1
|
Kang S, Jeon S, Lee YG, Yun M, Kim H, Ye BS. Brain Perfusion, Atrophy, and Dopaminergic Changes in Amyloid Negative Logopenic Primary Progressive Aphasia. Sci Rep 2025; 15:8429. [PMID: 40069253 PMCID: PMC11897146 DOI: 10.1038/s41598-025-90116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
Although most cases of logopenic variant primary progressive aphasia (lvPPA) are caused by Alzheimer's disease (AD), Lewy body disease (LBD) has also been reported. We assessed brain perfusion, atrophy, dopamine transporter (DAT) uptake, and language function among patients with lvPPA based on beta-amyloid. Thirty-three patients with lvPPA and 28 healthy controls (HCs) underwent MRI, 18F-florbetaben PET, and early- and late-phase DAT PET. All patients completed a language test. General linear models were applied to investigate the association of brain imaging with the aphasia quotient (AQ) and repetition scores. 20 (60.6%) and 13 (39.4%) of the lvPPA patients were amyloid-positive (lvPPAA+) and -negative (lvPPAA-), respectively. Language function was comparable between groups. Compared to HCs, the lvPPAA+ had lower perfusion across widespread brain regions, the lvPPAA- had lower perfusion in the left supramarginal and angular gyri, and both groups had lower DAT in the left caudate and bilateral substantia nigra. In the lvPPAA-, AQ and repetition scores were positively correlated with perfusion in the left temporal and inferior parietal cortices, with perfusion in the left supramarginal gyrus mediating the effect of left substantia nigra DAT. Although AD is the most common underlying pathology of lvPPA, LBD may contribute to the logopenic phenotype.
Collapse
Affiliation(s)
- Sungwoo Kang
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seun Jeon
- Metabolism-Dementia Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Young-Gun Lee
- Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, 10380, Republic of Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - HyangHee Kim
- Graduate Program in Speech-Language Pathology, Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Metabolism-Dementia Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Mäurer A, Himmel G, Lange C, Mathies F, Apostolova I, Peters O, Buchert R. Individualized Summary Assessment of Detailed Neuropsychological Testing for the Etiological Diagnosis of Newly Detected Cognitive Impairment in Hospitalized Geriatric Patients. J Alzheimers Dis 2023:JAD221273. [PMID: 37302033 DOI: 10.3233/jad-221273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Neuropsychological testing (NPT) of geriatric inpatients can be affected by the acute illness and/or the hospitalization. OBJECTIVE To test individualized interpretation of detailed NPT for the differentiation between primary 'neurodegenerative' etiologies (predominantly Alzheimer's disease) and 'other' etiologies (including cerebrovascular disease) of newly detected cognitive impairment in geriatric inpatients without and with delirium in remission. METHODS 96 geriatric inpatients (81.9±5.6 years, 64.6% females) with clinically uncertain cognitive impairment were included. 31.3% had delirium in remission that was not considered the primary cause of the cognitive impairment. Categorization of the most likely etiology as 'neurodegenerative' or 'other' was established retrospectively by a study neuropsychologist based on individualized summary assessment of detailed NPT compiled in a standardized vignette. The etiological diagnosis based on FDG-PET served as gold standard (54.2% 'neurodegenerative', 45.8% 'other'). RESULTS Individualized summary assessment by the study neuropsychologist was correct in 80 patients (83.3%, 8 false positive, 8 false negative). The impact of delirium in remission was not significant (p = 0.237). Individualized summary assessment by an independent neuropsychologist resulted in more false positive cases (n = 22) at the same rate of false negative cases (n = 8). Automatic categorization with a decision tree model based on the most discriminative NPT scores was correct in 68 patients (70.8%, 14 false positive, 14 false negative). CONCLUSION Individualized summary assessment of detailed NPT in the context of relevant clinical information might be useful for the etiological diagnosis of newly detected cognitive impairment in hospitalized geriatric patients, also in patients with delirium in remission, but requires task-specific expertise.
Collapse
Affiliation(s)
- Anja Mäurer
- Vivantes Ida-Wolff-Krankenhaus, Berlin, Germany
| | | | - Catharina Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franziska Mathies
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ivayla Apostolova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Peters
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Characterization of the logopenic variant of Primary Progressive Aphasia: A systematic review and meta-analysis. Ageing Res Rev 2022; 82:101760. [PMID: 36244629 DOI: 10.1016/j.arr.2022.101760] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/11/2022] [Indexed: 01/31/2023]
Abstract
The linguistic and anatomical variability of the logopenic variant of Primary Progressive Aphasia (lv-PPA) as defined by current diagnostic criteria has been the topic of an intense debate. The present review and meta-analysis aims at characterizing the profile of lv-PPA, by a comprehensive analysis of the available literature on the neuropsychological, neuroimaging, electrophysiological, pathological, and genetic features of lv-PPA. We conducted a systematic bibliographic search, leading to the inclusion of 207 papers. Of them, 12 were used for the Anatomical Likelihood Estimation meta-analysis on grey matter revealed by magnetic resonance imaging data. The results suggest that the current guidelines outline a relatively consistent syndrome, characterized by a core set of linguistic and, to a lesser extent, non-linguistic deficits, mirroring the involvement of left temporal and parietal regions typically affected by Alzheimer Disease pathology. Variations of the lv-PPA profile are discussed in terms of heterogeneity of the neuropsychological instruments and the diagnostic criteria adopted.
Collapse
|
4
|
Ramanan S, Irish M, Patterson K, Rowe JB, Gorno-Tempini ML, Lambon Ralph MA. Understanding the multidimensional cognitive deficits of logopenic variant primary progressive aphasia. Brain 2022; 145:2955-2966. [PMID: 35857482 PMCID: PMC9473356 DOI: 10.1093/brain/awac208] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 02/02/2023] Open
Abstract
The logopenic variant of primary progressive aphasia is characterized by early deficits in language production and phonological short-term memory, attributed to left-lateralized temporoparietal, inferior parietal and posterior temporal neurodegeneration. Despite patients primarily complaining of language difficulties, emerging evidence points to performance deficits in non-linguistic domains. Temporoparietal cortex, and functional brain networks anchored to this region, are implicated as putative neural substrates of non-linguistic cognitive deficits in logopenic variant primary progressive aphasia, suggesting that degeneration of a shared set of brain regions may result in co-occurring linguistic and non-linguistic dysfunction early in the disease course. Here, we provide a Review aimed at broadening the understanding of logopenic variant primary progressive aphasia beyond the lens of an exclusive language disorder. By considering behavioural and neuroimaging research on non-linguistic dysfunction in logopenic variant primary progressive aphasia, we propose that a significant portion of multidimensional cognitive features can be explained by degeneration of temporal/inferior parietal cortices and connected regions. Drawing on insights from normative cognitive neuroscience, we propose that these regions underpin a combination of domain-general and domain-selective cognitive processes, whose disruption results in multifaceted cognitive deficits including aphasia. This account explains the common emergence of linguistic and non-linguistic cognitive difficulties in logopenic variant primary progressive aphasia, and predicts phenotypic diversification associated with progression of pathology in posterior neocortex.
Collapse
Affiliation(s)
- Siddharth Ramanan
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Muireann Irish
- The University of Sydney, Brain and Mind Centre and School of Psychology, Sydney, Australia
| | - Karalyn Patterson
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Cambridge University Centre for Frontotemporal Dementia, Cambridge, UK
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| | | | - Matthew A Lambon Ralph
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Singh NA, Graff-Radford J, Machulda MM, Schwarz CG, Baker MC, Rademakers R, Ertekin-Taner N, Lowe VJ, Josephs KA, Whitwell JL. Atypical Alzheimer's disease phenotypes with normal or borderline PET biomarker profiles. J Neurol 2022; 269:6613-6626. [PMID: 36001141 DOI: 10.1007/s00415-022-11330-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 01/01/2023]
Abstract
Posterior cortical atrophy (PCA) and logopenic progressive aphasia (LPA) are clinical syndromes that commonly have underlying Alzheimer's disease (AD), although non-AD pathologies have also been reported. PET imaging allows for identification of beta-amyloid (Aβ) and tau in AD, so we aimed to assess these in a large cohort to identify patients that do not have evidence for biomarker-defined AD. Eight-one patients, 47 PCA and 34 LPA, underwent extensive neurological and neuropsychological testing, [11C] Pittsburgh compound B, [18F] flortaucipir and [18F] fluorodeoxyglucose PETs. Global Aβ and tau-PET standardized uptake value ratios (SUVRs) were plotted for all patients and outliers, and patients with abnormally low SUVRs compared to the biomarker-classic cohort were identified. Six (7.4%) biomarker-outlier cases were identified, and three patterns were observed: (i) negative/borderline Aβ-PET and striking widespread tau-PET uptake (two LPA); (ii) negative/borderline Aβ-PET and low tau-PET uptake (three PCA) and (iii) elevated Aβ-PET uptake but mild focal tau-PET uptake (one LPA). Among the unusual patients in group ii, two patients showed no abnormal tau uptake suggesting non-AD pathology, with one developing features of cortico-basal syndrome and the other dementia with Lewy bodies. The remaining patient showed very mild focal tau uptake. This study demonstrates that a small minority (~ 8%) of PCA and LPA patients do not show the typical striking patterns of Aβ and tau PET uptake, with only 2% showing absence of both proteins. These findings will help inform the use of molecular PET in clinical treatment trials that include patients with atypical phenotypes of AD.
Collapse
Affiliation(s)
| | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | | | - Jennifer L Whitwell
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
Da Cunha E, Plonka A, Arslan S, Mouton A, Meyer T, Robert P, Meunier F, Manera V, Gros A. Logogenic Primary Progressive Aphasia or Alzheimer Disease: Contribution of Acoustic Markers in Early Differential Diagnosis. Life (Basel) 2022; 12:933. [PMID: 35888023 PMCID: PMC9316974 DOI: 10.3390/life12070933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
The logopenic variant of Primary Progressive Aphasia (lvPPA), a syndromic disorder centered on language impairment, often presents variable underlying neurodegenerative pathologies such as Alzheimer Disease (AD). Actual language assessment tests and lumbar puncture, focused on AD diagnosis, cannot precisely distinguish the symptoms, or predict their progression at onset time. We analyzed acoustic markers, aiming to discriminate lvPPA and AD as well as the influence of AD biomarkers on acoustic profiles at the beginning of the disease. We recruited people with AD (n = 8) and with lvPPA (n = 8), with cerebrospinal fluid biomarker profiles determined by lumbar puncture. The participants performed a sentence repetition task that allows assessing potential lvPPA phonological loop deficits. We found that temporal and prosodic markers significantly differentiate the lvPPA and AD group at an early stage of the disease. Biomarker and acoustic profile comparisons discriminated the two lvPPA subgroups according to their biomarkers. For lvPPA with AD biomarkers, acoustic profile equivalent to an atypical AD form with a specific alteration of the phonological loop is shown. However, lvPPA without AD biomarkers has an acoustic profile approximating the one for DLFT. Therefore, these results allow us to classify lvPPA differentially from AD based on acoustic markers from a sentence repetition task. Furthermore, our results suggest that acoustic analysis would constitute a clinically efficient alternative to refused lumbar punctures. It offers the possibility to facilitate early, specific, and accessible neurodegenerative diagnosis and may ease early care with speech therapy, preventing the progression of symptoms.
