1
|
Ahmad SMS, Nazar H, Rahman MM, Rusyniak RS, Ouhtit A. ITGB1BP1, a Novel Transcriptional Target of CD44-Downstream Signaling Promoting Cancer Cell Invasion. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:373-380. [PMID: 37252376 PMCID: PMC10225144 DOI: 10.2147/bctt.s404565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
Breast cancer (BC) is the most common malignancy worldwide and has a poor prognosis, because it begins in the breast and disseminates to lymph nodes and distant organs. While invading, BC cells acquire aggressive characteristics from the tumor microenvironment through several mechanisms. Thus, understanding the mechanisms underlying the process of BC cell invasion can pave the way towards the development of targeted therapeutics focused on metastasis. We have previously reported that the activation of CD44 receptor with its major ligand hyaluronan (HA) promotes BC metastasis to the liver in vivo. Next, a gene expression profiling microarray analysis was conducted to identify and validate CD44-downstream transcriptional targets mediating its pro-metastatic function from RNA samples collected from Tet CD44-induced versus control MCF7-B5 cells. We have already validated a number of novel CD44-target genes and published their underlying signaling pathways in promoting BC cell invasion. From the same microarray analysis, Integrin subunit beta 1 binding protein 1 (ITGB1BP1) was also identified as a potential CD44-target gene that was upregulated (2-fold) upon HA activation of CD44. This report will review the lines of evidence collected from the literature to support our hypothesis, and further discuss the possible mechanisms linking HA activation of CD44 to its novel potential transcriptional target ITGB1BP1.
Collapse
Affiliation(s)
- Salma M S Ahmad
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Hanan Nazar
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Md Mizanur Rahman
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Radoslaw Stefan Rusyniak
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Allal Ouhtit
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
3
|
de Vos IJHM, Vreeburg M, Koek GH, van Steensel MAM. Review of familial cerebral cavernous malformations and report of seven additional families. Am J Med Genet A 2016; 173:338-351. [PMID: 27792856 DOI: 10.1002/ajmg.a.38028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/18/2016] [Indexed: 11/11/2022]
Abstract
Cerebral cavernous malformations are vascular anomalies of the central nervous system characterized by clusters of enlarged, leaky capillaries. They are caused by loss-of-function mutations in KRIT1, CCM2, or PDCD10. The proteins encoded by these genes are involved in four partially interconnected signaling pathways that control angiogenesis and endothelial permeability. Cerebral cavernous malformations can occur sporadically, or as a familial autosomal dominant disorder (FCCM) with incomplete clinical and neuroradiological penetrance and great inter-individual variability. Although the clinical course is unpredictable, symptoms typically present during adult life and include headaches, focal neurological deficits, seizures, and potentially fatal stroke. In addition to neural lesions, extraneural cavernous malformations have been described in familial disease in several tissues, in particular the skin. We here present seven novel FCCM families with neurologic and cutaneous lesions. We review histopathological and clinical features and provide an update on the pathophysiology of cerebral cavernous malformations and associated cutaneous vascular lesions. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ivo J H M de Vos
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, The Netherlands.,Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Maaike Vreeburg
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ger H Koek
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Maurice A M van Steensel
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,School of Medicine and School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|