1
|
Asthana P, Zhang G, Sheikh KA, Him Eddie Ma C. Heat shock protein is a key therapeutic target for nerve repair in autoimmune peripheral neuropathy and severe peripheral nerve injury. Brain Behav Immun 2021; 91:48-64. [PMID: 32858161 DOI: 10.1016/j.bbi.2020.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Guillain-Barré syndrome (GBS) is an autoimmune peripheral neuropathy and a common cause of neuromuscular paralysis. Preceding infection induces the production of anti-ganglioside (GD) antibodies attacking its own peripheral nerves. In severe proximal peripheral nerve injuries that require long-distance axon regeneration, motor functional recovery is virtually nonexistent. Damaged axons fail to regrow and reinnervate target muscles. In mice, regenerating axons must reach the target muscle within 35 days (critical period) to reform functional neuromuscular junctions and regain motor function. Successful functional recovery depends on the rate of axon regeneration and debris removal (Wallerian degeneration) after nerve injury. The innate-immune response of the peripheral nervous system to nerve injury such as timing and magnitude of cytokine production is crucial for Wallerian degeneration. In the current study, forced expression of human heat shock protein (hHsp) 27 completely reversed anti-GD-induced inhibitory effects on nerve repair assessed by animal behavioral assays, electrophysiology and histology studies, and the beneficial effect was validated in a second mouse line of hHsp27. The protective effect of hHsp27 on prolonged muscle denervation was examined by performing repeated sciatic nerve crushes to delay regenerating axons from reaching distal muscle from 37 days up to 55 days. Strikingly, hHsp27 was able to extend the critical period of motor functional recovery for up to 55 days and preserve the integrity of axons and mitochondria in distal nerves. Cytokine array analysis demonstrated that a number of key cytokines which are heavily involved in the early phase of innate-immune response of Wallerian degeneration, were found to be upregulated in the sciatic nerve lysates of hHsp27 Tg mice at 1 day postinjury. However, persistent hyperinflammatory mediator changes were found after chronic denervation in sciatic nerves of littermate mice, but remained unchanged in hHsp27 Tg mice. Taken together, the current study provides insight into the development of therapeutic strategies to enhance muscle receptiveness (reinnervation) by accelerating axon regeneration and Wallerian degeneration.
Collapse
Affiliation(s)
- Pallavi Asthana
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Gang Zhang
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston TX 77030, USA
| | - Kazim A Sheikh
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston TX 77030, USA
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
2
|
Morsy S. NCAM protein and SARS-COV-2 surface proteins: In-silico hypothetical evidence for the immunopathogenesis of Guillain-Barré syndrome. Med Hypotheses 2020; 145:110342. [PMID: 33069093 PMCID: PMC7543761 DOI: 10.1016/j.mehy.2020.110342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 01/19/2023]
Abstract
This study aimed at identifying human neural proteins that can be attacked by cross-reacting SARS-COV-2 antibodies causing Guillain-Barré syndrome. These markers can be used for the diagnosis of Guillain-Barré syndrome (GBS). To achieve this goal, proteins implicated in the development of GBS were retrieved from literature. These human proteins were compared to SARS-COV-2 surface proteins to identify homologous sequences using Blastp. Then, MHC-I and MHC-II epitopes were determined in the homologous sequences and used for further analysis. Similar human and SARS-COV-2 epitopes were docked to the corresponding MHC molecule to compare the binding pattern of human and SARS-COV-2 proteins to the MHC molecule. Neural cell adhesion molecule is the only neural protein that showed homologous sequence to SARS-COV-2 envelope protein. The homologous sequence was part of HLA-A68 and HLA-DQA/HLA-DQB epitopes had a similar binding pattern to SARS-COV-2 envelope protein. Based on these results, the study suggests that NCAM may play a significant role in the immunopathogenesis of GBS. NCAM antibodies can be used as a marker for Guillain-Barré syndrome. However, more experimental studies are needed to prove these results.