Collapse
Affiliation(s)
- Eloïse Da Cunha
- Speech Therapy Department of Nice, Faculty of medicine, Université Côte d’Azur, 06000 Nice, France; (A.P.); (A.M.); (T.M.); (P.R.); (A.G.)
- Laboratoire CoBTeK (Cognition Behaviour Technology), Université Côte d’Azur, 06000 Nice, France;
| | - Alexandra Plonka
- Speech Therapy Department of Nice, Faculty of medicine, Université Côte d’Azur, 06000 Nice, France; (A.P.); (A.M.); (T.M.); (P.R.); (A.G.)
- Laboratoire CoBTeK (Cognition Behaviour Technology), Université Côte d’Azur, 06000 Nice, France;
- Institut NeuroMod, Université Côte d’Azur, 06902 Sophia-Antipolis, France
- Service Clinique Gériatrique du Cerveau et du Mouvement, CMRR, Centre Hospitalier Universitaire, 06000 Nice, France
| | - Seçkin Arslan
- BCL, CNRS UMR7320, Campus Saint Jean d’Angely—SJA3/MSHS-SE, Université Côte d’Azur, 06300 Nice, France; (S.A.); (F.M.)
| | - Aurélie Mouton
- Speech Therapy Department of Nice, Faculty of medicine, Université Côte d’Azur, 06000 Nice, France; (A.P.); (A.M.); (T.M.); (P.R.); (A.G.)
- Laboratoire CoBTeK (Cognition Behaviour Technology), Université Côte d’Azur, 06000 Nice, France;
- Service Clinique Gériatrique du Cerveau et du Mouvement, CMRR, Centre Hospitalier Universitaire, 06000 Nice, France
| | - Tess Meyer
- Speech Therapy Department of Nice, Faculty of medicine, Université Côte d’Azur, 06000 Nice, France; (A.P.); (A.M.); (T.M.); (P.R.); (A.G.)
| | - Philippe Robert
- Speech Therapy Department of Nice, Faculty of medicine, Université Côte d’Azur, 06000 Nice, France; (A.P.); (A.M.); (T.M.); (P.R.); (A.G.)
- Laboratoire CoBTeK (Cognition Behaviour Technology), Université Côte d’Azur, 06000 Nice, France;
- Service Clinique Gériatrique du Cerveau et du Mouvement, CMRR, Centre Hospitalier Universitaire, 06000 Nice, France
| | - Fanny Meunier
- BCL, CNRS UMR7320, Campus Saint Jean d’Angely—SJA3/MSHS-SE, Université Côte d’Azur, 06300 Nice, France; (S.A.); (F.M.)
| | - Valeria Manera
- Laboratoire CoBTeK (Cognition Behaviour Technology), Université Côte d’Azur, 06000 Nice, France;
| | - Auriane Gros
- Speech Therapy Department of Nice, Faculty of medicine, Université Côte d’Azur, 06000 Nice, France; (A.P.); (A.M.); (T.M.); (P.R.); (A.G.)
- Laboratoire CoBTeK (Cognition Behaviour Technology), Université Côte d’Azur, 06000 Nice, France;
- Service Clinique Gériatrique du Cerveau et du Mouvement, CMRR, Centre Hospitalier Universitaire, 06000 Nice, France
| |
Collapse
|
7
|
Isella V, Crivellaro C, Formenti A, Musarra M, Pacella S, Morzenti S, Ferri F, Mapelli C, Gallivanone F, Guerra L, Appollonio I, Ferrarese C. Validity of cingulate–precuneus–temporo-parietal hypometabolism for single-subject diagnosis of biomarker-proven atypical variants of Alzheimer’s Disease. J Neurol 2022; 269:4440-4451. [PMID: 35347453 PMCID: PMC9293827 DOI: 10.1007/s00415-022-11086-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/14/2022]
Abstract
The aim of our study was to establish empirically to what extent reduced glucose uptake in the precuneus, posterior cingulate and/or temporo-parietal cortex (PCTP), which is thought to indicate brain amyloidosis in patients with dementia or MCI due to Alzheimer’s Disease (AD), permits to distinguish amyloid-positive from amyloid-negative patients with non-classical AD phenotypes at the single-case level. We enrolled 127 neurodegenerative patients with cognitive impairment and a positive (n. 63) or negative (n. 64) amyloid marker (cerebrospinal fluid or amy-PET). Three rating methods of FDG-PET scan were applied: purely qualitative visual interpretation of uptake images (VIUI), and visual reading assisted by a semi-automated and semi-quantitative tool: INLAB, provided by the Italian National Research Council, or Cortex ID Suite, marketed by GE Healthcare. Fourteen scans (11.0%) patients remained unclassified by VIUI or INLAB procedures, therefore, validity values were computed on the remaining 113 cases. The three rating approaches showed good total accuracy (77–78%), good to optimal sensitivity (81–93%), but poorer specificity (62–75%). VIUI showed the highest sensitivity and the lowest specificity, and also the highest proportion of unclassified cases. Cases with asymmetric temporo-parietal hypometabolism and a progressive aphasia or corticobasal clinical profile, in particular, tended to be rated as AD-like, even if biomarkers indicated non-amyloid pathology. Our findings provide formal support to the value of PCTP hypometabolism for single-level diagnosis of amyloid pathophysiology in atypical AD, but also highlight the risk of qualitative assessment to misclassify patients with non-AD PPA or CBS underpinned by asymmetric temporo-parietal hypometabolism.
Collapse
|
8
|
Imaging Clinical Subtypes and Associated Brain Networks in Alzheimer’s Disease. Brain Sci 2022; 12:brainsci12020146. [PMID: 35203910 PMCID: PMC8869882 DOI: 10.3390/brainsci12020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) does not present uniform symptoms or a uniform rate of progression in all cases. The classification of subtypes can be based on clinical symptoms or patterns of pathological brain alterations. Imaging techniques may allow for the identification of AD subtypes and their differentiation from other neurodegenerative diseases already at an early stage. In this review, the strengths and weaknesses of current clinical imaging methods are described. These include positron emission tomography (PET) to image cerebral glucose metabolism and pathological amyloid or tau deposits. Magnetic resonance imaging (MRI) is more widely available than PET. It provides information on structural or functional changes in brain networks and their relation to AD subtypes. Amyloid PET provides a very early marker of AD but does not distinguish between AD subtypes. Regional patterns of pathology related to AD subtypes are observed with tau and glucose PET, and eventually as atrophy patterns on MRI. Structural and functional network changes occur early in AD but have not yet provided diagnostic specificity.
Collapse
|
9
|
Application of Machine Learning to Electroencephalography for the Diagnosis of Primary Progressive Aphasia: A Pilot Study. Brain Sci 2021; 11:brainsci11101262. [PMID: 34679327 PMCID: PMC8534262 DOI: 10.3390/brainsci11101262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/22/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Background. Primary progressive aphasia (PPA) is a neurodegenerative syndrome in which diagnosis is usually challenging. Biomarkers are needed for diagnosis and monitoring. In this study, we aimed to evaluate Electroencephalography (EEG) as a biomarker for the diagnosis of PPA. Methods. We conducted a cross-sectional study with 40 PPA patients categorized as non-fluent, semantic, and logopenic variants, and 20 controls. Resting-state EEG with 32 channels was acquired and preprocessed using several procedures (quantitative EEG, wavelet transformation, autoencoders, and graph theory analysis). Seven machine learning algorithms were evaluated (Decision Tree, Elastic Net, Support Vector Machines, Random Forest, K-Nearest Neighbors, Gaussian Naive Bayes, and Multinomial Naive Bayes). Results. Diagnostic capacity to distinguish between PPA and controls was high (accuracy 75%, F1-score 83% for kNN algorithm). The most important features in the classification were derived from network analysis based on graph theory. Conversely, discrimination between PPA variants was lower (Accuracy 58% and F1-score 60% for kNN). Conclusions. The application of ML to resting-state EEG may have a role in the diagnosis of PPA, especially in the differentiation from controls. Future studies with high-density EEG should explore the capacity to distinguish between PPA variants.
Collapse
|
10
|
Bergeron D, Beauregard JM, Soucy JP, Verret L, Poulin S, Matias-Guiu JA, Cabrera-Martín MN, Bouchard RW, Laforce R. Posterior Cingulate Cortex Hypometabolism in Non-Amnestic Variants of Alzheimer's Disease. J Alzheimers Dis 2021; 77:1569-1577. [PMID: 32925054 DOI: 10.3233/jad-200567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hypometabolism of the posterior cingulate cortex (PCC) is an important diagnostic feature of late-onset, amnestic Alzheimer's disease (AD) measured with 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). However, it is unclear whether PCC hypometabolism has diagnostic value in young-onset, non-amnestic variants of AD, which exhibit less pathology in the hippocampus and default mode network. OBJECTIVE Evaluate the prevalence and diagnostic value of PCC hypometabolism in non-amnestic variants of AD. METHODS We retrospectively identified 60 patients with young-onset, atypical dementia who have undergone a detailed clinical evaluation, FDG-PET, and an amyloid biomarker (amyloid-PET or cerebrospinal fluid analysis). We quantitatively analyzed regional hypometabolism in 70 regions of interest (ROI) using the MIMneuro® software. RESULTS Based on a cut-off of z-score < -1.5 for significant PCC hypometabolism, the prevalence of PCC hypometabolism in non-amnestic variants of AD was 65% compared to 28% in clinical variants of frontotemporal dementia (FTD). The ROI with the maximal hypometabolism was the dominant middle temporal gyrus in the language variant of AD (mean z score -2.28), middle occipital gyrus in PCA (-3.24), middle temporal gyrus in frontal AD (-2.70), and angular gyrus in corticobasal syndrome due to AD (-2.31). The PCC was not among the 10 most discriminant regions between non-amnestic variants of AD versus clinical variants of FTD. CONCLUSION We conclude that PCC hypometabolism is not a discriminant feature to distinguish non-amnestic variants of AD from clinical variants of FTD-and should be interpreted with caution in patients with young-onset, non-amnestic dementia.
