSS<3). This resulted in lower E/I ratios in the higher disability group. Individuals with higher disability presented with asymmetrical E/I ratios between brain hemispheres, a pattern not present in the group with lower disability. In regression analyses controlling for demographics, lowered TMS-probed E/I ratio predicted variance in disability (R2 = 0.37, p < 0.001), upper extremity function (R2 = 0.35, p < 0.001), walking speed (R2 = 0.22, p = 0.005), and cognitive performance (R2 = 0.25, p = 0.007). Receiver Operating Characteristic curve analysis confirmed 'excellent' discriminative ability of the E/I ratio in distinguishing high and low disability. Finally, excitation superiorly correlated with the E/I ratio than overall inhibition in both hemispheres (p ≤ 0.01). Conclusion The E/I ratio is a potential neurophysiological biomarker of disability level in MS, especially when assessed in the hemisphere corresponding to the weaker body side. Interventions aimed at increasing cortical excitation or reducing inhibition may restore E/I balance potentially stalling progression or improving function in MS.
Collapse
Affiliation(s)
- Arthur R. Chaves
- Faculty of Health Sciences, Interdisciplinary School of Health Sciences, University of Ottawa, ON, Canada
- Neuromodulation Research Clinic, The Royal's Institute of Mental Health Research, ON, Canada
- Département de Psychoéducation et de Psychologie, Université Du Québec en Outaouais, QC, Canada
| | - Sara Tremblay
- Neuromodulation Research Clinic, The Royal's Institute of Mental Health Research, ON, Canada
- Département de Psychoéducation et de Psychologie, Université Du Québec en Outaouais, QC, Canada
- Faculty of Social Sciences, School of Psychology, University of Ottawa, ON, Canada
- Department of Molecular and Cellular Medicine, University of Ottawa, ON, Canada
| | - Lara Pilutti
- Faculty of Health Sciences, Interdisciplinary School of Health Sciences, University of Ottawa, ON, Canada
| | | |
Collapse
|
3
|
Bardel B, Créange A, Bonardet N, Bapst B, Zedet M, Wahab A, Ayache SS, Lefaucheur JP. Motor function in multiple sclerosis assessed by navigated transcranial magnetic stimulation mapping. J Neurol 2024; 271:4513-4528. [PMID: 38709305 DOI: 10.1007/s00415-024-12398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Impaired motor function is a major cause of disability in multiple sclerosis (MS), involving various neuroplasticity processes typically assessed by neuroimaging. This study aimed to determine whether navigated transcranial magnetic stimulation (nTMS) could also provide biomarkers of motor cortex plasticity in patients with MS (pwMS). METHODS nTMS motor mapping was performed for hand and leg muscles bilaterally. nTMS variables included the amplitude and latency of motor evoked potentials (MEPs), corticospinal excitability measures, and the size of cortical motor maps (CMMs). Clinical assessment included disability (Expanded Disability Status Scale, EDSS), strength (MRC scale, pinch and grip), and dexterity (9-hole Pegboard Test). RESULTS nTMS motor mapping was performed in 68 pwMS. PwMS with high disability (EDSS ≥ 3) had enlarged CMMs with less dense distribution of MEPs and various MEP parameter changes compared to pwMS with low disability (EDSS < 3). Patients with progressive MS had also various MEP parameter changes compared to pwMS with relapsing remitting form. MRC score correlated positively with MEP amplitude and negatively with MEP latency, pinch strength correlated negatively with CMM volume and dexterity with MEP latency. CONCLUSIONS This is the first study to perform 4-limb cortical motor mapping in pwMS using a dedicated nTMS procedure. By quantifying the cortical surface representation of a given muscle and the variability of MEP within this representation, nTMS can provide new biomarkers of motor function impairment in pwMS. Our study opens perspectives for the use of nTMS as an objective method for assessing pwMS disability in clinical practice.
Collapse
Affiliation(s)
- Benjamin Bardel
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France.
- Service Des Explorations Fonctionnelles Non Invasives, Department of Clinical Neurophysiology, DMU FIxIT, AP-HP, Unité de Neurophysiologie Clinique, Hôpital Universitaire Henri Mondor, Henri Mondor University Hospital, 1 Rue Gustave Eiffel, 94000, Creteil, France.
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France.
| | - Alain Créange
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, 1 Rue Gustave Eiffel, 94000, Creteil, France
| | - Nathalie Bonardet
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France
| | - Blanche Bapst
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Department of Neuroradiology, AP-HP, Henri Mondor University Hospital, DMU FIxIT, 1 Rue Gustave Eiffel, 94000, Creteil, France
| | - Mickael Zedet
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, 1 Rue Gustave Eiffel, 94000, Creteil, France
| | - Abir Wahab
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, 1 Rue Gustave Eiffel, 94000, Creteil, France
| | - Samar S Ayache
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France
- Service Des Explorations Fonctionnelles Non Invasives, Department of Clinical Neurophysiology, DMU FIxIT, AP-HP, Unité de Neurophysiologie Clinique, Hôpital Universitaire Henri Mondor, Henri Mondor University Hospital, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, 1 Rue Gustave Eiffel, 94000, Creteil, France
| | - Jean-Pascal Lefaucheur
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France
- Service Des Explorations Fonctionnelles Non Invasives, Department of Clinical Neurophysiology, DMU FIxIT, AP-HP, Unité de Neurophysiologie Clinique, Hôpital Universitaire Henri Mondor, Henri Mondor University Hospital, 1 Rue Gustave Eiffel, 94000, Creteil, France
| |
Collapse
|
4
|
Squillace M, Krupp L, Ray S, Muratori LM. Pinch Strength Measurements in Adolescents With Pediatric Multiple Sclerosis. Int J MS Care 2023; 25:30-34. [PMID: 36711222 PMCID: PMC9881422 DOI: 10.7224/1537-2073.2021-046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a degenerative disease with typical onset between 20 and 50 years of age. An increase in MS cases has been found in the adolescent US population. Adolescents require fine motor manipulation skills for their functional and academic performance. Deficits in the major components of manipulation skills may result in insufficient function. This study examined the 2-point, 3-point, and lateral pinch strength of adolescents diagnosed as having MS. METHODS Seventy-four adolescents, 37 with a diagnosis of relapsing-remitting MS and a control group of 37 age-matched peers, participated in this study. Data on 2-point, 3-point, and lateral pinch strength in both hands were collected using a pinch meter. Analyses of covariance were used to describe differences across the 2 groups, and effect sizes (Cohen d) were calculated by finding the mean difference between the study groups divided by the pooled SD. RESULTS A significant difference was found in the 2-point pinch strength of the right hand of participants with pediatric MS compared with age- and sex-matched control participants. There were no significant differences in 2-point pinch strength of the left hand or in 3-point or lateral pinch strength of the right and left hands. CONCLUSIONS Pinch grasp strength was differentially affected in adolescents with MS. Pinch strength should be assessed and considered in adolescents with MS for a better understanding of their functional performance of fine motor tasks in activities of daily living and academics.
