1
|
Qi S, Tian M, Rao Y, Sun C, Li X, Qiao J, Huang ZG. Applying transcranial magnetic stimulation to rehabilitation of poststroke lower extremity function and an improvement: Individual-target TMS. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1636. [PMID: 36437474 DOI: 10.1002/wcs.1636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
Abstract
Stroke is the leading cause of disability globally in need of novel and effective methods of rehabilitation. Intermittent theta burst stimulation (iTBS) has been adopted as a Level B recommendation for lower limb spasticity in guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Nonetheless, the methodological differences and deficits of existing work bring about heterogenous results and therefore limit the universal clinical use of rTMS in lower extremity (LE) rehabilitation. The variation of stimulated targets across motor cortex contributes mainly to these heterogeneities. This narrative review includes studies of rTMS on LE motor function rehabilitation in patients after stroke until now. Some analyses of brain imaging and electromagnetic simulation and quantification through computational modeling were also performed. rTMS appears capable of fostering LE motor rehabilitation after stroke, but the actually stimulated targets are considerably bias making it difficult to confirm effectiveness. The main reason for this phenomenon is probably inaccurate targeting of motor cortical leg representation. An underlying updated method is proposed as Individual-Target TMS (IT-TMS) combined with brain imaging. rTMS is a promising validated method for LE function regaining. Future studies should systematically compare the effects of IT-TMS with traditional rTMS using large samples in random clinical trials. This article is categorized under: Neuroscience > Clinical Neuroscience.
Collapse
Affiliation(s)
- Shun Qi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, People's Republic of China
| | - Meng Tian
- National TCM Academic School Inheritance Studio Project-Chang'an Mi Shi Internal Medicine School Inheritance Studio, Xi'an, Shaanxi, People's Republic of China
| | - Yang Rao
- Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, People's Republic of China
| | - Chuanzhu Sun
- Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, People's Republic of China
| | - Xiang Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, People's Republic of China
| | - Jin Qiao
- Department of Rehabilitation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, People's Republic of China.,Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,The State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Weil EL, Stitt DW, Rabinstein AA, Cascino GD, Nasr DM. Acute Ischemic Stroke Presentation Masked by Falsely Localizing Motor Seizure: A Clinical Case Series. Neurohospitalist 2022; 12:647-650. [PMID: 36147759 PMCID: PMC9485687 DOI: 10.1177/19418744221108555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
In this case series, we describe a novel observation in which 4 patients with acute ischemic stroke secondary to large vessel occlusion and no history of seizure present with focal seizure activity localizable to a chronic, contralateral infarct. The explanation for this phenomenon is unknown but may be due to a combination of effects involving disrupted interhemispheric inhibitory connections and epileptogenic changes involving chronically infarcted tissue.
Collapse
Affiliation(s)
- Erika L. Weil
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Derek W. Stitt
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Deena M. Nasr
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Comparison of transcallosal inhibition between hemispheres and its relationship with motor behavior in patients with severe upper extremity impairment after subacute stroke. J Stroke Cerebrovasc Dis 2022; 31:106469. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/20/2022] [Indexed: 10/18/2022] Open
|
4
|
Lefebvre S, Liew SL. Anatomical Parameters of tDCS to Modulate the Motor System after Stroke: A Review. Front Neurol 2017; 8:29. [PMID: 28232816 PMCID: PMC5298973 DOI: 10.3389/fneur.2017.00029] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/23/2017] [Indexed: 01/19/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method to modulate the local field potential in neural tissue and consequently, cortical excitability. As tDCS is relatively portable, affordable, and accessible, the applications of tDCS to probe brain-behavior connections have rapidly increased in the last 10 years. One of the most promising applications is the use of tDCS to modulate excitability in the motor cortex after stroke and promote motor recovery. However, the results of clinical studies implementing tDCS to modulate motor excitability have been highly variable, with some studies demonstrating that as many as 50% or more of patients fail to show a response to stimulation. Much effort has therefore been dedicated to understand the sources of variability affecting tDCS efficacy. Possible suspects include the placement of the electrodes, task parameters during stimulation, dosing (current amplitude, duration of stimulation, frequency of stimulation), individual states (e.g., anxiety, motivation, attention), and more. In this review, we first briefly review potential sources of variability specific to stroke motor recovery following tDCS. We then examine how the anatomical variability in tDCS placement [e.g., neural target(s) and montages employed] may alter the neuromodulatory effects that tDCS exerts on the post-stroke motor system.
Collapse
Affiliation(s)
- Stephanie Lefebvre
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, Division of Biokinesiology and Physical Therapy, Department of Neurology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Sook-Lei Liew
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, Division of Biokinesiology and Physical Therapy, Department of Neurology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|