1
|
Davighi MG, Clemente F, Matassini C, Cacciarini M, Tanini D, Goti A, Morrone A, Paoli P, Cardona F. Acetal functionalized iminosugars for targeting β-glucocerebrosidase modulation. Eur J Med Chem 2025; 290:117529. [PMID: 40174262 DOI: 10.1016/j.ejmech.2025.117529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Novel pH-sensitive drug delivery systems offer significant potential for personalized medicine by enabling targeted therapy and minimizing side effects. These systems are designed to release therapeutic agents in acidic environments to achieve localized pharmacological effects. Dysfunctions in lysosomal enzyme β-glucocerebrosidase (GCase) play a crucial role in Gaucher and Parkinson's diseases. While pharmacological chaperones (PCs) stabilize GCase, the overall efficacy in restoring enzyme functionality is often abolished by their reluctance to dissociate from the enzyme once in lysosomes. To address this limitation, we developed pH-sensitive acetal functionalized iminosugars that hydrolyze under weakly acidic conditions, exploiting the pH difference between the endoplasmic reticulum and lysosomes to promote dissociation. Additionally, antioxidant moieties, derived from coniferyl aldehyde and vanillin, were incorporated to counteract oxidative stress, which is prevalent in Gaucher and Parkinson's diseases. The newly synthesized compounds 1-4 exhibit varying degrees of pH sensitivity and GCase stabilization in fibroblast ex vivo assays, with acetal 4 showing promising response, here validated both in lysates and in intact cells.
Collapse
Affiliation(s)
- Maria Giulia Davighi
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy
| | - Francesca Clemente
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| | - Camilla Matassini
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy
| | - Martina Cacciarini
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy
| | - Damiano Tanini
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy
| | - Andrea Goti
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy
| | - Amelia Morrone
- Laboratory of Molecular Genetics of Neurometabolic Diseases, Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy; Department of Neurosciences, Psycology, Drug Research and Child Health University of Florence, Viale Pieraccini 24, 50139, Firenze, Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences University of Florence, Viale Morgagni 50, 50134, Firenze, Italy
| | - Francesca Cardona
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| |
Collapse
|
2
|
Jose M, Fasaludeen A, Pavuluri H, Rudrabhatla PK, Chandrasekharan SV, Jose J, Banerjee M, Sundaram S, Radhakrishnan A, Menon RN. Metabolic causes of pediatric developmental & epileptic encephalopathies (DEE)- genetic variant analysis in a south Indian cohort. Seizure 2024; 115:20-27. [PMID: 38183824 DOI: 10.1016/j.seizure.2023.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024] Open
Abstract
PURPOSE Drug-resistant epilepsy is seen in patients with inborn errors of metabolism and metabolic dysfunction in neurons is crucial to brain disorders associated with psychomotor impairment. Diagnostic rates of metabolic causes of developmental and epileptic encephalopathy (DEE) using next generation sequencing have been rarely studied in literature. METHODS A prospective hospital study was carried out in 384 children with DEE, who underwent genetic testing. Metabolic disorders were evaluated with biochemical blood/urine assays and when required CSF estimations performed. RESULTS A total of 154 pathogenic/likely pathogenic variants in 384 children were identified. Out of 384 children, 89 were clinically suspected to have probable or possible metabolic disorders. Pathogenic/likely pathogenic variants in metabolic genes were identified in 39 out of 89 (43.8 %) and promising VUS in 28 (31.4 %). These included variants for progressive myoclonus epilepsies (21; 53.8 %), DEE with focal/multifocal seizures (8; 20.5 %), generalized epilepsy (5;12.8 %), early myoclonic encephalopathy (2; 5.1 %), LGS (1; 2.6 %) and West syndrome (2; 5.1 %). CONCLUSION Our cohort demonstrates for the first time from the Indian subcontinent that identification of metabolic variants can guide investigations and has therapeutic implications in patients with variable DEE phenotypes. A high utility is noted with regard to diagnosis and prognostication, given the low yield of available biochemical tests, indicating cost-effectiveness of this approach.
Collapse
Affiliation(s)
- Manna Jose
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Alfiya Fasaludeen
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Harini Pavuluri
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Pavan Kumar Rudrabhatla
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Soumya V Chandrasekharan
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Jithu Jose
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Soumya Sundaram
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Ashalatha Radhakrishnan
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Ramshekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India.