Collapse
Affiliation(s)
- David Bergeron
- Clinique Interdisciplinaire de Mémoire (CIME) du CHU de Québec, Québec, Canada
| | | | - Jean-Paul Soucy
- Department of Nuclear Medicine, Montreal Neurological Institute (MNI), Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Louis Verret
- Clinique Interdisciplinaire de Mémoire (CIME) du CHU de Québec, Québec, Canada
| | - Stéphane Poulin
- Clinique Interdisciplinaire de Mémoire (CIME) du CHU de Québec, Québec, Canada
| | - Jordi A Matias-Guiu
- Department of Neurology, San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - María Nieves Cabrera-Martín
- Department of Neurology, San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Rémi W Bouchard
- Department of Neurology, San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Madrid, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire (CIME) du CHU de Québec, Québec, Canada
| |
Collapse
|
11
|
Clinical Characterization of Atypical Primary Progressive Aphasia in a 3-Year Longitudinal Study: A Case Report. Cogn Behav Neurol 2021; 34:233-244. [PMID: 34473676 DOI: 10.1097/wnn.0000000000000273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
The logopenic variant of primary progressive aphasia (lvPPA) is the most recent variant of primary progressive aphasia (PPA) to be identified; thus far, it has been poorly investigated. Despite being typically associated with Alzheimer disease (AD), lvPPA has recently been linked to frontotemporal lobe degeneration (FTLD), with distinctive cognitive and neural features that are worthy of further investigation. Here, we describe the neuropsychological and linguistic profile, as well as cerebral abnormalities, of an individual exhibiting PPA and carrying a pathogenetic variant in the GRN gene, from a 3-year longitudinal perspective. The individual's initial profile resembled lvPPA because it was characterized by word-finding difficulties and phonological errors in spontaneous speech in addition to sentence repetition and phonological short-term memory impairments. The individual's structural and metabolic imaging data demonstrated left temporal and bilateral frontal atrophy and hypometabolism, respectively. On follow-up, as the pathology progressed, dysprosody, stereotypical speech patterns, agrammatism, and orofacial apraxia appeared, suggesting an overlap with the nonfluent variant of PPA (nfvPPA). Severe sentence comprehension impairment also became evident. Our longitudinal and multidisciplinary diagnostic approach allowed us to better characterize the progression of a GRN-positive lvPPA profile, providing neuropsychological and imaging indicators that might be helpful to improve classification between different PPA variants and to address a nosological issue. Finally, we discuss the importance of early diagnosis of PPA given the possible overlap between different PPA variants during the progression of the pathology.
Collapse
|
12
|
Shea YF, Pan Y, Mak HKF, Bao Y, Lee SC, Chiu PKC, Chan HWF. A systematic review of atypical Alzheimer's disease including behavioural and psychological symptoms. Psychogeriatrics 2021; 21:396-406. [PMID: 33594793 DOI: 10.1111/psyg.12665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the commonest cause of dementia, characterized by the clinical presentation of progressive anterograde episodic memory impairment. However, atypical presentation of patients is increasingly recognized. These atypical AD include logopenic aphasia, behavioural variant AD, posterior cortical atrophy, and corticobasal syndrome. These atypical AD are more common in patients with young onset AD before the age of 65 years old. Since medical needs (including the behavioural and psychological symptoms of dementia) of atypical AD patients could be different from typical AD patients, it is important for clinicians to be aware of these atypical forms of AD. In addition, disease modifying treatment may be available in the future. This review aims at providing an update on various important subtypes of atypical AD including behavioural and psychological symptoms.
Collapse
Affiliation(s)
- Yat-Fung Shea
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Yining Pan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Henry Ka-Fung Mak
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yiwen Bao
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Shui-Ching Lee
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Patrick Ka-Chun Chiu
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Hon-Wai Felix Chan
- Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| |
Collapse
|
13
|
Motor speech disorders in the nonfluent, semantic and logopenic variants of primary progressive aphasia. Cortex 2021; 140:66-79. [PMID: 33933931 DOI: 10.1016/j.cortex.2021.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/12/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Motor speech disorders (MSDs) are characteristic for nonfluent primary progressive aphasia (nfvPPA). In primary progressive aphasia (PPA) of the semantic (svPPA) and of the logopenic type (lvPPA), speech motor function is considered typically intact. However, knowledge on the prevalence of MSDs in svPPA and lvPPA is mainly based on studies with a priori knowledge of PPA syndrome diagnosis. This fully blinded retrospective study aims to provide data on the prevalence of all types of MSDs in a large sample of German-speaking patients with different subtypes of PPA. METHOD Two raters, blinded for PPA subtype, independently evaluated connected speech samples for MSD syndrome and severity from 161 patients diagnosed with nfvPPA, svPPA or lvPPA in the database of the German Consortium of Frontotemporal Lobar Degeneration (FTLDc). In case of disagreement, a third experienced rater re-evaluated the speech samples, followed by a consensus procedure. Consensus was reached for 160 patients (74 nfvPPA, 49 svPPA, 37 lvPPA). MAIN RESULTS Across all PPA syndromes, 43.8% of the patients showed MSDs. Patients with nfvPPA demonstrated the highest proportion of MSDs (62.2%), but MSDs were also identified in svPPA (26.5%) and lvPPA (29.7%), respectively. Overall, dysarthria was the most common class of MSDs, followed by apraxia of speech. In addition, we identified speech abnormalities presenting as "syllabic speech", "dysfluent speech", and "adynamic speech". DISCUSSION Our study confirmed MSDs as frequently occurring in PPA. The study also confirmed MSDs to be most common in patients with nfvPPA. However, MSDs were also found in substantial proportions of patients with svPPA and lvPPA. Furthermore, our study identified speech motor deficits that have not received attention in previous studies on PPA. The results are discussed against the background of the existing literature on MSDs in PPA, including theoretical considerations of the neuroanatomical conditions described for each of the different subtypes of PPA.
Collapse
|
14
|
Nuvoli S, Tanda G, Stazza ML, Madeddu G, Spanu A. Qualitative and Quantitative Analyses of Brain 18Fluoro-Deoxy-Glucose Positron Emission Tomography in Primary Progressive Aphasia. Dement Geriatr Cogn Disord 2020; 48:250-260. [PMID: 32062656 DOI: 10.1159/000504938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND A primary progressive aphasia (PPA) diagnosis is generally based on clinical criteria, but often symptoms and signs may overlap in the different forms. Recent data have evidenced that brain 18fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) could support the clinical diagnosis, since specific metabolic patterns are described for the different variants. AIMS We further evaluated the usefulness of 18F-FDG PET, by both visual qualitative (QL) and quantitative (QN) methods in the initial diagnosis of PPA, focusing on the classification of different variants. Moreover, we also analyzed the role of 18F-FDG PET in clarifying the association of PPA with the early phase of Alzheimer's disease (AD) or frontotemporal (FTD) dementias. METHODS We consecutively enrolled 35 patients with clinical symptoms of aphasia, suspect of or attributable to PPA. Patients were classified into two groups: 18 cases with clinical symptoms of aphasia but normal neuropsychological tests and an unclear classification of a specific PPA variant (group A) and 17 cases with clinical and neuropsychological signs attributable to PPA with an uncertain differential diagnosis between AD and FTD (group B). All patients underwent brain 18F-FDG PET/CT, and images were evaluated both by QL and QN, the latter applying an automated analysis program that produced brain regional metabolicmaps and normal age-matched control group comparative analysis (zscore). RESULTS 18F-FDG PET showed different patterns of bilateral cortical hypometabolism in the two groups. The combined use of QL and QN permitted to achieved a correct PPA variant diagnosis in 8 of 18 (44.4%) cases of group A and in 14 of 17 (82.3%) of group B, while only QN could support the correct classification of PPA variants in 10 of 18 (55.6%) cases of group A and in 3 of 17 (17.7%) cases of group B in whom the procedure better localized the hypometabolic areas. CONCLUSIONS Brain 18F-FDG PET had an elevated performance in the early diagnosis of PPA variants and in the advanced PPA AD/FTD classification. QL clarified the development of AD or FTD in advanced PPA cases and supported the differential diagnosis of a PPA variant in a few early cases. QN 18F-FDG PET evaluation better contributed to the early diagnosis of an unclear metabolic pattern. To correctly identify all cases, patients with diffuse cortical hypometabolism were also included. Larger series are necessary to confirm these data.