Collapse
Affiliation(s)
- Mary Squillace
- From the Occupational Therapy Department, School of Health Professions, New York Institute of Technology, Old Westbury, NY, USA (MS)
| | - Lauren Krupp
- From the New York University Langone Multiple Sclerosis Comprehensive Care Center, New York, NY, USA (LK)
| | - Sharon Ray
- From the Occupational Therapy Department, University at Buffalo, Buffalo, NY, USA (SR)
| | - Lisa M. Muratori
- From the Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, USA (LMM)
| |
Collapse
|
5
|
Royer N, Coates K, Aboodarda SJ, Camdessanché JP, Millet GY. How is neuromuscular fatigability affected by perceived fatigue and disability in people with multiple sclerosis? Front Neurol 2022; 13:983643. [DOI: 10.3389/fneur.2022.983643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Whereas fatigue is recognized to be the main complaint of patients with multiple sclerosis (PwMS), its etiology, and particularly the role of resistance to fatigability and its interplay with disability level, remains unclear. The purposes of this review were to (i) clarify the relationship between fatigue/disability and neuromuscular performance in PwMS and (ii) review the corticospinal and muscular mechanisms of voluntary muscle contraction that are altered by multiple sclerosis, and how they may be influenced by disability level or fatigue. Neuromuscular function at rest and during exercise are more susceptible to impairement, due to deficits in voluntary activation, when the disability is greater. Fatigue level is related to resistance to fatigability but not to neuromuscular function at rest. Neurophysiological parameters related to signal transmission such as central motor conduction time, motor evoked potentials amplitude and latency are affected by disability and fatigue levels but their relative role in the impaired production of torque remain unclear. Nonetheless, cortical reorganization represents the most likely explanation for the heightened fatigability during exercise for highly fatigued and/or disabled PwMS. Further research is needed to decipher how the fatigue and disability could influence fatigability for an ecological task, especially at the corticospinal level.
Collapse
|
6
|
Chaves AR, Snow NJ, Alcock LR, Ploughman M. Probing the Brain-Body Connection Using Transcranial Magnetic Stimulation (TMS): Validating a Promising Tool to Provide Biomarkers of Neuroplasticity and Central Nervous System Function. Brain Sci 2021; 11:384. [PMID: 33803028 PMCID: PMC8002717 DOI: 10.3390/brainsci11030384] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/18/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive method used to investigate neurophysiological integrity of the human neuromotor system. We describe in detail, the methodology of a single pulse TMS protocol that was performed in a large cohort of people (n = 110) with multiple sclerosis (MS). The aim was to establish and validate a core-set of TMS variables that predicted typical MS clinical outcomes: walking speed, hand dexterity, fatigue, and cognitive processing speed. We provide a brief and simple methodological pipeline to examine excitatory and inhibitory corticospinal mechanisms in MS that map to clinical status. Delayed and longer ipsilateral silent period (a measure of transcallosal inhibition; the influence of one brain hemisphere's activity over the other), longer cortical silent period (suggestive of greater corticospinal inhibition via GABA) and higher resting motor threshold (lower corticospinal excitability) most strongly related to clinical outcomes, especially when measured in the hemisphere corresponding to the weaker hand. Greater interhemispheric asymmetry (imbalance between hemispheres) correlated with poorer performance in the greatest number of clinical outcomes. We also show, not surprisingly, that TMS variables related more strongly to motor outcomes than non-motor outcomes. As it was validated in a large sample of patients with varying severities of central nervous system dysfunction, the protocol described herein can be used by investigators and clinicians alike to investigate the role of TMS as a biomarker in MS and other central nervous system disorders.
Collapse
Affiliation(s)
| | | | | | - Michelle Ploughman
- L.A. Miller Centre, Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1A 1E5, Canada; (A.R.C.); (N.J.S.); (L.R.A.)
| |
Collapse
|
7
|
Pisa M, Chieffo R, Congiu M, Dalla Costa G, Esposito F, Romeo M, Comola M, Comi G, Leocani L. Intracortical motor conduction is associated with hand dexterity in progressive multiple sclerosis. Mult Scler 2020; 27:1222-1229. [PMID: 32975472 DOI: 10.1177/1352458520960374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hand dexterity dysfunction is a key feature of disability in people with progressive multiple sclerosis (PMS). It underlies corticospinal tract (CST) and cerebellar integrity, as well as disruption of cortical networks, which are hardly assessed by standard techniques. Transcranial magnetic stimulation is a promising tool for evaluating the integrity of intracortical motor pathways. OBJECTIVE To investigate neurophysiological correlates of motor hand impairment in PMS. METHODS Antero-posterior (AP) stimulation of the primary motor cortex activates the CST indirectly through polysynaptic pathways, while a direct CST activation occurs with latero-medial (LM) directed current. Thirty PMS and 15 healthy controls underwent dominant hand motor evoked potentials (MEP) using AP and LM-directed stimulation, and a clinical assessment of dexterity (nine-hole peg test) and strength (MRC scale, grip and pinch). RESULTS PMS with AP-LM latency difference 2.5 standard deviation above the mean of controls (33%) showed worse dexterity but no difference in upper limb strength. Accordingly, AP-LM latency shortening predicted dexterity (R2 = 0.538, p < 0.001), but not strength impairment. On the contrary, absolute MEP latencies only correlated with strength (grip: R2 = 0.381, p = 0.014; MRC: R2 = 0.184, p = 0.041). CONCLUSION AP-LM latency shortening may be used to assess the integrity polysynaptic intracortical networks implicated in dexterity impairment.
Collapse
Affiliation(s)
- Marco Pisa
- University Vita-Salute San Raffaele, Milan, Italy/Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy/Experimental Neurophysiology Unit, The Institute of Experimental Neurology (INSPE), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raffaella Chieffo
- Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy/Experimental Neurophysiology Unit, The Institute of Experimental Neurology (INSPE), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Martina Congiu
- Experimental Neurophysiology Unit, The Institute of Experimental Neurology (INSPE), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gloria Dalla Costa
- University Vita-Salute San Raffaele, Milan, Italy/Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Esposito
- Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marzia Romeo
- Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Mauro Comola
- Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giancarlo Comi
- University Vita-Salute San Raffaele, Milan, Italy/Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy/Experimental Neurophysiology Unit, The Institute of Experimental Neurology (INSPE), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Letizia Leocani
- University Vita-Salute San Raffaele, Milan, Italy/Department of Neurorehabilitation, IRCCS Ospedale San Raffaele, Milan, Italy/Experimental Neurophysiology Unit, The Institute of Experimental Neurology (INSPE), IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
8
|
Ruiu E, Dubbioso R, Madsen KH, Svolgaard O, Raffin E, Andersen KW, Karabanov AN, Siebner HR. Probing Context-Dependent Modulations of Ipsilateral Premotor-Motor Connectivity in Relapsing-Remitting Multiple Sclerosis. Front Neurol 2020; 11:193. [PMID: 32431655 PMCID: PMC7214689 DOI: 10.3389/fneur.2020.00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Objective: We employed dual-site TMS to test whether ipsilateral functional premotor-motor connectivity is altered in relapsing-remitting Multiple Sclerosis (RR-MS) and is related to central fatigue. Methods: Twelve patients with RR-MS and 12 healthy controls performed a visually cued Pinch-NoPinch task with their right hand. During the reaction time (RT) period of Pinch and No-Pinch trials, single-site TMS was applied to the left primary motor cortex (M1) or dual-site TMS was applied to the ipsilateral dorsal premotor cortex (PMd) and to M1. We traced context-dependent changes of corticospinal excitability and premotor–motor connectivity by measuring Motor-Evoked Potentials (MEPs) in the right first dorsal interosseus muscle. Central fatigue was evaluated with the Fatigue Scale for Motor and Cognitive Functions (FSMS). Results: In both groups, single-pulse TMS revealed a consistent increase in mean MEP amplitude during the Reaction Time (RT) period relative to a resting condition. Task-related corticospinal facilitation increased toward the end of the RT period in Pinch trials, while it decreased in No-Pinch trials. Again, this modulation of MEP facilitation by trial type was comparable in patients and controls. Dual-site TMS showed no significant effect of a conditioning PMd pulse on ipsilateral corticospinal excitability during the RT period in either group. However, patients showed a trend toward a relative attenuation in functional PMd-M1 connectivity at the end of the RT period in No-Pinch trials, which correlated positively with the severity of motor fatigue (r = 0.69; p = 0.007). Conclusions: Dynamic regulation of corticospinal excitability and ipsilateral PMd-M1 connectivity is preserved in patients with RR-MS. MS-related fatigue scales positively with an attenuation of premotor-to-motor functional connectivity during cued motor inhibition. Significance: The temporal, context-dependent modulation of ipsilateral premotor-motor connectivity, as revealed by dual-site TMS of ipsilateral PMd and M1, constitutes a promising neurophysiological marker of fatigue in MS.