| |
Collapse
|
3
|
Zimmern V, Minassian B. Progressive Myoclonus Epilepsy: A Scoping Review of Diagnostic, Phenotypic and Therapeutic Advances. Genes (Basel) 2024; 15:171. [PMID: 38397161 PMCID: PMC10888128 DOI: 10.3390/genes15020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The progressive myoclonus epilepsies (PME) are a diverse group of disorders that feature both myoclonus and seizures that worsen gradually over a variable timeframe. While each of the disorders is individually rare, they collectively make up a non-trivial portion of the complex epilepsy and myoclonus cases that are seen in tertiary care centers. The last decade has seen substantial progress in our understanding of the pathophysiology, diagnosis, prognosis, and, in select disorders, therapies of these diseases. In this scoping review, we examine English language publications from the past decade that address diagnostic, phenotypic, and therapeutic advances in all PMEs. We then highlight the major lessons that have been learned and point out avenues for future investigation that seem promising.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX 75390, USA;
| | | |
Collapse
|
4
|
Vihinen M. Nonsynonymous Synonymous Variants Demand for a Paradigm Shift in Genetics. Curr Genomics 2023; 24:18-23. [PMID: 37920730 PMCID: PMC10334700 DOI: 10.2174/1389202924666230417101020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 11/04/2023] Open
Abstract
Synonymous (also known as silent) variations are by definition not considered to change the coded protein. Still many variations in this category affect either protein abundance or properties. As this situation is confusing, we have recently introduced systematics for synonymous variations and those that may on the surface look like synonymous, but these may affect the coded protein in various ways. A new category, unsense variation, was introduced to describe variants that do not introduce a stop codon into the variation site, but which lead to different types of changes in the coded protein. Many of these variations lead to mRNA degradation and missing protein. Here, consequences of the systematics are discussed from the perspectives of variation annotation and interpretation, evolutionary calculations, nonsynonymous-to-synonymous substitution rates, phylogenetics and other evolutionary inferences that are based on the principle of (nearly) neutral synonymous variations. It may be necessary to reassess published results. Further, databases for synonymous variations and prediction methods for such variations should consider unsense variations. Thus, there is a need to evaluate and reflect principles of numerous aspects in genetics, ranging from variation naming and classification to evolutionary calculations.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, BMC B13, Sweden
| |
Collapse
|
5
|
Vihinen M. Systematic errors in annotations of truncations, loss-of-function and synonymous variants. Front Genet 2023; 14:1015017. [PMID: 36713076 PMCID: PMC9880313 DOI: 10.3389/fgene.2023.1015017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Description of genetic phenomena and variations requires exact language and concepts. Vast amounts of variation data are produced with next-generation sequencing pipelines. The obtained variations are automatically annotated, e.g., for their functional consequences. These tools and pipelines, along with systematic nomenclature, mainly work well, but there are still some problems in nomenclature, organization of some databases, misuse of concepts and certain practices. Therefore, systematic errors prevent correct annotation and often preclude further analysis of certain variation types. Problems and solutions are described for presumed protein truncations, variants that are claimed to be of loss-of-function based on the type of variation, and synonymous variants that are not synonymous and lead to sequence changes or to missing protein.
Collapse
|
6
|
When a Synonymous Variant Is Nonsynonymous. Genes (Basel) 2022; 13:genes13081485. [PMID: 36011397 PMCID: PMC9408308 DOI: 10.3390/genes13081485] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 12/27/2022] Open
Abstract
Term synonymous variation is widely used, but frequently in a wrong or misleading meaning and context. Twenty three point eight % of possible nucleotide substitution types in the universal genetic code are for synonymous amino acid changes, but when these variants have a phenotype and functional effect, they are very seldom synonymous. Such variants may manifest changes at DNA, RNA and/or protein levels. Large numbers of variations are erroneously annotated as synonymous, which causes problems e.g., in clinical genetics and diagnosis of diseases. To facilitate precise communication, novel systematics and nomenclature are introduced for variants that when looking only at the genetic code seem like synonymous, but which have phenotypes. A new term, unsense variant is defined as a substitution in the mRNA coding region that affects gene expression and protein production without introducing a stop codon in the variation site. Such variants are common and need to be correctly annotated. Proper naming and annotation are important also to increase awareness of these variants and their consequences.
Collapse
|
7
|
Sarkar A, Panati K, Narala VR. Code inside the codon: The role of synonymous mutations in regulating splicing machinery and its impact on disease. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108444. [PMID: 36307006 DOI: 10.1016/j.mrrev.2022.108444] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
In eukaryotes, precise pre-mRNA processing, including alternative splicing, is essential to carry out the intricate protein translation process. Both point mutations (that alter the translated protein sequence) and synonymous mutations (that do not alter the translated protein sequence) are capable of affecting the splicing process. Synonymous mutations are known to affect gene expression via altering mRNA stability, mRNA secondary structure, splicing processes, and translational kinetics. In higher eukaryotes, precise splicing is regulated by three weakly conserved cis-elements, 5' and 3' splice sites and the branch site. Many other cis-acting elements (exonic/intronic splicing enhancers and silencers) and trans-acting splicing factors (serine and arginine-rich proteins and heterogeneous nuclear ribonucleoproteins) have also been found to enhance or suppress the splicing process. The appearance of synonymous mutations in cis-acting elements can alter the splicing process by changing the binding pattern of splicing factors to exonic splicing enhancers or silencer motifs. This results in exon skipping, intron retention, and various other forms of alternative splicing, eventually leading to the emergence of a wide range of diseases. The focus of this review is to elucidate the role of synonymous mutations and their impact on abnormal splicing mechanisms. Further, this study highlights the function of synonymous mutation in mediating abnormal splicing in cancer and development of X-linked, and autosomal inherited diseases.