Collapse
Affiliation(s)
- Sara Morsy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
3
|
Huang C, Zhang Y, Deng S, Ren Y, Lu W. Trauma-Related Guillain-Barré Syndrome: Systematic Review of an Emerging Concept. Front Neurol 2020; 11:588290. [PMID: 33240210 PMCID: PMC7681248 DOI: 10.3389/fneur.2020.588290] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 02/05/2023] Open
Abstract
Guillain-Barré syndrome (GBS) is mainly associated with preceding exposure to an infectious agent, although the precise pathogenic mechanisms and causes remain unknown. Increasing evidence indicates an association between trauma-related factors and GBS. Here, we performed a systematic review, summarized the current scientific literature related to the onset of GBS associated with trauma, and explored the possible pathogenesis. A literature search of various electronic databases was performed up to May 2020 to identify studies reporting diverse trauma-related triggers of GBS. Data were extracted, summarized descriptively, and evaluated with respect to possible mechanisms. In total, 100 publications, including 136 cases and 6 case series involving GBS triggered by injury, surgery, intracranial hemorrhage, and heatstroke, met our eligibility criteria. The median age of the patients was 53 [interquartile range (IQR) 45-63] years, and 72.1% of the patients were male. The median number of days between the trigger to onset of GBS symptoms was 9 (IQR 6.5-13). Overall, 121 patients (89.0%) developed post-injury/surgical GBS, whereas 13 (9.6%) and 2 (1.5%) patients had preexisting spontaneous intracranial hemorrhage and heatstroke, respectively. The main locations of injury or surgeries preceding GBS were the spine and brain. Based on available evidence, we highlight possible mechanisms of GBS induced by these triggers. Moreover, we propose the concept of "trauma-related GBS" as a new research direction, which may help uncover more pathogenic mechanisms than previously considered for typical GBS triggered by infection or vaccination.
Collapse
Affiliation(s)
- Chuxin Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiliu Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yijun Ren
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Abstract
In vivo, small heat-shock proteins (sHsps) are key players in maintaining a healthy proteome. αB-crystallin (αB-c) or HspB5 is one of the most widespread and populous of the ten human sHsps. Intracellularly, αB-c acts via its molecular chaperone action as the first line of defence in preventing target protein unfolding and aggregation under conditions of cellular stress. In this review, we explore how the structure of αB-c confers its function and interactions within its oligomeric self, with other sHsps, and with aggregation-prone target proteins. Firstly, the interaction between the two highly conserved regions of αB-c, the central α-crystallin domain and the C-terminal IXI motif and how this regulates αB-c chaperone activity are explored. Secondly, subunit exchange is rationalised as an integral structural and functional feature of αB-c. Thirdly, it is argued that monomeric αB-c may be its most chaperone-species active, but at the cost of increased hydrophobicity and instability. Fourthly, the reasons why hetero-oligomerisation of αB-c with other sHsps is important in regulating cellular proteostasis are examined. Finally, the interaction of αB-c with aggregation-prone, partially folded target proteins is discussed. Overall, this paper highlights the remarkably diverse capabilities of αB-c as a caretaker of the cell.
Collapse
Affiliation(s)
- Junna Hayashi
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
5
|
Bonnan M, Gianoli-Guillerme M, Courtade H, Demasles S, Krim E, Marasescu R, Dréau H, Debeugny S, Barroso B. Estimation of intrathecal IgG synthesis: simulation of the risk of underestimation. Ann Clin Transl Neurol 2018; 5:524-537. [PMID: 29761116 PMCID: PMC5945966 DOI: 10.1002/acn3.548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/14/2018] [Accepted: 02/11/2018] [Indexed: 12/15/2022] Open
Abstract
Objective The low level of passively diffused IgG through the blood–brain barrier is sufficient to blur the estimation of intrathecal IgG synthesis (ITS). Therefore, this estimation requires a mathematical calculation derived from empirical laws, but the range of normal values in healthy controls is wide enough to prevent a precise calculation. This study investigated the precision of various methods of ITS estimations and their application to two clinical situations: plasma exchange and immune suppression targeting ITS. Methods Based on a mathematical model of ITS, we constructed a population of healthy controls and applied a tunable ITS. Results We demonstrate the following results: underestimation of ITS is common at individual level but true ITS is well fitted by cohorts; QIgG increases after plasma exchange; IgGLoc calculation based on Qlim falsely increases when QAlb decreases; the sample size required to demonstrate a decrease in ITS increases exponentially with larger QAlb. Interpretation Studies evaluating changes in ITS level should be adjusted to QAlb. Low amounts of ITS could be largely underestimated.