Collapse
Affiliation(s)
- Elisa Ruiu
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Department of Neurology, University Hospital of Sassari, Sassari, Italy
| | - Raffaele Dubbioso
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Kristoffer Hougaard Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Olivia Svolgaard
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark
| | - Estelle Raffin
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Brain Mind Institute and Centre of Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Kasper Winther Andersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark
| | - Anke Ninija Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.,Faculty of Medical and Health Sciences, Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Pisa M, Chieffo R, Giordano A, Gelibter S, Comola M, Comi G, Leocani L. Upper limb motor evoked potentials as outcome measure in progressive multiple sclerosis. Clin Neurophysiol 2020; 131:401-405. [DOI: 10.1016/j.clinph.2019.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
|
10
|
Chieffo R. Changes in cortical motor outputs after a motor relapse of multiple sclerosis. Mult Scler J Exp Transl Clin 2019; 5:2055217319866480. [PMID: 31598329 PMCID: PMC6764060 DOI: 10.1177/2055217319866480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/08/2019] [Accepted: 07/07/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Motor recovery following a multiple sclerosis (MS) relapse depends on mechanisms of tissue repair but also on the capacity of the central nervous system for compensating of permanent damage. OBJECTIVES We aimed to investigate changes in corticospinal plasticity and interhemispheric connections after a relapse of MS using transcranial magnetic stimulation (TMS). METHODS Twenty healthy and 13 relapsing-remitting MS subjects with a first motor relapse were included. TMS mapping and ipsilateral silent period (iSP) were performed after relapse and at 6-month follow-up. RESULTS Strength and dexterity of the paretic hand were impaired at baseline and improved over time. After relapse, mapamplitude and mapdensity were decreased for the ipsilesional-corticospinal tract (IL-CST) while expanded for the contralesional-CST (CL-CST). At follow-up, map parameters normalized for the CL-CST independently from recovery while the increase of outputs from the IL-CST was associated with straight and dexterity improvement. iSP measurements were impaired in MS irrespective of the phase of the disease. Prolonged iSPduration at baseline was associated with less dexterity recovery. CONCLUSIONS After a motor relapse, TMS mapping shows acute changes in corticospinal excitability and rearrangements of motor outputs. iSP is less influenced by the phase of disease but may better predict recovery, possibly reflecting the integrity of interhemispheric motor networks.
Collapse
Affiliation(s)
- Raffaella Chieffo
- Department of Neurorehabilitation and Department of Clinical
Neurophysiology, Hospital San Raffaele, Milan, Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology
(INSPE), San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Mordillo-Mateos L, Soto-Leon V, Torres-Pareja M, Peinado-Palomino D, Mendoza-Laiz N, Alonso-Bonilla C, Dileone M, Rotondi M, Aguilar J, Oliviero A. Fatigue in Multiple Sclerosis: General and Perceived Fatigue Does Not Depend on Corticospinal Tract Dysfunction. Front Neurol 2019; 10:339. [PMID: 31024433 PMCID: PMC6465550 DOI: 10.3389/fneur.2019.00339] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Multiple sclerosis (MS) is an autoimmune disorder of the CNS in which inflammation, demyelination, and axonal damage of the central nervous system coexist. Fatigue is one of the most disabling symptoms in MS and little is known about the neurophysiological mechanisms involved. Methods: To give more mechanistic insight of fatigue in MS, we studied a cohort of 17 MS patients and a group of 16 age-matched healthy controls. Baseline Fatigue Severity Scales and Fatigue Rating were obtained from both groups to check the level of fatigue and to perform statistical correlations with fatigue-induced neurophysiologic changes. To induce fatigue we used a handgrip task. During the fatiguing task, we evaluated fatigue state (using a dynamometer) and after the task we evaluated the Borg Rating of Perceived Exertion Scale. Transcranial magnetic stimulation and peripheral electric stimulation were used to assess corticospinal tract and peripheral system functions before and after the task. Results: Clinically significant fatigue and central motor conduction time were greater in patients than in controls, while motor cortex excitability was decreased and maximal handgrip strength reduced in patients. Interestingly, fatigue state was positively correlated to perceived fatigue in controls but not in patients. Furthermore, in the presence of similar fatigue state over time, controls showed a significant fatigue-related reduction in motor evoked potential (a putative marker of central fatigue) whereas this effect was not seen in patients. Conclusions: in MS patients the pathogenesis of fatigue seems not driven by the mechanisms directly related to corticospinal function (that characterize fatigue in controls) but seems probably due to other "central abnormalities" upstream to primary motor cortex.
Collapse
Affiliation(s)
- Laura Mordillo-Mateos
- FENNSI Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, Spain
| | - Vanesa Soto-Leon
- FENNSI Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, Spain
| | - Marta Torres-Pareja
- FENNSI Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, Spain.,Facultad de Ciencias del Deporte, University of Castilla La Mancha, Toledo, Spain
| | - Diego Peinado-Palomino
- FENNSI Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, Spain.,Facultad de Ciencias del Deporte, University of Castilla La Mancha, Toledo, Spain
| | | | - Carlos Alonso-Bonilla
- FENNSI Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, Spain
| | - Michele Dileone
- Advanced Neurorehabilitation Unit, Hospital Los Madroños, Madrid, Spain
| | - Mario Rotondi
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, IRCCS Scientific Clinical Institutes Maugeri, University of Pavia, Pavia, Italy
| | - Juan Aguilar
- Experimental Neurophysiology, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, Spain
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, Spain
| |
Collapse
|
12
|
Novikov PA, Nazarova MA, Nikulin VV. TMSmap - Software for Quantitative Analysis of TMS Mapping Results. Front Hum Neurosci 2018; 12:239. [PMID: 30038562 PMCID: PMC6046372 DOI: 10.3389/fnhum.2018.00239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
The use of the MRI-navigation system ensures accurate targeting of TMS. This, in turn, results in TMS motor mapping becoming a routinely used procedure in neuroscience and neurosurgery. However, currently, there is no standardized methodology for assessment of TMS motor-mapping results. Therefore, we developed TMSmap—free standalone graphical interface software for the quantitative analysis of the TMS motor mapping results (http://tmsmap.ru/). In addition to the estimation of standard parameters (such as the size of cortical muscle representation and the center of gravity location), it allows estimation of the volume of cortical representations, excitability profile of the cortical surface map, and the overlap between cortical representations. The input data for the software includes the coordinates of the coil position (or electric field maximum) and the corresponding response in each stimulation point. TMSmap has been developed for versatile assessment and comparison of TMS maps relating to different experimental interventions including, but not limited to longitudinal, pharmacological and clinical studies (e.g., stroke recovery). To illustrate the use of TMSmap we provide examples of the actual TMS motor-mapping analysis of two healthy subjects and one chronic stroke patient.