Collapse
Affiliation(s)
- Susanna Nuvoli
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy,
| | - Giovanna Tanda
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Maria Lina Stazza
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Giuseppe Madeddu
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Angela Spanu
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
15
|
Current role of 18F-FDG-PET in the differential diagnosis of the main forms of dementia. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Santos-Santos MA, Rabinovici GD, Iaccarino L, Ayakta N, Tammewar G, Lobach I, Henry ML, Hubbard I, Mandelli ML, Spinelli E, Miller ZA, Pressman PS, O'Neil JP, Ghosh P, Lazaris A, Meyer M, Watson C, Yoon SJ, Rosen HJ, Grinberg L, Seeley WW, Miller BL, Jagust WJ, Gorno-Tempini ML. Rates of Amyloid Imaging Positivity in Patients With Primary Progressive Aphasia. JAMA Neurol 2019; 75:342-352. [PMID: 29309493 DOI: 10.1001/jamaneurol.2017.4309] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Importance The ability to predict the pathology underlying different neurodegenerative syndromes is of critical importance owing to the advent of molecule-specific therapies. Objective To determine the rates of positron emission tomography (PET) amyloid positivity in the main clinical variants of primary progressive aphasia (PPA). Design, Setting, and Participants This prospective clinical-pathologic case series was conducted at a tertiary research clinic specialized in cognitive disorders. Patients were evaluated as part of a prospective, longitudinal research study between January 2002 and December 2015. Inclusion criteria included clinical diagnosis of PPA; availability of complete speech, language, and cognitive testing; magnetic resonance imaging performed within 6 months of the cognitive evaluation; and PET carbon 11-labeled Pittsburgh Compound-B or florbetapir F 18 brain scan results. Of 109 patients referred for evaluation of language symptoms who underwent amyloid brain imaging, 3 were excluded because of incomplete language evaluations, 5 for absence of significant aphasia, and 12 for presenting with significant initial symptoms outside of the language domain, leaving a cohort of 89 patients with PPA. Main Outcomes and Measures Clinical, cognitive, neuroimaging, and pathology results. Results Twenty-eight cases were classified as imaging-supported semantic variant PPA (11 women [39.3%]; mean [SD] age, 64 [7] years), 31 nonfluent/agrammatic variant PPA (22 women [71.0%]; mean [SD] age, 68 [7] years), 26 logopenic variant PPA (17 women [65.4%]; mean [SD] age, 63 [8] years), and 4 mixed PPA cases. Twenty-four of 28 patients with semantic variant PPA (86%) and 28 of 31 patients with nonfluent/agrammatic variant PPA (90%) had negative amyloid PET scan results, while 25 of 26 patients with logopenic variant PPA (96%) and 3 of 4 mixed PPA cases (75%) had positive scan results. The amyloid positive semantic variant PPA and nonfluent/agrammatic variant PPA cases with available autopsy data (2 of 4 and 2 of 3, respectively) all had a primary frontotemporal lobar degeneration and secondary Alzheimer disease pathologic diagnoses, whereas autopsy of 2 patients with amyloid PET-positive logopenic variant PPA confirmed Alzheimer disease. One mixed PPA patient with a negative amyloid PET scan had Pick disease at autopsy. Conclusions and Relevance Primary progressive aphasia variant diagnosis according to the current classification scheme is associated with Alzheimer disease biomarker status, with the logopenic variant being associated with carbon 11-labeled Pittsburgh Compound-B positivity in more than 95% of cases. Furthermore, in the presence of a clinical syndrome highly predictive of frontotemporal lobar degeneration pathology, biomarker positivity for Alzheimer disease may be associated more with mixed pathology rather than primary Alzheimer disease.
Collapse
Affiliation(s)
- Miguel A Santos-Santos
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Autonomous University of Barcelona, Cerdanyola del Valles, Spain.,Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain.,Fundació Alzheimer Memory Clinic and Research Center, Institut Catalá de Neurociències Aplicades, Barcelona, Spain
| | - Gil D Rabinovici
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley
| | - Leonardo Iaccarino
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Vita-Salute San Raffaele University, Milan, Italy
| | - Nagehan Ayakta
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley
| | - Gautam Tammewar
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley
| | - Iryna Lobach
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Maya L Henry
- Department of Communication Sciences and Disorders, University of Texas, Austin
| | - Isabel Hubbard
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Maria Luisa Mandelli
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Edoardo Spinelli
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Vita-Salute San Raffaele University, Milan, Italy
| | - Zachary A Miller
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Peter S Pressman
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,University of Colorado Denver, Denver
| | - James P O'Neil
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Pia Ghosh
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Andreas Lazaris
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Marita Meyer
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Christa Watson
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Soo Jin Yoon
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Department of Neurology, Eulji University Hospital, Daejeon, South Korea
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - Lea Grinberg
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Department of Pathology, University of California San Francisco, California
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California San Francisco.,Department of Pathology, University of California San Francisco, California
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California San Francisco
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley.,Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | | |
Collapse
|
17
|
Machine learning in the clinical and language characterisation of primary progressive aphasia variants. Cortex 2019; 119:312-323. [PMID: 31181419 DOI: 10.1016/j.cortex.2019.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/17/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Primary progressive aphasia (PPA) is a clinical syndrome of neurodegenerative origin with 3 main variants: non-fluent, semantic, and logopenic. However, there is some controversy about the existence of additional subtypes. Our aim was to study the language and cognitive features associated with a new proposed classification for PPA. MATERIAL AND METHODS Sixty-eight patients with PPA in early stages of the disease and 20 healthy controls were assessed with a comprehensive language and cognitive protocol. They were also evaluated with 18F-FDG positron emision tomography (PET). Patients were classified according to FDG PET regional metabolism, using our previously developed algorithm based on a hierarchical agglomerative cluster analysis with Ward's linkage method. Five variants were found, with both the non-fluent and logopenic variants being split into 2 subtypes. Machine learning techniques were used to predict each variant according to language assessment results. RESULTS Non-fluent type 1 was associated with poorer performance in repetition of sentences and reading of irregular words than non-fluent type 2. Conversely, the second group showed a higher degree of apraxia of speech. Patients with logopenic variant type 1 performed more poorly on action naming than patients with logopenic type 2. Language assessments were predictive of PET-based subtypes in 86%-89% of cases using clustering analysis and principal components analysis. CONCLUSIONS Our study supports the existence of 5 variants of PPA. These variants show some differences in language and FDG PET imaging characteristics. Machine learning algorithms using language test data were able to predict each of the 5 PPA variants with a relatively high degree of accuracy, and enable the possibility of automated, machine-aided diagnosis of PPA variants.
Collapse
|
18
|
Early Onset Alzheimer's Disease Presenting as Logopenic Primary Progressive Aphasia. Dement Neurocogn Disord 2019; 17:66-70. [PMID: 30906394 PMCID: PMC6427970 DOI: 10.12779/dnd.2018.17.2.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/01/2018] [Accepted: 07/12/2018] [Indexed: 11/27/2022] Open
|
19
|
Tetzloff KA, Whitwell JL, Utianski RL, Duffy JR, Clark HM, Machulda MM, Strand EA, Josephs KA. Quantitative assessment of grammar in amyloid-negative logopenic aphasia. BRAIN AND LANGUAGE 2018; 186:26-31. [PMID: 30205287 PMCID: PMC6299833 DOI: 10.1016/j.bandl.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 08/25/2018] [Accepted: 09/03/2018] [Indexed: 05/31/2023]
Abstract
Logopenic primary progressive aphasia (lvPPA) typically results from underlying Alzheimer's disease, but subjects have been reported that do not show beta-amyloid (Aβ) deposition. These subjects do not differ on neurological and speech-language testing from Aβ-positive lvPPA, but they impressionistically show increased grammatical deficits. We performed a quantitative linguistic analysis of grammatical characteristics in Aβ-negative lvPPA compared to Aβ-positive lvPPA and agrammatic PPA, which is characterized by increased grammatical difficulties. Aβ-negative lvPPA used fewer function words and correct verbs but more syntactic and semantic errors compared to Aβ-positive lvPPA. These measures did not differ between Aβ-negative lvPPA and agPPA. Both lvPPA cohorts showed a higher mean length of utterance, more complex sentences, and fewer nouns than agPPA. Aβ-negative lvPPA subjects appear unique and share linguistic features with both agPPA and Aβ-positive lvPPA. Quantitative language analysis in lvPPA may be able to distinguish those with and without Aβ deposition.
Collapse
Affiliation(s)
| | | | - Rene L Utianski
- Department of Neurology (Division of Speech and Language Pathology), Mayo Clinic, Rochester, MN, United States
| | - Joseph R Duffy
- Department of Neurology (Division of Speech and Language Pathology), Mayo Clinic, Rochester, MN, United States
| | - Heather M Clark
- Department of Neurology (Division of Speech and Language Pathology), Mayo Clinic, Rochester, MN, United States
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Edythe A Strand
- Department of Neurology (Division of Speech and Language Pathology), Mayo Clinic, Rochester, MN, United States
| | - Keith A Josephs
- Department of Neurology (Division of Behavioral Neurology and Movement Disorders), Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
20
|
Bergeron D, Gorno-Tempini ML, Rabinovici GD, Santos-Santos MA, Seeley W, Miller BL, Pijnenburg Y, Keulen MA, Groot C, van Berckel BNM, van der Flier WM, Scheltens P, Rohrer JD, Warren JD, Schott JM, Fox NC, Sanchez-Valle R, Grau-Rivera O, Gelpi E, Seelaar H, Papma JM, van Swieten JC, Hodges JR, Leyton CE, Piguet O, Rogalski EJ, Mesulam MM, Koric L, Kristensen N, Pariente J, Dickerson B, Mackenzie IR, Hsiung GYR, Belliard S, Irwin DJ, Wolk DA, Grossman M, Jones M, Harris J, Mann D, Snowden JS, Chrem-Mendez P, Calandri IL, Amengual AA, Miguet-Alfonsi C, Magnin E, Magnani G, Santangelo R, Deramecourt V, Pasquier F, Mattsson N, Nilsson C, Hansson O, Keith J, Masellis M, Black SE, Matías-Guiu JA, Cabrera-Martin MN, Paquet C, Dumurgier J, Teichmann M, Sarazin M, Bottlaender M, Dubois B, Rowe CC, Villemagne VL, Vandenberghe R, Granadillo E, Teng E, Mendez M, Meyer PT, Frings L, Lleó A, Blesa R, Fortea J, Seo SW, Diehl-Schmid J, Grimmer T, Frederiksen KS, Sánchez-Juan P, Chételat G, Jansen W, Bouchard RW, Laforce RJ, Visser PJ, Ossenkoppele R. Prevalence of amyloid-β pathology in distinct variants of primary progressive aphasia. Ann Neurol 2018; 84:729-740. [PMID: 30255971 PMCID: PMC6354051 DOI: 10.1002/ana.25333] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To estimate the prevalence of amyloid positivity, defined by positron emission tomography (PET)/cerebrospinal fluid (CSF) biomarkers and/or neuropathological examination, in primary progressive aphasia (PPA) variants. METHODS We conducted a meta-analysis with individual participant data from 1,251 patients diagnosed with PPA (including logopenic [lvPPA, n = 443], nonfluent [nfvPPA, n = 333], semantic [svPPA, n = 401], and mixed/unclassifiable [n = 74] variants of PPA) from 36 centers, with a measure of amyloid-β pathology (CSF [n = 600], PET [n = 366], and/or autopsy [n = 378]) available. The estimated prevalence of amyloid positivity according to PPA variant, age, and apolipoprotein E (ApoE) ε4 status was determined using generalized estimating equation models. RESULTS Amyloid-β positivity was more prevalent in lvPPA (86%) than in nfvPPA (20%) or svPPA (16%; p < 0.001). Prevalence of amyloid-β positivity increased with age in nfvPPA (from 10% at age 50 years to 27% at age 80 years, p < 0.01) and svPPA (from 6% at age 50 years to 32% at age 80 years, p < 0.001), but not in lvPPA (p = 0.94). Across PPA variants, ApoE ε4 carriers were more often amyloid-β positive (58.0%) than noncarriers (35.0%, p < 0.001). Autopsy data revealed Alzheimer disease pathology as the most common pathologic diagnosis in lvPPA (76%), frontotemporal lobar degeneration-TDP-43 in svPPA (80%), and frontotemporal lobar degeneration-TDP-43/tau in nfvPPA (64%). INTERPRETATION This study shows that the current PPA classification system helps to predict underlying pathology across different cohorts and clinical settings, and suggests that age and ApoE genotype should be considered when interpreting amyloid-β biomarkers in PPA patients. Ann Neurol 2018;84:737-748.