Collapse
Affiliation(s)
- Avik Sarkar
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa 516004, India
| | | |
Collapse
|
8
|
Dentel B, Angeles-Perez L, Ren C, Jakkamsetti V, Holley AJ, Caballero D, Oh E, Gibson J, Pascual JM, Huber KM, Tu BP, Tsai PT. Increased glycine contributes to synaptic dysfunction and early mortality in Nprl2 seizure model. iScience 2022; 25:104334. [PMID: 35602938 PMCID: PMC9118754 DOI: 10.1016/j.isci.2022.104334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 09/16/2021] [Accepted: 04/26/2022] [Indexed: 10/25/2022] Open
Abstract
Targeted therapies for epilepsies associated with the mTORC1 signaling negative regulator GATOR1 are lacking. NPRL2 is a subunit of the GATOR1 complex and mutations in GATOR1 subunits, including NPRL2, are associated with epilepsy. To delineate the mechanisms underlying NPRL2-related epilepsies, we created a mouse (Mus musculus) model with neocortical loss of Nprl2. Mutant mice have increased mTORC1 signaling and exhibit spontaneous seizures. They also display abnormal synaptic function characterized by increased evoked and spontaneous EPSC and decreased evoked and spontaneous IPSC frequencies, respectively. Proteomic and metabolomics studies of Nprl2 mutants revealed alterations in known epilepsy-implicated proteins and metabolic pathways, including increases in the neurotransmitter, glycine. Furthermore, glycine actions on the NMDA receptor contribute to the electrophysiological and survival phenotypes of these mice. Taken together, in this neuronal Nprl2 model, we delineate underlying molecular, metabolic, and electrophysiological mechanisms contributing to mTORC1-related epilepsy, providing potential therapeutic targets for epilepsy.
Collapse
Affiliation(s)
- Brianne Dentel
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | | | - Chongyu Ren
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Vikram Jakkamsetti
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Andrew J. Holley
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Daniel Caballero
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Emily Oh
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Jay Gibson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Juan M. Pascual
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Kimberly M. Huber
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Benjamin P. Tu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Peter T. Tsai
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75235, USA
- Departments of Pediatrics and Psychiatry, UT Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
9
|
Sun J, Sun X, Li Z, Ma D, Lv Y. An elongated tract of polyQ in the carboxyl‑terminus of human α1A calcium channel induces cell apoptosis by nuclear translocation. Oncol Rep 2020; 44:156-164. [PMID: 32626992 PMCID: PMC7251683 DOI: 10.3892/or.2020.7592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
An aberrant elongated tract of glutamine residues (polyQ) in proteins induces multiple diseases treated in the clinic. In our previous study of progressive myoclonic epilepsy (PME), using whole-exome sequencing, a mutant Cav2.1 protein with an aberrant elongated polyQ tract was identified in PME patients. To investigate the molecular mechanism and cell biology of this aberrant elongated polyQ tract, wild-type Cav2.1 with 13 polyQ repeats (Cav2.1 wt-Q13) and mutant-type Cav2.1 with 26 polyQ repeats (Cav2.1 mt-Q26) were prepared and introduced into human SH-SY5Y neuroblastoma cells. Using a WST-1 assay, it was revealed that Cav2.1 mt-Q26 markedly suppressed the proliferation of the SH-SY5Y cells, a result not observed for the Cav2.1 wt-Q13-transfected cells. It was also revealed that Cav2.1 mt and its truncated molecules suppressed cell proliferation by inducing apoptosis rather than arresting the cell cycle. Further investigations indicated a nuclear translocation phenomenon associated with the Cav2.1 mt molecules. Mechanistically, it was revealed that the Cav2.1 mt molecules activated the Bcl-2/Bax, caspase-3 and poly ADP-ribose polymerase (PARP) apoptotic pathways. The present study may provide new insights for interpreting the pathogenesis of PME and the relationship among polyQ, CACNA1A gene mutations and PME.
Collapse
Affiliation(s)
- Ji Sun
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiguang Sun
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhuo Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dihui Ma
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yudan Lv
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
10
|
Gündüz A, Kızıltan M, Ser MH, Yeni SN, Özkara Ç, Demirbilek V, Yalçınkaya C, Kızıltan G. The association between causes and electrophysiology in myoclonus: When and why electrophysiology? NEUROL SCI NEUROPHYS 2020. [DOI: 10.4103/nsn.nsn_82_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|