Collapse
Affiliation(s)
- Pavel A Novikov
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Maria A Nazarova
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Vadim V Nikulin
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Kosik KB, Terada M, Drinkard CP, McCann RS, Gribble PA. Potential Corticomotor Plasticity in Those with and without Chronic Ankle Instability. Med Sci Sports Exerc 2017; 49:141-149. [PMID: 27501358 DOI: 10.1249/mss.0000000000001066] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Quantifying corticomotor alterations is important to understand the neurophysiological mechanisms that likely contribute to the neuromuscular control deficits observed in patients with chronic ankle instability (CAI). Corticomotor output mapping provides further insight into the changes within the motor cortex and identifies potential changes in the area of the motor cortex associated with selected muscles. Therefore, this investigation compared the corticomotor map output for the fibularis longus (FL) muscle in patients with and without CAI. METHODS Eighteen CAI patients and 16 healthy controls (HC) volunteered. Transcranial magnetic stimulation was used to map the motor cortex's representation of the FL. The normalized average of three motor evoked potentials at 100% of active motor threshold intensity was recorded for each scalp site on a 6 × 6 cm grid. Corticomotor output map was compared between groups through 1) the size of the corticomotor map area, 2) the volume of the corticomotor map, and 3) the location of cortical representation. Independent t-tests were used to assess group differences in each mapping outcome variable. Cohen's d effect sizes along with 95% confidence intervals were calculated using the pooled SD values. RESULTS CAI patients exhibited less map volume (P = 0.018, CAI = 8.2 ± 3.2 cm mV vs HC = 11.3 ± 3.9 cm mV) and map area (P = 0.046, CAI = 12.8 ± 6.0 cm vs HC: 17.4 ± 6.9 cm) compared with HC. CONCLUSIONS The smaller map area and volume suggest a more concentrated area of neurons communicating with the FL muscle in patients with CAI. Consequently, motor cortical cells on the border of the FL excitation area are less committed to the proper function of the FL muscle and may be recruited by other surrounding areas. This may explain altered movement strategies that lead to ankle reinjury.
Collapse
Affiliation(s)
- Kyle B Kosik
- 1Department of Rehabilitation Sciences, Division of Athletic Training, University of Kentucky, Lexington, KY; and 2College of Sport and Health Sciences Ritsumeikan University, Kusatsu, Shiga-ken, JAPAN
| | | | | | | | | |
Collapse
|
14
|
Barro C, Leocani L, Leppert D, Comi G, Kappos L, Kuhle J. Fluid biomarker and electrophysiological outcome measures for progressive MS trials. Mult Scler 2017; 23:1600-1613. [DOI: 10.1177/1352458517732844] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Progressive multiple sclerosis (MS) is characterized by insidious clinical worsening that is difficult to accurately quantify and predict. Biofluid markers and electrophysiological measures are potential candidate outcome measures in clinical trials, allowing the quantification of nervous damage occurring in the disease. Neurofilaments are highly specific neuronal proteins. They may have come closest to such applications by their higher concentrations repeatedly demonstrated in cerebrospinal fluid (CSF) in all stages of MS, during relapses, their responsiveness to disease-modifying treatments in relapsing and progressive MS and their associations with measures of inflammatory and degenerative magnetic resonance imaging (MRI) outcomes. Digital single-molecule array (Simoa) technology improves accuracy of bioassays in the quantification of neurofilament light chain (NfL) in serum and plasma. NfL seems to mark a common final path of neuroaxonal injury independent of specific causal pathways. CSF and blood levels of NfL are highly correlated across various diseases including MS, suggesting that blood measurements may be useful in assessing response to treatment and predicting future disease activity. Other biomarkers like matrix metalloproteinases, chemokines, or neurotrophic factors have not been studied to a similar extent. Such measures, especially in blood, need further validation to enter the trial arena or clinical practice. The broadening armamentarium of highly sensitive assay technologies in the future may shed even more light on patient heterogeneity and mechanisms leading to disability in MS. Evoked potentials (EPs) are used in clinical practice to measure central conduction of central sensorimotor pathways. They correlate with and predict the severity of clinical involvement of their corresponding function. Their validation for use in multicenter studies is still lacking, with the exception of visual EPs. If further validated, EPs and fluid biomarkers would represent useful outcome measures for clinical trials, being related to specific mechanisms of the ongoing pathologic changes.
Collapse
Affiliation(s)
- Christian Barro
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Letizia Leocani
- Department of Neurology and Institute of Experimental Neurology (INSPE), San Raffaele Hospital, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland/Novartis Pharma AG, Basel, Switzerland
| | - Giancarlo Comi
- Department of Neurology and Institute of Experimental Neurology (INSPE), San Raffaele Hospital, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Ward S, Bryant AL, Pietrosimone B, Bennell KL, Clark R, Pearce AJ. Cortical motor representation of the rectus femoris does not differ between the left and right hemisphere. J Electromyogr Kinesiol 2016; 28:46-52. [PMID: 26999234 DOI: 10.1016/j.jelekin.2016.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/16/2016] [Accepted: 03/07/2016] [Indexed: 11/25/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) involves non-invasive magnetic stimulation of the brain, and can be used to explore the corticomotor excitability and motor representations of skeletal muscles. However there is a lack of motor mapping studies in the lower limb and few conducted in healthy cohorts. The cortical motor representations of muscles can vary between individuals in terms of center position and area despite having a general localized region within the motor cortex. It is important to characterize the normal range for these variables in healthy cohorts to be able to evaluate changes in clinical populations. TMS was used in this cross-sectional study to assess the active motor threshold (AMT) and cortical representation area for rectus femoris in 15 healthy individuals (11M/4F 27.3±5.9years). No differences were found between hemispheres (Left vs. Right P=0.130) for AMT. In terms of y-axis center position no differences were found between hemispheres (Left vs. Right P=0.539), or for the x-axis center position (Left vs. Right P=0.076). Similarly, no differences in calculated area of the motor representation were found (Left vs. Right P=0.699) indicating symmetry between hemispheres.