Collapse
Affiliation(s)
- David Bergeron
- Interdisciplinary Clinic of Memory of the Child Jesus, Laval University, Quebec City, Quebec, Canada
- Alzheimer center Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Maria L Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Miguel A Santos-Santos
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, Llobregat Hospital, Barcelona, Spain
- Llobregat Hospital, ACE Foundation, Catalan Institute of Applied Neurosciences, UIC Barcelona, Barcelona, Spain
| | - William Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Yolande Pijnenburg
- Alzheimer center Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - M Antoinette Keulen
- Alzheimer center Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Colin Groot
- Alzheimer center Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Alzheimer center Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer center Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Nick C Fox
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Oriol Grau-Rivera
- Alzheimer's Disease and Other Cognitive Disorders Unit, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Ellen Gelpi
- Alzheimer's Disease and Other Cognitive Disorders Unit, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Harro Seelaar
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Janne M Papma
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - John C van Swieten
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - John R Hodges
- Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
- Neuroscience Research Australia and School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence in Cognition and its Disorders, Sydney, New South Wales, Australia
| | - Cristian E Leyton
- Frontotemporal Dementia Unit, Department of Neurology, Massachusetts Alzheimer's Disease Research Center, Harvard Medical School, Boston, MA
| | - Olivier Piguet
- Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
- Neuroscience Research Australia and School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence in Cognition and its Disorders, Sydney, New South Wales, Australia
| | - Emily J Rogalski
- Neurological Sciences, Rush University, Chicago, IL
- Cognitive Neurology and Alzheimer Disease Center, Northwestern University Medical School, Chicago, IL
| | - Marsel M Mesulam
- Cognitive Neurology and Alzheimer Disease Center, Northwestern University Medical School, Chicago, IL
| | - Lejla Koric
- Department of Neurology and Neuropsychology, La Timone Hospital, Marseille, France
| | - Nora Kristensen
- Department of Neurology and Neuropsychology, La Timone Hospital, Marseille, France
| | - Jeéreémie Pariente
- University of Toulouse, INSERM, Toulouse Neuroimaging Center, Toulouse, France
| | - Bradford Dickerson
- Frontotemporal Dementia Unit, Department of Neurology, Massachusetts Alzheimer's Disease Research Center, Harvard Medical School, Boston, MA
| | - Ian R Mackenzie
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ging-Yuek R Hsiung
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Serge Belliard
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Irwin
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA
| | - Matthew Jones
- Cerebral Function Unit, Greater Manchester Neurosciences Centre, Manchester, United Kingdom
- School of Community-Based Medicine, University of Manchester, Manchester, United Kingdom
| | - Jennifer Harris
- School of Community-Based Medicine, University of Manchester, Manchester, United Kingdom
| | - David Mann
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Julie S Snowden
- School of Community-Based Medicine, University of Manchester, Manchester, United Kingdom
| | - Patricio Chrem-Mendez
- Center of Aging and Memory, Neurological Research Institute, Buenos Aires, Argentina
| | - Ismael L Calandri
- Center of Aging and Memory, Neurological Research Institute, Buenos Aires, Argentina
| | - Alejandra A Amengual
- Center of Aging and Memory, Neurological Research Institute, Buenos Aires, Argentina
| | - Carole Miguet-Alfonsi
- Department of Neurology, CHRU Besançon and Integrative and Clinical Neurosciences Laboratory, Regional Memory Center, University of Bourgogne Franche-Comté, Besançon, France
| | - Eloi Magnin
- Department of Neurology, CHRU Besançon and Integrative and Clinical Neurosciences Laboratory, Regional Memory Center, University of Bourgogne Franche-Comté, Besançon, France
| | - Giuseppe Magnani
- Department of Neurology, Vita Salute University and IRCCS San Raffaele Hospital, INSPE, Milan, Italy
| | - Roberto Santangelo
- Department of Neurology, Vita Salute University and IRCCS San Raffaele Hospital, INSPE, Milan, Italy
| | | | - Florence Pasquier
- University of Lille Nord de France, INSERM U1171, DISTALZ, Lille, France
| | - Niklas Mattsson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Christer Nilsson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
- Neuropsychiatric Clinic, Skåne University Hospital, Malmö, Sweden
| | - Julia Keith
- Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mario Masellis
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sandra E Black
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jordi A Matías-Guiu
- Department of Neurology and Nuclear Medicine, San Carlos Clinical Hospital, San Carlos Health Research Institute, Complutense University of Madrid, Madrid, Spain
| | - María-Nieves Cabrera-Martin
- Department of Neurology and Nuclear Medicine, San Carlos Clinical Hospital, San Carlos Health Research Institute, Complutense University of Madrid, Madrid, Spain
| | - Claire Paquet
- Memory Center, Department of Neurology, Lariboisière-Fernand-Widal Hospital, Paris, France
- Department of Pathology, Lariboisière-Fernand-Widal Hospital, Paris, France
| | - Julien Dumurgier
- Memory Center, Department of Neurology, Lariboisière-Fernand-Widal Hospital, Paris, France
| | - Marc Teichmann
- Department of Neurology, National Reference Center for PPA and rare dementias, Pitié Salpêtriére Hospital, AP-HP, Paris, France
| | - Marie Sarazin
- Frederic Joliot Hospital Service, ERL 9218 CNRS, CEA, Orsay, Île-de-France, France
- University of Paris-Sud, IMIV, UMR 1023 INSERM, CEA, Orsay, Île-de-France, France
| | - Michel Bottlaender
- Frederic Joliot Hospital Service, ERL 9218 CNRS, CEA, Orsay, Île-de-France, France
- University of Paris-Sud, IMIV, UMR 1023 INSERM, CEA, Orsay, Île-de-France, France
| | - Bruno Dubois
- Center for Cognitive and Behavioral Diseases, Pitié Salpêtrière University Hospital, Paris, France
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Rik Vandenberghe
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Elias Granadillo
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Edmond Teng
- Neurobehavior Service, Department of Neurology, University of California, Los Angeles, Los Angeles, CA
| | - Mario Mendez
- Neurobehavior Unit, West Los Angeles VA Medical Center, Los Angeles, CA
| | - Philipp T Meyer
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Freiburg, Freiburg, Germany
| | - Lars Frings
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Freiburg, Freiburg, Germany
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Santa Cruz and Saint Paul Hospital, Barcelona, Spain
- Saint Paul Biomedical Research Institute, Autonomous University of Barcelona, Barcelona, Spain
- Center for Biomedical Network Research on Neurodegenerative Diseases, Madrid, Spain
| | - Rafael Blesa
- Memory Unit, Department of Neurology, Santa Cruz and Saint Paul Hospital, Barcelona, Spain
- Saint Paul Biomedical Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Santa Cruz and Saint Paul Hospital, Barcelona, Spain
- Saint Paul Biomedical Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technical University of Munich, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Technical University of Munich, Munich, Germany
| | | | | | - Gaël Chételat
- INSERM UMR-S U1237, University of Caen Normandy, Caen, France
| | - Willemijn Jansen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Banner Alzheimer's Institute, Phoenix, AZ
| | - Rémi W Bouchard
- Interdisciplinary Clinic of Memory of the Child Jesus, Laval University, Quebec City, Quebec, Canada
| | - Robert Jr Laforce
- Interdisciplinary Clinic of Memory of the Child Jesus, Laval University, Quebec City, Quebec, Canada
- Clinique Interdisciplinaire de Mémoire de l'Enfant-Jésus, CHU de Québec, Université Laval, Québec, Canada
| | - Pieter Jelle Visser
- Llobregat Hospital, ACE Foundation, Catalan Institute of Applied Neurosciences, UIC Barcelona, Barcelona, Spain
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Rik Ossenkoppele
- Alzheimer center Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Marshall CR, Hardy CJD, Volkmer A, Russell LL, Bond RL, Fletcher PD, Clark CN, Mummery CJ, Schott JM, Rossor MN, Fox NC, Crutch SJ, Rohrer JD, Warren JD. Primary progressive aphasia: a clinical approach. J Neurol 2018; 265:1474-1490. [PMID: 29392464 PMCID: PMC5990560 DOI: 10.1007/s00415-018-8762-6] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/12/2022]
Abstract
The primary progressive aphasias are a heterogeneous group of focal 'language-led' dementias that pose substantial challenges for diagnosis and management. Here we present a clinical approach to the progressive aphasias, based on our experience of these disorders and directed at non-specialists. We first outline a framework for assessing language, tailored to the common presentations of progressive aphasia. We then consider the defining features of the canonical progressive nonfluent, semantic and logopenic aphasic syndromes, including 'clinical pearls' that we have found diagnostically useful and neuroanatomical and other key associations of each syndrome. We review potential diagnostic pitfalls and problematic presentations not well captured by conventional classifications and propose a diagnostic 'roadmap'. After outlining principles of management, we conclude with a prospect for future progress in these diseases, emphasising generic information processing deficits and novel pathophysiological biomarkers.