Collapse
Affiliation(s)
- Mickael Bonnan
- Service de neurologie Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | | | - Henri Courtade
- Biologie médicale Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Stéphanie Demasles
- Service de neurologie Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Elsa Krim
- Service de neurologie Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Raluca Marasescu
- Service de neurologie Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Hervé Dréau
- Unité de recherche clinique Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Stéphane Debeugny
- Unité de recherche clinique Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Bruno Barroso
- Service de neurologie Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| |
Collapse
|
6
|
Illes Z, Blaabjerg M. Cerebrospinal fluid findings in Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathies. HANDBOOK OF CLINICAL NEUROLOGY 2017; 146:125-138. [PMID: 29110767 DOI: 10.1016/b978-0-12-804279-3.00009-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The classic immunologic alteration of the cerebrospinal fluid (CSF) in Guillain-Barré syndrome (GBS), albuminocytologic dissociation, has been known since the original paper by Guillain, Barré, and Strohl. Albuminocytologic dissociation has been also described in other forms of the GBS spectrum, such as axonal motor or motor-sensory forms (AMAN, AMSAN), the anti-GQ1b spectrum of Miller Fisher syndrome, and Bickerstaff brainstem encephalitis. Cytokines, chemokines, antibodies, complement components, and molecules with a putative neuroprotective role or indicating axonal damage have also been examined using different methods. Besides these candidate approaches, proteomics has been recently applied to discover potential biomarkers. The overall results support the immunopathogenesis of GBS, but albuminocytologic dissociation remained the only consistent CSF biomarker supporting the diagnosis of GBS. Chronic inflammatory neuropathies also comprise a heterogeneous group of diseases. Increased protein in the CSF is a supportive factor of chronic inflammatory demyelinating polyneuropathy, especially in the absence of definite electrophysiologic criteria. A number of other markers have also been investigated in the CSF of patients with chronic inflammatory neuropathies, similar to GBS. However, none has been used in supporting diagnosis, differentiating among syndromes, or predicting the clinical course and treatment responses.
Collapse
Affiliation(s)
- Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Rink C, Görtzen A, Veh RW, Prüss H. Serum antibodies targeting neurons of the monoaminergic systems in Guillain-Barré syndrome. J Neurol Sci 2017; 372:318-323. [DOI: 10.1016/j.jns.2016.11.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/05/2016] [Accepted: 11/30/2016] [Indexed: 12/16/2022]
|
8
|
Lucchese G, Kanduc D. Zika virus and autoimmunity: From microcephaly to Guillain-Barré syndrome, and beyond. Autoimmun Rev 2016; 15:801-8. [DOI: 10.1016/j.autrev.2016.03.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
|
9
|
Crystallins and neuroinflammation: The glial side of the story. Biochim Biophys Acta Gen Subj 2015; 1860:278-86. [PMID: 26049079 DOI: 10.1016/j.bbagen.2015.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND There is an abundance of evidence to support the association of damaging neuroinflammation and neurodegeneration across a multitude of diseases. One of the links between these pathological phenomena is the role of chaperone proteins as both neuroprotective and immune-regulatory agents. SCOPE OF REVIEW Chaperone proteins are highly expressed at sites of neuroinflammation both in glial cells and in the injured neurons that initiate the immune response. For this reason, the use of chaperones as treatment for various diseases associated with neuroinflammation is a highly active area of investigation. This review explores the various ways that the small heat shock protein chaperones, α-crystallins, can affect glial cell function with a specific focus on their implication in the inflammatory response associated with neurodegenerative disorders, and their potential as therapeutic treatment. MAJOR CONCLUSIONS Although the mechanisms are still under investigation, a clear link has now been established between alpha-crystallins and neuroinflammation, especially through their roles in microglial and macroglial cells. Interestingly, similar to inflammation in itself, crystallins can have a beneficial or detrimental impact on the CNS based on the context and duration of the condition. GENERAL SIGNIFICANCE Overall this review points out the novel roles that chaperones such as alpha-crystallins can play outside of the classical protein folding pathways, and their potential in the development of new therapies for the treatment of neuroinflammatory/neurodegenerative diseases. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
|
10
|