Collapse
Affiliation(s)
- Sarah Ward
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, VIC, Australia.
| | - Adam L Bryant
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, VIC, Australia
| | - Brian Pietrosimone
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, NC, United States
| | - Kim L Bennell
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, VIC, Australia
| | - Ross Clark
- School of Exercise Science, Australian Catholic University, VIC, Australia
| | - Alan J Pearce
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, VIC, Australia
| |
Collapse
|
16
|
Neva JL, Lakhani B, Brown KE, Wadden KP, Mang CS, Ledwell NHM, Borich MR, Vavasour IM, Laule C, Traboulsee AL, MacKay AL, Boyd LA. Multiple measures of corticospinal excitability are associated with clinical features of multiple sclerosis. Behav Brain Res 2016; 297:187-95. [PMID: 26467603 PMCID: PMC4904787 DOI: 10.1016/j.bbr.2015.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/04/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
In individuals with multiple sclerosis (MS), transcranial magnetic stimulation (TMS) may be employed to assess the integrity of corticospinal system and provides a potential surrogate biomarker of disability. The purpose of this study was to provide a comprehensive examination of the relationship between multiple measures corticospinal excitability and clinical disability in MS (expanded disability status scale (EDSS)). Bilateral corticospinal excitability was assessed using motor evoked potential (MEP) input-output (IO) curves, cortical silent period (CSP), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF) and transcallosal inhibition (TCI) in 26 individuals with MS and 11 healthy controls. Measures of corticospinal excitability were compared between individuals with MS and controls. We evaluated the relationship(s) between age and clinical demographics such as age at MS onset (AO), disease duration (DD) and clinical disability (EDSS) with measures of corticospinal excitability. Corticospinal excitability thresholds were higher, MEP latency and CSP onset delayed and MEP durations prolonged in individuals with MS compared to controls. Age, DD and EDSS correlated with corticospinal excitability thresholds. Also, TCI duration and the linear slope of the MEP amplitude IO curve correlated with EDSS. Hierarchical regression modeling demonstrated that combining multiple TMS-based measures of corticospinal excitability accounted for unique variance in clinical disability (EDSS) beyond that of clinical demographics (AO, DD). Our results indicate that multiple TMS-based measures of corticospinal and interhemispheric excitability provide insights into the potential neural mechanisms associated with clinical disability in MS. These findings may aid in the clinical evaluation, disease monitoring and prediction of disability in MS.
Collapse
Affiliation(s)
- J L Neva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - B Lakhani
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - K E Brown
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - K P Wadden
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - C S Mang
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - N H M Ledwell
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - M R Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - I M Vavasour
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada
| | - C Laule
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - A L Traboulsee
- Division of Neurology, Department of Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - A L MacKay
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada; Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - L A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Auriat AM, Neva JL, Peters S, Ferris JK, Boyd LA. A Review of Transcranial Magnetic Stimulation and Multimodal Neuroimaging to Characterize Post-Stroke Neuroplasticity. Front Neurol 2015; 6:226. [PMID: 26579069 PMCID: PMC4625082 DOI: 10.3389/fneur.2015.00226] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/12/2015] [Indexed: 01/09/2023] Open
Abstract
Following stroke, the brain undergoes various stages of recovery where the central nervous system can reorganize neural circuitry (neuroplasticity) both spontaneously and with the aid of behavioral rehabilitation and non-invasive brain stimulation. Multiple neuroimaging techniques can characterize common structural and functional stroke-related deficits, and importantly, help predict recovery of function. Diffusion tensor imaging (DTI) typically reveals increased overall diffusivity throughout the brain following stroke, and is capable of indexing the extent of white matter damage. Magnetic resonance spectroscopy (MRS) provides an index of metabolic changes in surviving neural tissue after stroke, serving as a marker of brain function. The neural correlates of altered brain activity after stroke have been demonstrated by abnormal activation of sensorimotor cortices during task performance, and at rest, using functional magnetic resonance imaging (fMRI). Electroencephalography (EEG) has been used to characterize motor dysfunction in terms of increased cortical amplitude in the sensorimotor regions when performing upper limb movement, indicating abnormally increased cognitive effort and planning in individuals with stroke. Transcranial magnetic stimulation (TMS) work reveals changes in ipsilesional and contralesional cortical excitability in the sensorimotor cortices. The severity of motor deficits indexed using TMS has been linked to the magnitude of activity imbalance between the sensorimotor cortices. In this paper, we will provide a narrative review of data from studies utilizing DTI, MRS, fMRI, EEG, and brain stimulation techniques focusing on TMS and its combination with uni- and multimodal neuroimaging methods to assess recovery after stroke. Approaches that delineate the best measures with which to predict or positively alter outcomes will be highlighted.
Collapse
Affiliation(s)
- Angela M Auriat
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Jason L Neva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Sue Peters
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Jennifer K Ferris
- Graduate Program in Neuroscience, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Lara A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada ; Graduate Program in Neuroscience, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
18
|
Houdayer E, Comi G, Leocani L. The Neurophysiologist Perspective into MS Plasticity. Front Neurol 2015; 6:193. [PMID: 26388835 PMCID: PMC4558527 DOI: 10.3389/fneur.2015.00193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/18/2015] [Indexed: 01/17/2023] Open
Abstract
Multiple sclerosis (MS) is a frequent, highly debilitating inflammatory demyelinating disease, starting to manifest in early adulthood and presenting a wide variety of symptoms, which are often resistant to pharmacological treatments. Cortical dysfunctions have been demonstrated to be key components of MS condition, and plasticity of the corticospinal motor system is highly involved in major MS symptoms, such as fatigue, spasticity, or pain. Cortical dysfunction in MS can be studied with neurophysiological tools, such as electroencephalography (EEG) and related techniques (evoked potentials) or transcranial magnetic stimulation (TMS). These techniques are now widely used to provide essential elements of MS diagnosis and can also be used to modulate plasticity. Indeed, the recent development of non-invasive brain stimulation techniques able to induce cortical plasticity, such as repetitive TMS or transcranial direct current stimulation, has brought promising results as add-on treatments. In this review, we will focus on the use of these tools (EEG and TMS) to study plasticity in MS and on the major techniques used to modulate plasticity in MS.
Collapse
Affiliation(s)
- Elise Houdayer
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute , Milan , Italy
| | - Giancarlo Comi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute , Milan , Italy ; University Vita-Salute San Raffaele, San Raffaele Scientific Institute , Milan , Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute , Milan , Italy ; University Vita-Salute San Raffaele, San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
19
|
Consistency of evoked responses to dual-stimulator, single-pulse transcranial magnetic stimulation in the lower limb of people with multiple sclerosis. J Clin Neurosci 2015; 22:1434-7. [DOI: 10.1016/j.jocn.2015.02.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/21/2015] [Indexed: 11/21/2022]
|
20
|
Iodice R, Dubbioso R, Ruggiero L, Santoro L, Manganelli F. Anodal transcranial direct current stimulation of motor cortex does not ameliorate spasticity in multiple sclerosis. Restor Neurol Neurosci 2015; 33:487-92. [DOI: 10.3233/rnn-150495] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Brown KE, Neva JL, Ledwell NM, Boyd LA. Use of transcranial magnetic stimulation in the treatment of selected movement disorders. Degener Neurol Neuromuscul Dis 2014; 4:133-151. [PMID: 32669907 PMCID: PMC7337234 DOI: 10.2147/dnnd.s70079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 11/23/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a valuable technique for assessing the underlying neurophysiology associated with various neuropathologies, and is a unique tool for establishing potential neural mechanisms responsible for disease progression. Recently, repetitive TMS (rTMS) has been advanced as a potential therapeutic technique to treat selected neurologic disorders. In healthy individuals, rTMS can induce changes in cortical excitability. Therefore, targeting specific cortical areas affected by movement disorders theoretically may alter symptomology. This review discusses the evidence for the efficacy of rTMS in Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis. It is hoped that gaining a more thorough understanding of the timing and parameters of rTMS in individuals with neurodegenerative disorders may advance both clinical care and research into the most effective uses of this technology.