Collapse
Affiliation(s)
- Charles R Marshall
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Chris J D Hardy
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Anna Volkmer
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Lucy L Russell
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Rebecca L Bond
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Phillip D Fletcher
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Camilla N Clark
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Catherine J Mummery
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Martin N Rossor
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Nick C Fox
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sebastian J Crutch
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jason D Warren
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
22
|
Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia. Eur J Nucl Med Mol Imaging 2018; 45:1509-1525. [PMID: 29736698 DOI: 10.1007/s00259-018-4035-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
Abstract
AIM To assess the clinical utility of FDG-PET as a diagnostic aid for differentiating Alzheimer's disease (AD; both typical and atypical forms), dementia with Lewy bodies (DLB), frontotemporal lobar degeneration (FTLD), vascular dementia (VaD) and non-degenerative pseudodementia. METHODS A comprehensive literature search was conducted using the PICO model to extract evidence from relevant studies. An expert panel then voted on six different diagnostic scenarios using the Delphi method. RESULTS The level of empirical study evidence for the use of FDG-PET was considered good for the discrimination of DLB and AD; fair for discriminating FTLD from AD; poor for atypical AD; and lacking for discriminating DLB from FTLD, AD from VaD, and for pseudodementia. Delphi voting led to consensus in all scenarios within two iterations. Panellists supported the use of FDG-PET for all PICOs-including those where study evidence was poor or lacking-based on its negative predictive value and on the assistance it provides when typical patterns of hypometabolism for a given diagnosis are observed. CONCLUSION Although there is an overall lack of evidence on which to base strong recommendations, it was generally concluded that FDG-PET has a diagnostic role in all scenarios. Prospective studies targeting diagnostically uncertain patients for assessing the added value of FDG-PET would be highly desirable.
Collapse
|
23
|
de Bellis A, de Bellis M, Aloe L. Long-Term Non-Invasive Treatment via Intranasal Administration of Nerve Growth Factor Protects the Human Brain in Frontotemporal Dementia associated with Corticobasal Syndrome: A Pilot Study. J Alzheimers Dis Rep 2018; 2:67-77. [PMID: 30480250 PMCID: PMC6159695 DOI: 10.3233/adr-180055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: Nerve growth factor (NGF) is known for playing a critical protective role on a number of brain neurons in mammals, including humans. NGF can be delivered to the CNS via nasal route and has a neuroprotective action in case of neurodegenerative diseases. Objective: The aim of this study is to investigate for the first time whether purified NGF can play a neuroprotective role on human brain neurons affected by neurodegenerative diseases when administered via nasal route. Methods: Two female patients, both affected by frontotemporal dementia (FTD) associated with corticobasal syndrome (CBS) at different stages of disease progression, received a daily intranasal NGF spray for one year. Clinical/neurological aspects were observed over time. The follow-up study was performed using 18 FDG PET. Results: This case study seems to demonstrate that IN-NGF slows down the common decline caused by FTD/CBS. Conclusions: These findings suggest the potential neuroprotective role of IN-NGF administered in case of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberto de Bellis
- Maria Rosaria Maglione Foundation onlus, Naples/Morra De Sanctis, Italy
| | - Massimo de Bellis
- Maria Rosaria Maglione Foundation onlus, Naples/Morra De Sanctis, Italy
| | - Luigi Aloe
- Institute of Neurobiology and Molecular Medicine, National Research Council (CNR) Rome, Italy
| |
Collapse
|
24
|
Cerami C, Dodich A, Greco L, Iannaccone S, Magnani G, Marcone A, Pelagallo E, Santangelo R, Cappa SF, Perani D. The Role of Single-Subject Brain Metabolic Patterns in the Early Differential Diagnosis of Primary Progressive Aphasias and in Prediction of Progression to Dementia. J Alzheimers Dis 2018; 55:183-197. [PMID: 27662315 PMCID: PMC5115609 DOI: 10.3233/jad-160682] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background and Objective: Primary progressive aphasia (PPA) is a clinical syndrome due to different neurodegenerative conditions in which an accurate early diagnosis needs to be supported by a reliable diagnostic tool at the individual level. In this study, we investigated in PPA the FDG-PET brain metabolic patterns at the single-subject level, in order to assess the case-to-case variability and its relationship with clinical-neuropsychological findings. Material and Methods: 55 patients (i.e., 11 semantic variant/sv-PPA, 19 non fluent variant/nfv-PPA, 17 logopenic variant/lv-PPA, 3 slowly progressive anarthria/SPA, and 5 mixed PPA/m-PPA) were included. Clinical-neuropsychological information and FDG-PET data were acquired at baseline. A follow-up of 27.4±12.55 months evaluated the clinical progression. Brain metabolism was analyzed using an optimized and validated voxel-based SPM method at the single-subject level. Results: FDG-PET voxel-wise metabolic assessment revealed specific metabolic signatures characterizing each PPA variant at the individual level, reflecting the underlying neurodegeneration in language networks. Notably, additional dysfunctional patterns predicted clinical progression to specific dementia conditions. In the case of nfv-PPA, a metabolic pattern characterized by involvement of parietal, subcortical and brainstem structures predicted progression to a corticobasal degeneration syndrome or to progressive supranuclear palsy. lv-PPA and sv-PPA cases who progressed to Alzheimer’s disease and frontotemporal dementia at the follow-up presented with extended bilateral patterns at baseline. Discussion: Our results indicate that FDG-PET voxel-wise imaging is a valid biomarker for the early differential diagnosis of PPAs and for the prediction of progression to specific dementia condition. This study supports the use of FDG-PET imaging quantitative assessment in clinical settings for a better characterization of PPA individuals and prognostic definition of possible endo-phenotypes.
Collapse
Affiliation(s)
- Chiara Cerami
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Department of Clinical Neuroscience, San Raffaele Turro Hospital, Milan, Italy
| | - Alessandra Dodich
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Greco
- Vita-Salute San Raffaele University, Milan, Italy
| | - Sandro Iannaccone
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Department of Clinical Neuroscience, San Raffaele Turro Hospital, Milan, Italy
| | | | - Alessandra Marcone
- Department of Clinical Neuroscience, San Raffaele Turro Hospital, Milan, Italy
| | | | | | - Stefano F Cappa
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,NEtS Center, Istituto Universitario di Studi Superiori, Pavia, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Department of Nuclear Medicine, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
25
|
Staffaroni AM, Elahi FM, McDermott D, Marton K, Karageorgiou E, Sacco S, Paoletti M, Caverzasi E, Hess CP, Rosen HJ, Geschwind MD. Neuroimaging in Dementia. Semin Neurol 2017; 37:510-537. [PMID: 29207412 PMCID: PMC5823524 DOI: 10.1055/s-0037-1608808] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although the diagnosis of dementia still is primarily based on clinical criteria, neuroimaging is playing an increasingly important role. This is in large part due to advances in techniques that can assist with discriminating between different syndromes. Magnetic resonance imaging remains at the core of differential diagnosis, with specific patterns of cortical and subcortical changes having diagnostic significance. Recent developments in molecular PET imaging techniques have opened the door for not only antemortem but early, even preclinical, diagnosis of underlying pathology. This is vital, as treatment trials are underway for pharmacological agents with specific molecular targets, and numerous failed trials suggest that earlier treatment is needed. This article provides an overview of classic neuroimaging findings as well as new and cutting-edge research techniques that assist with clinical diagnosis of a range of dementia syndromes, with an emphasis on studies using pathologically proven cases.
Collapse
Affiliation(s)
- Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Fanny M. Elahi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Dana McDermott
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Kacey Marton
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Elissaios Karageorgiou
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Neurological Institute of Athens, Athens, Greece
| | - Simone Sacco
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Matteo Paoletti
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Eduardo Caverzasi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Christopher P. Hess
- Division of Neuroradiology, Department of Radiology, University of California, San Francisco (UCSF), California
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Michael D. Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| |
Collapse
|
26
|
Matías-Guiu JA, Cabrera-Martín MN, Valles-Salgado M, Pérez-Pérez A, Rognoni T, Moreno-Ramos T, Carreras JL, Matías-Guiu J. Neural Basis of Cognitive Assessment in Alzheimer Disease, Amnestic Mild Cognitive Impairment, and Subjective Memory Complaints. Am J Geriatr Psychiatry 2017; 25:730-740. [PMID: 28238814 DOI: 10.1016/j.jagp.2017.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/08/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Interpreting cognitive tests is often challenging. The same test frequently examines multiple cognitive functions, and the functional and anatomical basis underlying test performance is unknown in many cases. This study analyses the correlation of different neuropsychological test results with brain metabolism in a series of patients evaluated for suspected Alzheimer disease. METHODS 20 healthy controls and 80 patients consulting for memory loss were included, in which cognitive study and 18F-fluorodeoxyglucose PET were performed. Patients were categorized according to Reisberg's Global Deterioration Scale. Voxel-based analysis was used to determine correlations between brain metabolism and performance on the following tests: Free and Cued Selective Reminding Test (FCSRT), Boston Naming Test (BNT), Trail Making Test, Rey-Osterrieth Complex Figure test, Visual Object and Space Perception Battery (VOSP), and Tower of London (ToL) test. RESULTS Mean age in the patient group was 73.9 ± 10.6 years, and 47 patients were women (58.7%). FCSRT findings were positively correlated with metabolism in the medial and anterior temporal region bilaterally, the left precuneus, and posterior cingulate. BNT results were correlated with metabolism in the middle temporal, superior, fusiform, and frontal medial gyri bilaterally. VOSP results were related to the occipital and parietotemporal regions bilaterally. ToL scores were correlated to metabolism in the right temporoparietal and frontal regions. CONCLUSIONS These results suggest that different areas of the brain are involved in the processes required to complete different cognitive tests. Ascertaining the functional basis underlying these tests may prove helpful for understanding and interpreting them.
Collapse
Affiliation(s)
- Jordi A Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid, Madrid, Spain.
| | - María Nieves Cabrera-Martín
- Department of Nuclear Medicine, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid, Madrid, Spain
| | - María Valles-Salgado
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid, Madrid, Spain
| | - Alicia Pérez-Pérez
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid, Madrid, Spain
| | - Teresa Rognoni
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid, Madrid, Spain
| | - Teresa Moreno-Ramos
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid, Madrid, Spain
| | - José Luis Carreras
- Department of Nuclear Medicine, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid, Madrid, Spain
| | - Jorge Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
27
|
Meeter LH, Kaat LD, Rohrer JD, van Swieten JC. Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol 2017. [PMID: 28621768 DOI: 10.1038/nrneurol.2017.75] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia (FTD), the second most common type of presenile dementia, is a heterogeneous neurodegenerative disease characterized by progressive behavioural and/or language problems, and includes a range of clinical, genetic and pathological subtypes. The diagnostic process is hampered by this heterogeneity, and correct diagnosis is becoming increasingly important to enable future clinical trials of disease-modifying treatments. Reliable biomarkers will enable us to better discriminate between FTD and other forms of dementia and to predict disease progression in the clinical setting. Given that different underlying pathologies probably require specific pharmacological interventions, robust biomarkers are essential for the selection of patients with specific FTD subtypes. This Review emphasizes the increasing availability and potential applications of structural and functional imaging biomarkers, and cerebrospinal fluid and blood fluid biomarkers in sporadic and genetic FTD. The relevance of new MRI modalities - such as voxel-based morphometry, diffusion tensor imaging and arterial spin labelling - in the early stages of FTD is discussed, together with the ability of these modalities to classify FTD subtypes. We highlight promising new fluid biomarkers for staging and monitoring of FTD, and underline the importance of large, multicentre studies of individuals with presymptomatic FTD. Harmonization in the collection and analysis of data across different centres is crucial for the implementation of new biomarkers in clinical practice, and will become a great challenge in the next few years.