Kannan R, Sreekumar PG, Hinton DR. Novel roles for α-crystallins in retinal function and disease. Prog Retin Eye Res 2012; 31:576-604. [PMID: 22721717 DOI: 10.1016/j.preteyeres.2012.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 01/18/2023]
Abstract
α-Crystallins are key members of the superfamily of small heat shock proteins that have been studied in detail in the ocular lens. Recently, novel functions for α-crystallins have been identified in the retina and in the retinal pigmented epithelium (RPE). αB-Crystallin has been localized to multiple compartments and organelles including mitochondria, golgi apparatus, endoplasmic reticulum and nucleus. α-Crystallins are regulated by oxidative and endoplasmic reticulum stress, and inhibit apoptosis-induced cell death. α-Crystallins interact with a large number of proteins that include other crystallins, and apoptotic, cytoskeletal, inflammatory, signaling, angiogenic, and growth factor molecules. Studies with RPE from αB-crystallin deficient mice have shown that αB-crystallin supports retinal and choroidal angiogenesis through its interaction with vascular endothelial growth factor. αB-Crystallin has also been shown to have novel functions in the extracellular space. In RPE, αB-crystallin is released from the apical surface in exosomes where it accumulates in the interphotoreceptor matrix and may function to protect neighboring cells. In other systems administration of exogenous recombinant αB-crystallin has been shown to be anti-inflammatory. Another newly described function of αB-crystallin is its ability to inhibit β-amyloid fibril formation. α-Crystallin minichaperone peptides have been identified that elicit anti-apoptotic function in addition to being efficient chaperones. Generation of liposomal particles and other modes of nanoencapsulation of these minipeptides could offer great therapeutic advantage in ocular delivery for a wide variety of retinal degenerative, inflammatory and vascular diseases including age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, United States
| | | | | |
Collapse
|
11
|
Katsumata Y, Kawaguchi Y, Baba S, Hattori S, Tahara K, Ito K, Iwasaki T, Yamaguchi N, Oyama M, Kozuka-Hata H, Hattori H, Nagata K, Yamanaka H, Hara M. Identification of three new autoantibodies associated with systemic lupus erythematosus using two proteomic approaches. Mol Cell Proteomics 2011; 10:M110.005330. [PMID: 21474795 DOI: 10.1074/mcp.m110.005330] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our objective was to identify new serum autoantibodies associated with systemic lupus erythematosus (SLE), focusing on those found in patients with central nervous system (CNS) syndromes. Autoantigens in human brain proteins were screened by multiple proteomic analyses: two-dimensional polyacrylamide gel electrophoresis/Western blots followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis and immunoprecipitation followed by liquid chromatography-tandem mass spectrometry shotgun analysis. The presence of serum IgG autoantibodies against 11 selected recombinant antigens was assessed by Western blot and enzyme-linked immunosorbent assay (ELISA) in the sera of 106 SLE patients and 100 normal healthy controls. The O.D. values in sera from SLE patients were significantly higher than those of controls for the antigens crystallin αB (p = 0.0002), esterase D (p = 0.0002), APEX nuclease 1 (p < 0.0001), ribosomal protein P0 (p < 0.0001), and PA28γ (p = 0.0005); the first three are newly reported. The anti-esterase D antibody levels were significantly higher in the CNS group than in the non-CNS group (p = 0.016). Moreover, when the SLE patients were categorized using CNS manifestations indicating neurologic or psychiatric disorders, the anti-APEX nuclease 1 antibody levels were significantly elevated in SLE patients with psychiatric disorders (p = 0.037). In conclusion, the association of SLE with several new and previously reported autoantibodies has been demonstrated. Statistically significant associations between anti-esterase D antibodies and CNS syndromes as well as between anti-APEX nuclease 1 antibodies and psychiatric disorders in SLE were also demonstrated. The combined immunoproteomic approaches used in this study are reliable and effective methods for identifying SLE autoantigens.
Collapse
Affiliation(s)
- Yasuhiro Katsumata
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hegen H, Wanschitz J, Ehling R, Deisenhammer F, Löscher WN, Reindl M, Berger T. Anti-alpha B-crystallin immunoreactivity in Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. J Peripher Nerv Syst 2010; 15:150-2. [PMID: 20626779 DOI: 10.1111/j.1529-8027.2010.00264.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Cherneva R, Petrov D, Georgiev O, Trifonova N. Clinical usefulness of α-crystallin antibodies in non-small cell lung cancer patients☆. Interact Cardiovasc Thorac Surg 2010; 10:14-7. [DOI: 10.1510/icvts.2009.213546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|