Collapse
Affiliation(s)
| | - Jason L Neva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Lara A Boyd
- Graduate Program in Rehabilitation Science.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Plasticity of the motor system in multiple sclerosis. Neuroscience 2014; 283:222-30. [DOI: 10.1016/j.neuroscience.2014.05.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/20/2022]
|
23
|
Abstract
The availability of new treatments able to modify the natural course of multiple sclerosis (MS) has generated interest in paraclinical measures to monitor disease evolution. Among these, neurophysiologic measures, mainly evoked potentials (EPs), are used in the functional assessment of central sensorimotor and cognitive networks affected by MS. EP abnormalities may reveal subclinical lesions, objectivate the involvement of sensory and motor pathways in the presence of vague disturbances, and provide indications of the demyelinating nature of the disease process. However, their diagnostic value is much lower than that of magnetic resonance imaging, and is more sensitive to brain and cervical spinal cord lesions. The application of EPs in assessing disease severity and monitoring the evolution of nervous damage is more promising, thanks to their good correlation with disability in cross-sectional and longitudinal studies, and potential use as paraclinical endpoints in clinical trials. Recent evidence indicates that EPs performed early in the disease may help to predict a worse future progression in the long term. If confirmed, these data suggest the possible usefulness of EPs in the early identification of patients who are more likely to develop future disability, thus requiring more frequent monitoring or being potential candidates for more aggressive disease-modifying treatments.
Collapse
Affiliation(s)
- Letizia Leocani
- Department of Neurology, Clinical Neurophysiology and Neurorehabilitation, University Hospital San Raffaele, Milan, Italy.
| | - Giancarlo Comi
- Department of Neurology, Clinical Neurophysiology and Neurorehabilitation, University Hospital San Raffaele, Milan, Italy
| |
Collapse
|
24
|
Norman KE, Héroux ME. Measures of fine motor skills in people with tremor disorders: appraisal and interpretation. Front Neurol 2013; 4:50. [PMID: 23717299 PMCID: PMC3650669 DOI: 10.3389/fneur.2013.00050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/24/2013] [Indexed: 12/04/2022] Open
Abstract
People with Parkinson's disease, essential tremor, or other movement disorders involving tremor have changes in fine motor skills that are among the hallmarks of these diseases. Numerous measurement tools have been created and other methods devised to measure such changes in fine motor skills. Measurement tools may focus on specific features - e.g., motor skills or dexterity, slowness in movement execution associated with parkinsonian bradykinesia, or magnitude of tremor. Less obviously, some tools may be better suited than others for specific goals such as detecting subtle dysfunction early in disease, revealing aspects of brain function affected by disease, or tracking changes expected from treatment or disease progression. The purpose of this review is to describe and appraise selected measurement tools of fine motor skills appropriate for people with tremor disorders. In this context, we consider the tools' content - i.e., what movement features they focus on. In addition, we consider how measurement tools of fine motor skills relate to measures of a person's disease state or a person's function. These considerations affect how one should select and interpret the results of these tools in laboratory and clinical contexts.
Collapse
Affiliation(s)
- Kathleen E. Norman
- School of Rehabilitation Therapy, Queen’s UniversityKingston, ON, Canada
- Centre for Neuroscience Studies, Queen’s UniversityKingston, ON, Canada
| | | |
Collapse
|
25
|
Shafizadeh M, Platt GK, Mohammadi B. Effects of different focus of attention rehabilitative training on gait performance in Multiple Sclerosis patients. J Bodyw Mov Ther 2013; 17:28-34. [PMID: 23294680 DOI: 10.1016/j.jbmt.2012.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/06/2012] [Accepted: 04/12/2012] [Indexed: 11/16/2022]
Abstract
The present investigation studied the effects of different focus of attention training on gait performance. Twelve volunteers with Multiple Sclerosis and with an average disability score (Expanded Disability Status Scale=6.5) were selected from a Medical School and took part in a three-phase intervention including baseline, internal focus, and external focus, for eight weeks. In the baseline condition, the participants walked on a treadmill without any information. In the first (internal-focus) intervention they focused on foot performance and in the second (external-focus) intervention they focused on external markers and auditory information. The results of within-group analysis of variance showed that the external intervention was significantly (p<.05) better than the other conditions for stride length, step length, step speed, and gait energy expenditure, but not for force and stride timing (p>.05). In conclusion, the second (external-focus) intervention was found to be an appropriate perceptual training method and to result in improvements in some of the gait performance parameters.
Collapse
Affiliation(s)
- Mohsen Shafizadeh
- Academy of Sport and Physical Activity, Faculty of Health and Wellbeing, Sheffield Hallam University, Collegiate Campus, Sheffield S10 2BP, UK.
| | | | | |
Collapse
|
26
|
Schlaeger R, Hardmeier M, Fuhr P. Superficial brain stimulation in multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:577-84. [PMID: 24112925 DOI: 10.1016/b978-0-444-53497-2.00046-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Central motor conduction time (CMCT) is the most frequently studied measure derived from transcranial magnetic stimulation (TMS) in multiple sclerosis (MS); it is abnormal in 57-93% of patients. Addition of the triple stimulation technique and combining motor with other evoked potentials (EPs) increases sensitivity. Cross-sectional correlations of TMS measures with clinical assessments of motor dysfunction or global disability are high. Longitudinally, CMCT is sensitive to both worsening and improvement of motor function, showing its potential to detect therapeutic responses. Moreover, combined multimodal EPs are valid quantitative predictors of the clinical course over periods ranging from 2 to 14 years. Measures of transcallosal connectivity (ipsilateral silent period and interhemispheric inhibition) are altered even in early MS, and yield complementary information on subclinical changes. Pathological brain plasticity in MS has been demonstrated by paired associative stimulation studies revealing a compensatory role of the ipsilateral motor and premotor areas. Central motor fatigue is associated with reduced motor EP amplitudes and increased cortical silent periods in normal controls, whereas patients with MS suffering from subjective fatigue show various abnormalities in cortical modulation of the motor system.
Collapse
Affiliation(s)
- Regina Schlaeger
- Department of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
27
|
Vucic S, Burke T, Lenton K, Ramanathan S, Gomes L, Yannikas C, Kiernan MC. Cortical dysfunction underlies disability in multiple sclerosis. Mult Scler 2011; 18:425-32. [PMID: 21965421 DOI: 10.1177/1352458511424308] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gray matter atrophy has been implicated in the development of secondary progressive multiple sclerosis (SPMS). Cortical function may be assessed by transcranial magnetic stimulation (TMS). Determining whether cortical dysfunction was a feature of SPMS could be of pathophysiological significance. OBJECTIVES Consequently, novel paired-pulse threshold tracking TMS techniques were used to assess whether cortical dysfunction was a feature of SPMS. METHODS Cortical excitability studies were undertaken in 15 SPMS, 25 relapsing-remitting MS patients (RRMS) and 66 controls. RESULTS Short interval intracortical inhibition (SPMS 3.0 ± 2.1%; RRMS 12.8 ± 1.7%, p < 0.01; controls 10.5 ± 0.7%, p < 0.01) and motor evoked potential (MEP) amplitude (SPMS 11.5 ± 2.2%; RRMS 26.3 ± 3.6%, p <0.05; controls 24.7 ± 1.8%, p < 0.01) were reduced in SPMS, while intracortical facilitation (SPMS -5.2 ± 1.9%; RRMS -2.0 ± 1.4, p < 0.05; controls -0.9 ± 0.7, p < 0.01) and resting motor threshold were increased (SPMS 67.5 ± 4.5%; RRMS 56.0 ± 1.5%, p < 0.01; controls 59.0 ± 1.1%, p < 0.001). Further, central motor conduction time was prolonged in SPMS (9.1 ± 1.2 ms, p < 0.001) and RRMS (7.0 ± 0.9 ms, p < 0.05) patients compared with controls (5.5 ± 0.2 ms). The observed changes in cortical function correlated with the Expanded Disability Status Scale. CONCLUSION Together, these findings suggest that cortical dysfunction is associated with disability in MS, and documentation of such cortical dysfunction may serve to quantify disease severity in MS.