Collapse
Affiliation(s)
- Lieke H Meeter
- Department of Neurology, Erasmus Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Laura Donker Kaat
- Department of Neurology, Erasmus Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, Netherlands.,Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative diseases, Institute of Neurology, Queen Square, University College London, London WC1N 3BG, UK
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, Netherlands.,Department of Clinical Genetics, VU University Medical Center, De Boelelaan 1118, 1081 HZ Amsterdam, Netherlands
| |
Collapse
|
28
|
Catricalà E, Gobbi E, Battista P, Miozzo A, Polito C, Boschi V, Esposito V, Cuoco S, Barone P, Sorbi S, Cappa SF, Garrard P. SAND: a Screening for Aphasia in NeuroDegeneration. Development and normative data. Neurol Sci 2017; 38:1469-1483. [PMID: 28578483 DOI: 10.1007/s10072-017-3001-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
Abstract
Language assessment has a critical role in the clinical diagnosis of neurodegenerative diseases, in particular, in the case of Primary Progressive Aphasia (PPA). The current diagnostic criteria (Gorno-Tempini et al., 2011) identify three main variants on the basis of clinical features and patterns of brain atrophy. Widely accepted tools to diagnose, clinically classify, and follow up the heterogeneous language profiles of PPA are still lacking. In this study, we develop a screening battery, composed of nine tests (picture naming, word and sentence comprehension, word and sentence repetition, reading, semantic association, writing and picture description), following the recommendations of current diagnostic guidelines and taking into account recent research on the topic. All tasks were developed with consideration of the psycholinguistic factors that can affect performance, with the aim of achieving sensitivity to the language deficit to which each task was relevant, and to allow identification of the selective characteristic impairments of each PPA variant. Normative data on 134 Italian subjects pooled across homogeneous subgroups for age, sex, and education are reported. Although further work is still needed, this battery represents a first step towards a concise multilingual standard language examination, a fast and simple tool to help clinicians and researchers in the diagnosis of PPA.
Collapse
Affiliation(s)
| | - Elena Gobbi
- Università Vita-Salute San Raffaele, Milano, Italia
| | - Petronilla Battista
- NEtS, Scuola Universitaria Superiore IUSS-Pavia, Pavia, Italia.,Unità di Malattie Neurodegenerative, Dipartimento di medicina di base, neuroscienze e organi del senso, Università di Bari Aldo Moro, Bari, Italia.,NEUROFARBA- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università di Firenze, Firenze, Italia
| | - Antonio Miozzo
- Unità di Neurologia, Dipartimento di scienze cliniche e sperimentali, Università di Brescia, Brescia, Italia
| | - Cristina Polito
- SBSC - Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Firenze, Italia
| | - Veronica Boschi
- NEtS, Scuola Universitaria Superiore IUSS-Pavia, Pavia, Italia
| | | | - Sofia Cuoco
- Facoltà di Medicina e Chirurgia, Università degli Studi di Salerno, Fisciano, Italia
| | - Paolo Barone
- Facoltà di Medicina e Chirurgia, Università degli Studi di Salerno, Fisciano, Italia
| | - Sandro Sorbi
- NEUROFARBA- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università di Firenze, Firenze, Italia
| | - Stefano F Cappa
- NEtS, Scuola Universitaria Superiore IUSS-Pavia, Pavia, Italia.,IRCCS S. Giovanni di Dio Fatebenefratelli, Brescia, Italia
| | - Peter Garrard
- Neuroscience Research Centre, St George's-University of London, London, UK
| |
Collapse
|
29
|
Cholinergic depletion and basal forebrain volume in primary progressive aphasia. NEUROIMAGE-CLINICAL 2016; 13:271-279. [PMID: 28018854 PMCID: PMC5176031 DOI: 10.1016/j.nicl.2016.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/21/2016] [Accepted: 11/26/2016] [Indexed: 12/30/2022]
Abstract
Primary progressive aphasia (PPA) is a heterogeneous syndrome with various neuropathological causes for which no medical treatment with proven efficacy exists. Basal forebrain (BF) volume loss has been reported in PPA but its relation to cholinergic depletion is still unclear. The primary objective of this study was to investigate whether cholinergic alterations occur in PPA variants and how this relates to BF volume loss. An academic memory clinic based consecutive series of 11 PPA patients (five with the semantic variant (SV), four with the logopenic variant (LV) and two with the nonfluent variant (NFV)) participated in this cross-sectional in vivo PET imaging study together with 10 healthy control subjects. Acetylcholinesterase (AChE) activity was quantitatively measured in the neo- and allocortex using N-[11C]-Methylpiperidin-4-yl propionate (PMP)-PET with arterial sampling and metabolite correction. Whole brain and BF volumes were quantified using voxel-based morphometry on high-resolution magnetic resonance imaging (MRI) scans. In the PPA group, only LV cases showed decreases in AChE activity levels compared to controls. Surprisingly, a substantial number of SV cases showed significant AChE activity increases compared to controls. BF volume did not correlate with AChE activity levels in PPA. To conclude, in our sample of PPA patients, LV but not SV was associated with cholinergic depletion. BF atrophy in PPA does not imply cholinergic depletion. Using PET we examined cholinesterase activity in PPA. Cholinergic depletion occurred in the logopenic variant. Basal forebrain atrophy mainly occurred in the semantic variant. Cholinergic depletion did not correlate with basal forebrain atrophy. Unexpectedly, semantic variant was associated with cholinergic activity increases.
Collapse
|
30
|
Koric L, Guedj E, Habert M, Semah F, Branger P, Payoux P, Le Jeune F. Molecular imaging in the diagnosis of Alzheimer's disease and related disorders. Rev Neurol (Paris) 2016; 172:725-734. [DOI: 10.1016/j.neurol.2016.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/25/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022]
|
31
|
Amyloid pet in primary progressive aphasia: case series and systematic review of the literature. J Neurol 2016; 264:121-130. [PMID: 27815682 DOI: 10.1007/s00415-016-8324-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
Primary progressive aphasia (PPA) is considered a heterogeneous syndrome, with different clinical subtypes and neuropathological causes. Novel PET biomarkers may help to predict the underlying neuropathology, but many aspects remain unclear. We studied the relationship between amyloid PET and PPA variant in a clinical series of PPA patients. A systematic review of the literature was performed. Patients with PPA were assessed over a 2-year period and classified based on language testing and the International Consensus Criteria as non-fluent/agrammatic (nfvPPA), semantic (svPPA), logopenic variant (lvPPA) or as unclassifiable (ucPPA). All patients underwent a Florbetapir (18-F) PET scan and images were analysed by two nuclear medicine physicians, using a previously validated reading method. Relevant studies published between January 2004 and January 2016 were identified by searching Medline and Web of Science databases. Twenty-four PPA patients were included (13 women, mean age 68.8, SD 8.3 years; range 54-83). Overall, 13/24 were amyloid positive: 0/2 (0%) nfvPPA, 0/4 (0%) svPPA, 10/14 (71.4%) lvPPA and 3/4 (75%) ucPPA (p = 0.028). The systematic review identified seven relevant studies, six including all PPA variants and one only lvPPA. Pooling all studies together, amyloid PET positivity was 122/224 (54.5%) for PPA, 14/52 (26.9%) for nfvPPA, 6/47 (12.8%) for svPPA, 101/119 for lvPPA (84.9%) and 12/22 (54.5%) for ucPPA. Amyloid PET may help to identify the underlying neuropathology in PPA. It could be especially useful in ucPPA, because in these cases it is more difficult to predict pathology. ucPPA is frequently associated with amyloid pathology.
Collapse
|
32
|
18F-FDG PET/CT and functional MRI in a case of crossed logopenic primary progressive aphasia. Rev Esp Med Nucl Imagen Mol 2016. [DOI: 10.1016/j.remnie.2016.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Kato T, Inui Y, Nakamura A, Ito K. Brain fluorodeoxyglucose (FDG) PET in dementia. Ageing Res Rev 2016; 30:73-84. [PMID: 26876244 DOI: 10.1016/j.arr.2016.02.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/31/2022]
Abstract
The purpose of this article is to present a selective and concise summary of fluorodeoxyglucose (FDG) positron emission tomography (PET) in dementia imaging. FDG PET is used to visualize a downstream topographical marker that indicates the distribution of neural injury or synaptic dysfunction, and can identify distinct phenotypes of dementia due to Alzheimer's disease (AD), Lewy bodies, and frontotemporal lobar degeneration. AD dementia shows hypometabolism in the parietotemporal association area, posterior cingulate, and precuneus. Hypometabolism in the inferior parietal lobe and posterior cingulate/precuneus is a predictor of cognitive decline from mild cognitive impairment (MCI) to AD dementia. FDG PET may also predict conversion of cognitively normal individuals to those with MCI. Age-related hypometabolism is observed mainly in the anterior cingulate and anterior temporal lobe, along with regional atrophy. Voxel-based statistical analyses, such as statistical parametric mapping or three-dimensional stereotactic surface projection, improve the diagnostic performance of imaging of dementias. The potential of FDG PET in future clinical and methodological studies should be exploited further.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, Japan; Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Japan.