Collapse
Affiliation(s)
- Steve Vucic
- Sydney Medical School Westmead, University of Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Johnson RA, Baker-Herman TL, Duncan ID, Mitchell GS. Ventilatory impairment in the dysmyelinated Long Evans shaker rat. Neuroscience 2010; 169:1105-14. [PMID: 20542092 PMCID: PMC2927872 DOI: 10.1016/j.neuroscience.2010.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/04/2010] [Accepted: 06/05/2010] [Indexed: 10/19/2022]
Abstract
Although respiratory complications significantly contribute to morbidity/mortality in advanced myelin disorders, little is known concerning mechanisms whereby dysmyelination impairs ventilation, or how patients compensate (i.e. plasticity). To establish a model for studies concerning mechanisms of ventilatory impairment/compensation, we tested the hypotheses that respiratory function progressively declines in a model of CNS dysmyelination, the Long Evans shaker rat (les). The observed impairment is associated with abnormal inspiratory neural output. Minimal myelin staining was found throughout the CNS of les rats, including the brainstem and cervical bulbospinal tracts. Ventilation (via whole-body plethysmography) and phrenic motor output were assessed in les and wild-type (WT) rats during baseline, hypoxia (11% O(2)) and hypercapnia (7% CO(2)). Hypercapnic ventilatory responses were similar in young adult les and WT rats (2 months old); in hypoxia, rats exhibited seizure-like activity with sustained apneas. However, 5-6 month old les rats exhibited decreased breathing frequencies, mean inspiratory flow (V(T)/T(I)) and ventilation (V (E)) during baseline and hypercapnia. Although phrenic motor output exhibited normal burst frequency and amplitude in 5-6 month old les rats, intra-burst activity was abnormal. In WT rats, phrenic activity was progressive and augmenting; in les rats, phrenic activity was decrementing with asynchronized, multipeaked activity. Thus, although ventilatory capacity is maintained in young, dysmyelinated rats, ventilatory impairment develops with age, possibly through discoordination in respiratory motor output. This study is the first reporting age-related breathing abnormalities in a rodent dysmyelination model, and provides the foundation for mechanistic studies of respiratory insufficiency and therapeutic interventions.
Collapse
Affiliation(s)
- R A Johnson
- Department of Surgical Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
29
|
Crosson B, Ford A, McGregor KM, Meinzer M, Cheshkov S, Li X, Walker-Batson D, Briggs RW. Functional imaging and related techniques: an introduction for rehabilitation researchers. JOURNAL OF REHABILITATION RESEARCH AND DEVELOPMENT 2010; 47:vii-xxxiv. [PMID: 20593321 PMCID: PMC3225087 DOI: 10.1682/jrrd.2010.02.0017] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Functional neuroimaging and related neuroimaging techniques are becoming important tools for rehabilitation research. Functional neuroimaging techniques can be used to determine the effects of brain injury or disease on brain systems related to cognition and behavior and to determine how rehabilitation changes brain systems. These techniques include: functional magnetic resonance imaging (fMRI), positron emission tomography (PET), electroencephalography (EEG), magnetoencephalography (MEG), near infrared spectroscopy (NIRS), and transcranial magnetic stimulation (TMS). Related diffusion weighted magnetic resonance imaging techniques (DWI), including diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), can quantify white matter integrity. With the proliferation of these imaging techniques in rehabilitation research, it is critical that rehabilitation researchers, as well as consumers of rehabilitation research, become familiar with neuroimaging techniques, what they can offer, and their strengths and weaknesses The purpose to this review is to provide such an introduction to these neuroimaging techniques.
Collapse
Affiliation(s)
- Bruce Crosson
- VA RR&D Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida
- Department of Clinical & Health Psychology, University of Florida, Gainesville, Florida
| | - Anastasia Ford
- Department of Psychology, University of Florida, Gainesville, Florida
| | - Keith M. McGregor
- VA RR&D Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida
- Department of Psychology, University of Florida, Gainesville, Florida
| | - Marcus Meinzer
- Department of Clinical & Health Psychology, University of Florida, Gainesville, Florida
| | - Sergey Cheshkov
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiufeng Li
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Richard W. Briggs
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
30
|
Thickbroom GW, Sacco P, Faulkner DL, Kermode AG, Mastaglia FL. Enhanced corticomotor excitability with dynamic fatiguing exercise of the lower limb in multiple sclerosis. J Neurol 2008; 255:1001-5. [DOI: 10.1007/s00415-008-0818-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/15/2007] [Accepted: 05/03/2007] [Indexed: 10/22/2022]
|
31
|
Lo YL. The Role of Electrophysiology in the Diagnosis and Management of Cervical Spondylotic Myelopathy. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2007. [DOI: 10.47102/annals-acadmedsg.v36n11p886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Background: Cervical spondylotic myelopathy (CSM) is managed by conservative or surgical measures. While surgery is often performed in cases of longstanding or severe CSM, there is a lack of evidence concerning its efficacy. Transcranial magnetic stimulation (TMS) is a quick, safe, painless and non-invasive technique to study conduction in the descending corticospinal pathways in the spinal cord. The conduction time from the motor cortex to the anterior horn cell [central motor conduction time (CMCT)] is a measure of the integrity of corticospinal pathways. We have previously established the role of TMS in diagnosis and screening of CSM. In this study, we further investigate the use MEPs obtained with TMS in the outcome prediction of severe CSM patients requiring operative intervention.
Methods: We prospectively evaluated 46 consecutive patients (mean age, 57.6 years; range, 36 to 84 years; 28 men) presenting with clinical features of CSM over a 2-year period. Disease duration ranged from 6 to 24 months. A total of 45 healthy controls were studied for comparison. All patients underwent clinical scoring. Patients’ initial clinical score (S1) and postoperative scoring at 6 months (S2) were based on a modified Japan Orthopedic Association Scoring Scale. A Modified Recovery Rate (MRR) was calculated based on the formula: (S2 – S1/17 – S1) x 100. We regarded a good surgical outcome as MRR of 50 or above. This was depicted as MRR50. The patients were separated into 4 groups according to the degree of cord compression by degenerative osteo-cartilaginous elements at the most significant level on MRI. TMS studies were performed before surgery. Each investigator was blinded to the results of the other investigators.
Results: The upper limb (UL) CMCT (r = -0.507, P <0.0005) and lower limb (LL) CMCT (r = - 0.452, P = 0.002) were significantly and negatively correlated with S1. Similarly, UL MEP amplitude (r = 0.494, P <0005) and LL MEP amplitude (r = 0.305, P = 0.039) were significantly correlated with S1. Surgery consisted of anterior or posterior decompression with cervical laminoplasty, performed by an experienced team of orthopaedic surgeons. No significant intraoperative or postoperative complications were documented. Surgery resulted in significantly improved clinical scoring (unpaired t test, P <0.0005). No correlation between clinical scoring with patients’ age, disease duration, severity or levels of cord compression on MRI was found. ULCMCT and MEP amplitude abnormality were significantly associated with improvement in clinical scoring after surgery (Mann-Whitney test, P <0.05). The UL CMCT was the independent predictor of a good clinical outcome after surgery (odds ratio, 9.09; P = 0.011).
Conclusions: In early CSM, lateral corticospinal tracts are first to be affected. It is thus possible that UL CMCT abnormality reflect more severe affectation of the corticospinal tracts placed relatively more medially in the cervical cord. Surgical intervention may have then effectively relieved the clinically significant compression, leading to a better outcome. This was further corroborated by our finding of negative correlation of S1 with UL CMCT, suggesting that patients who were clinically more severe were also electrophysiologically more abnormal, and subsequently benefited more from surgical decompression relative to patients with normal UL CMCT. This the largest series, to our knowledge, showing for the first time that UL CMCT abnormality obtained with TMS is an independent predictor of good surgical outcome in severe
CSM.
Key words: Cervical spondylosis, Surgery, Severe, Outcome, Transcranial magnetic stimulation, Motor-evoked potential, Magnetic resonance imaging
Collapse
|
32
|
Marques KB, Santos LMB, Oliveira ALR. Spinal motoneuron synaptic plasticity during the course of an animal model of multiple sclerosis. Eur J Neurosci 2006; 24:3053-62. [PMID: 17156366 DOI: 10.1111/j.1460-9568.2006.05184.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the course of experimental autoimmune encephalomyelitis, a massive loss of motor and sensitive function occurs, which has been classically attributed to the demyelination process. In rats, the clinical signs disappear within 5 days following complete tetraplegia, indicating that demyelination might not be the only cause for the rapid evolution of the disease. The present work investigated the occurrence of experimental autoimmune encephalomyelitis-induced changes of the synaptic covering of spinal motoneurons during exacerbation and after remission. The terminals were typed with transmission electron microscopy as C-, F- and S-type. Immunohistochemical analysis of synaptophysin, glial fibrillary acidic protein and the microglia/macrophage marker F4/80 were also used in order to draw a correlation between the synaptic changes and the glial reaction. The ultrastructural analysis showed that, during exacerbation, there was a strong retraction of both F- and S-type terminals. In this sense, both the covering as well as the length of the remaining terminals suffered great reductions. However, the retracted terminals rapidly returned to apposition, although the mean length remained shorter. A certain level of sprouting may have occurred as, after remission, the number of F-terminals was greater than in the control group. The immunohistochemical analysis showed that the peak of synaptic loss was coincident with an increased macro- and microglial reaction. Our results suggest that the major changes occurring in the spinal cord network during the time course of the disease may contribute significantly to the origin of the clinical signs as well as help to explain their rapid recovery.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/metabolism
- Biomarkers/metabolism
- Disease Models, Animal
- Female
- Glial Fibrillary Acidic Protein/metabolism
- Gliosis/etiology
- Gliosis/pathology
- Gliosis/physiopathology
- Microscopy, Immunoelectron
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Multiple Sclerosis/physiopathology
- Myasthenia Gravis, Autoimmune, Experimental/metabolism
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Myasthenia Gravis, Autoimmune, Experimental/physiopathology
- Nerve Degeneration/etiology
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Nerve Regeneration/physiology
- Neuronal Plasticity/physiology
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/pathology
- Rats
- Rats, Inbred Lew
- Recovery of Function/physiology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Spinal Cord/physiopathology
- Synaptophysin/metabolism
Collapse
Affiliation(s)
- K B Marques
- Departamento de Anatomia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, CEP 13083-970, Campinas, SP, Brazil
| | | | | |
Collapse
|
33
|
Kohl AS, Conforto AB, Z'Graggen WJ, Kaelin-Lang A. An integrative transcranial magnetic stimulation mapping technique using non-linear curve fitting. J Neurosci Methods 2006; 157:278-84. [PMID: 16737740 DOI: 10.1016/j.jneumeth.2006.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/22/2006] [Accepted: 04/23/2006] [Indexed: 10/24/2022]
Abstract
The aim of this study is to develop a new simple method for analyzing one-dimensional transcranial magnetic stimulation (TMS) mapping studies in humans. Motor evoked potentials (MEP) were recorded from the abductor pollicis brevis (APB) muscle during stimulation at nine different positions on the scalp along a line passing through the APB hot spot and the vertex. Non-linear curve fitting according to the Levenberg-Marquardt algorithm was performed on the averaged amplitude values obtained at all points to find the best-fitting symmetrical and asymmetrical peak functions. Several peak functions could be fitted to the experimental data. Across all subjects, a symmetric, bell-shaped curve, the complementary error function (erfc) gave the best results. This function is characterized by three parameters giving its amplitude, position, and width. None of the mathematical functions tested with less or more than three parameters fitted better. The amplitude and position parameters of the erfc were highly correlated with the amplitude at the hot spot and with the location of the center of gravity of the TMS curve. In conclusion, non-linear curve fitting is an accurate method for the mathematical characterization of one-dimensional TMS curves. This is the first method that provides information on amplitude, position and width simultaneously.
Collapse
Affiliation(s)
- Alexandra S Kohl
- Neurology Department, Inselspital, University of Berne, CH-3010 Berne, Switzerland
| | | | | | | |
Collapse
|
34
|
Thickbroom GW, Sacco P, Kermode AG, Archer SA, Byrnes ML, Guilfoyle A, Mastaglia FL. Central motor drive and perception of effort during fatigue in multiple sclerosis. J Neurol 2006; 253:1048-53. [PMID: 16607472 DOI: 10.1007/s00415-006-0159-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 09/28/2005] [Accepted: 10/17/2005] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To determine if task performance and fatiguability during repeated low-level contractions of an intrinsic hand muscle differ in a group of MS subjects compared with a control group, and what central changes accompany the development of fatigue and the period of recovery, whether these measures are related to subjective ratings of fatigue or perception of effort. METHODS Force of index finger abduction, rating of perceived effort, and motor evoked potential amplitude and silent period duration were measured during and after a 20-min. intermittent submaximal (40%) contraction of the first dorsal interosseous muscle in 23 clinically definite MS subjects with mild-moderate symptoms, and 15 controls. RESULTS Rating of perceived effort increased at a greater rate in the MS group than in control subjects during exercise, and this was associated with larger increases in both MEP amplitude and silent period duration. CONCLUSIONS Submaximal fatiguing exercise is associated with an enhanced central motor drive and increased perception of effort in MS. SIGNIFICANCE MS subjects can increase central drive during fatiguing exercise to a greater degree than controls, but this is associated with greater perceived exertion. These factors may underlie the more general complaint of fatigue experienced by people with MS.
Collapse
Affiliation(s)
- Gary W Thickbroom
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia Queen Elizabeth II Medical Centre, 6009 Perth, WA, Australia.
| | | | | | | | | | | | | |
Collapse
|