| | - Yoshitaka Inui
- Department of Radiology, National Center for Geriatrics and Gerontology, Japan
| | - Akinori Nakamura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Japan
| | - Kengo Ito
- Department of Radiology, National Center for Geriatrics and Gerontology, Japan; Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Japan; Innovation Center for Clinical Research, National Center for Geriatrics and Gerontology, Japan
| |
Collapse
|
34
|
Rogalski E, Sridhar J, Rader B, Martersteck A, Chen K, Cobia D, Thompson CK, Weintraub S, Bigio EH, Mesulam MM. Aphasic variant of Alzheimer disease: Clinical, anatomic, and genetic features. Neurology 2016; 87:1337-43. [PMID: 27566743 DOI: 10.1212/wnl.0000000000003165] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To identify features of primary progressive aphasia (PPA) associated with Alzheimer disease (AD) neuropathology. A related objective was to determine whether logopenic PPA is a clinical marker for AD. METHODS A total of 139 prospectively enrolled participants with a root diagnosis of PPA constituted the reference set. Those with autopsy or biomarker evidence of AD, and who had been evaluated at mild disease stages (Aphasia Quotient ≥85), were included (n = 19). All had quantitative language testing and APOE genotyping. Fifteen had MRI morphometry. RESULTS Impaired word-finding was the universal presenting complaint in the aphasic AD group. PPA clinical subtype was logopenic (n = 13) and agrammatic (n = 6). Fluency, repetition, naming, and grammaticality ranged from preserved to severely impaired. All had relative preservation of word comprehension. Eight of the 15 aphasic participants with AD showed no appreciable cortical atrophy at the individual level on MRI. As a group, atrophy was asymmetrically concentrated in the left perisylvian cortex. APOE ε4 frequency was not elevated. CONCLUSIONS There is a close, but not obligatory, association between logopenic PPA and AD. No language measure, with the possible exception of word comprehension, can confirm or exclude AD in PPA. Biomarkers are therefore essential for diagnosis. Asymmetry of cortical atrophy and normal APOE ε4 prevalence constitute deviations from typical AD. These and additional neuropathologic features suggest that AD has biological subtypes, one of which causes PPA. Better appreciation of this fact should promote the inclusion of individuals with PPA and positive AD biomarkers into relevant clinical trials.
Collapse
Affiliation(s)
- Emily Rogalski
- From the Cognitive Neurology and Alzheimer's Disease Center (E.R., J.S., B.R., A.M., C.K.T., S.W., M.-M.M.) and Departments of Psychiatry and Behavioral Sciences (D.C., S.W.), Neurology (C.K.T., M.-M.M.), and Pathology (E.H.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; Banner Alzheimer's Institute (K.C.), Phoenix, AZ; and Department of Communication Sciences Disorders (C.K.T.), Northwestern University, Evanston, IL.
| | - Jaiashre Sridhar
- From the Cognitive Neurology and Alzheimer's Disease Center (E.R., J.S., B.R., A.M., C.K.T., S.W., M.-M.M.) and Departments of Psychiatry and Behavioral Sciences (D.C., S.W.), Neurology (C.K.T., M.-M.M.), and Pathology (E.H.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; Banner Alzheimer's Institute (K.C.), Phoenix, AZ; and Department of Communication Sciences Disorders (C.K.T.), Northwestern University, Evanston, IL
| | - Benjamin Rader
- From the Cognitive Neurology and Alzheimer's Disease Center (E.R., J.S., B.R., A.M., C.K.T., S.W., M.-M.M.) and Departments of Psychiatry and Behavioral Sciences (D.C., S.W.), Neurology (C.K.T., M.-M.M.), and Pathology (E.H.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; Banner Alzheimer's Institute (K.C.), Phoenix, AZ; and Department of Communication Sciences Disorders (C.K.T.), Northwestern University, Evanston, IL
| | - Adam Martersteck
- From the Cognitive Neurology and Alzheimer's Disease Center (E.R., J.S., B.R., A.M., C.K.T., S.W., M.-M.M.) and Departments of Psychiatry and Behavioral Sciences (D.C., S.W.), Neurology (C.K.T., M.-M.M.), and Pathology (E.H.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; Banner Alzheimer's Institute (K.C.), Phoenix, AZ; and Department of Communication Sciences Disorders (C.K.T.), Northwestern University, Evanston, IL
| | - Kewei Chen
- From the Cognitive Neurology and Alzheimer's Disease Center (E.R., J.S., B.R., A.M., C.K.T., S.W., M.-M.M.) and Departments of Psychiatry and Behavioral Sciences (D.C., S.W.), Neurology (C.K.T., M.-M.M.), and Pathology (E.H.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; Banner Alzheimer's Institute (K.C.), Phoenix, AZ; and Department of Communication Sciences Disorders (C.K.T.), Northwestern University, Evanston, IL
| | - Derin Cobia
- From the Cognitive Neurology and Alzheimer's Disease Center (E.R., J.S., B.R., A.M., C.K.T., S.W., M.-M.M.) and Departments of Psychiatry and Behavioral Sciences (D.C., S.W.), Neurology (C.K.T., M.-M.M.), and Pathology (E.H.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; Banner Alzheimer's Institute (K.C.), Phoenix, AZ; and Department of Communication Sciences Disorders (C.K.T.), Northwestern University, Evanston, IL
| | - Cynthia K Thompson
- From the Cognitive Neurology and Alzheimer's Disease Center (E.R., J.S., B.R., A.M., C.K.T., S.W., M.-M.M.) and Departments of Psychiatry and Behavioral Sciences (D.C., S.W.), Neurology (C.K.T., M.-M.M.), and Pathology (E.H.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; Banner Alzheimer's Institute (K.C.), Phoenix, AZ; and Department of Communication Sciences Disorders (C.K.T.), Northwestern University, Evanston, IL
| | - Sandra Weintraub
- From the Cognitive Neurology and Alzheimer's Disease Center (E.R., J.S., B.R., A.M., C.K.T., S.W., M.-M.M.) and Departments of Psychiatry and Behavioral Sciences (D.C., S.W.), Neurology (C.K.T., M.-M.M.), and Pathology (E.H.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; Banner Alzheimer's Institute (K.C.), Phoenix, AZ; and Department of Communication Sciences Disorders (C.K.T.), Northwestern University, Evanston, IL
| | - Eileen H Bigio
- From the Cognitive Neurology and Alzheimer's Disease Center (E.R., J.S., B.R., A.M., C.K.T., S.W., M.-M.M.) and Departments of Psychiatry and Behavioral Sciences (D.C., S.W.), Neurology (C.K.T., M.-M.M.), and Pathology (E.H.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; Banner Alzheimer's Institute (K.C.), Phoenix, AZ; and Department of Communication Sciences Disorders (C.K.T.), Northwestern University, Evanston, IL
| | - M-Marsel Mesulam
- From the Cognitive Neurology and Alzheimer's Disease Center (E.R., J.S., B.R., A.M., C.K.T., S.W., M.-M.M.) and Departments of Psychiatry and Behavioral Sciences (D.C., S.W.), Neurology (C.K.T., M.-M.M.), and Pathology (E.H.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; Banner Alzheimer's Institute (K.C.), Phoenix, AZ; and Department of Communication Sciences Disorders (C.K.T.), Northwestern University, Evanston, IL
| |
Collapse
|
35
|
Cabrera-Martín MN, Matías-Guiu JA, Yus-Fuertes M, Valles-Salgado M, Moreno-Ramos T, Matías-Guiu J, Carreras Delgado JL. 18F-FDG PET/CT and functional MRI in a case of crossed logopenic primary progressive aphasia. Rev Esp Med Nucl Imagen Mol 2016; 35:394-397. [PMID: 27321169 DOI: 10.1016/j.remn.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 11/28/2022]
Abstract
Primary progressive aphasia is a clinical syndrome caused by a neurodegeneration of areas and neural networks involved in language, usually in the left hemisphere. The term "crossed aphasia" denotes an acquired language dysfunction caused by a lesion in the hemisphere ipsilateral to the dominant hand. A case is presented on a 75-year-old right-handed woman with a logopenic variant of primary progressive aphasia with word-finding difficulties of 2 years onset. The 18F-FDG PET/CT showed right temporoparietal hypometabolism. A functional MRI scan was performed during a verb naming task in order to characterise language lateralisation patterns. A similar activation pattern was observed in both hemispheres, with less activation than expected in bilateral inferior frontal gyrus. These findings support that logopenic variant of primary progressive aphasia should not be considered as a neurodegeneration starting in the left brain hemisphere, but as a syndrome characterised by asymmetric neurodegeneration of brain regions and neural networks involved in language.
Collapse
Affiliation(s)
- M N Cabrera-Martín
- Servicio de Medicina Nuclear, Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria San Carlos, Madrid, España.
| | - J A Matías-Guiu
- Servicio de Neurología, Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria San Carlos, Madrid, España
| | - M Yus-Fuertes
- Servicio de Radiodiagnóstico, Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria San Carlos, Madrid, España
| | - M Valles-Salgado
- Servicio de Neurología, Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria San Carlos, Madrid, España
| | - T Moreno-Ramos
- Servicio de Neurología, Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria San Carlos, Madrid, España
| | - J Matías-Guiu
- Servicio de Neurología, Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria San Carlos, Madrid, España
| | - J L Carreras Delgado
- Servicio de Medicina Nuclear, Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria San Carlos, Madrid, España
| |
Collapse
|
36
|
Matías-Guiu JA, Oreja-Guevara C, Cabrera-Martín MN, Moreno-Ramos T, Carreras JL, Matías-Guiu J. Amyloid Proteins and Their Role in Multiple Sclerosis. Considerations in the Use of Amyloid-PET Imaging. Front Neurol 2016; 7:53. [PMID: 27065425 PMCID: PMC4814935 DOI: 10.3389/fneur.2016.00053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/22/2016] [Indexed: 02/06/2023] Open
Abstract
Thioflavin T derivatives are used in positron-emission tomography (PET) studies to detect amyloid protein deposits in patients with Alzheimer disease. These tracers bind extensively to white matter, which suggests that they may be useful in studies of multiple sclerosis (MS), and that proteins resulting from proteolytic processing of the amyloid precursor protein (APP) may contribute to MS. This article reviews data from both clinical and preclinical studies addressing the role of these proteins, whether they are detected in CSF studies or using PET imaging. APP is widely expressed in demyelinated axons and may have a protective effect in MS and in experimental allergic encephalomyelitis in animals. Several mechanisms associated with this increased expression may affect the degree of remyelination in MS. Amyloid-PET imaging may help determine the degree of demyelination and provide information on the molecular changes linked to APP proteolytic processing experienced by patients with MS.
Collapse
Affiliation(s)
- Jordi A Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| | - María Nieves Cabrera-Martín
- Department of Nuclear Medicine, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| | - Teresa Moreno-Ramos
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| | - José Luis Carreras
- Department of Nuclear Medicine, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| | - Jorge Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| |
Collapse
|