1
|
Madsen MAJ, Wiggermann V, Marques MFM, Lundell H, Cerri S, Puonti O, Blinkenberg M, Christensen JR, Sellebjerg F, Siebner HR. Linking lesions in sensorimotor cortex to contralateral hand function in multiple sclerosis: a 7 T MRI study. Brain 2022; 145:3522-3535. [PMID: 35653498 PMCID: PMC9586550 DOI: 10.1093/brain/awac203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Cortical lesions constitute a key manifestation of multiple sclerosis and contribute to clinical disability and cognitive impairment. Yet it is unknown whether local cortical lesions and cortical lesion subtypes contribute to domain-specific impairments attributable to the function of the lesioned cortex.
In this cross-sectional study, we assessed how cortical lesions in the primary sensorimotor hand area (SM1-HAND) relate to corticomotor physiology and sensorimotor function of the contralateral hand. 50 relapse-free patients with relapsing-remitting or secondary-progressive multiple sclerosis and 28 healthy age- and sex-matched participants underwent whole-brain 7 T MRI to map cortical lesions. Brain scans were also used to estimate normalized brain volume, pericentral cortical thickness, white matter lesion fraction of the corticospinal tract, infratentorial lesion volume and the cross-sectional area of the upper cervical spinal cord. We tested sensorimotor hand function and calculated a motor and sensory composite score for each hand. In 37 patients and 20 healthy controls, we measured maximal motor evoked potential (MEP) amplitude, resting motor threshold and corticomotor conduction time with transcranial magnetic stimulation (TMS) and the N20 latency from somatosensory evoked potentials (SSEPs).
Patients showed at least one cortical lesion in the SM1-HAND in 47 of 100 hemispheres. The presence of a lesion was associated with worse contralateral sensory (P = 0.014) and motor (P = 0.009) composite scores. TMS of a lesion-positive SM1-HAND revealed a decreased maximal MEP amplitude (P < 0.001) and delayed corticomotor conduction (P = 0.002) relative to a lesion-negative SM1-HAND. Stepwise mixed linear regressions showed that the presence of an SM1-HAND lesion, higher white-matter lesion fraction of the corticospinal tract, reduced spinal cord cross-sectional area and higher infratentorial lesion volume were associated with reduced contralateral motor hand function. Cortical lesions in SM1-HAND, spinal cord cross-sectional area and normalized brain volume were also associated with smaller maximal MEP amplitude and longer corticomotor conduction times. The effect of cortical lesions on sensory function was no longer significant when controlling for MRI-based covariates. Lastly, we found that intracortical and subpial lesions had the largest effect on reduced motor hand function, intracortical lesions on reduced MEP amplitude and leukocortical lesions on delayed corticomotor conduction.
Together, this comprehensive multi-level assessment of sensorimotor brain damage shows that the presence of a cortical lesion in SM1-HAND is associated with impaired corticomotor function of the hand, after accounting for damage at the subcortical level. The results also provide preliminary evidence that cortical lesion types may affect the various facets of corticomotor function differentially.
Collapse
Affiliation(s)
- Mads A. J. Madsen
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
| | - Vanessa Wiggermann
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
| | - Marta F. M. Marques
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
| | - Henrik Lundell
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
| | - Stefano Cerri
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
- Technical University of Denmark Department of Health Technology, , 2800 Kgs. Lyngby, Denmark
| | - Oula Puonti
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
| | - Morten Blinkenberg
- Copenhagen University Hospital – Rigshospitalet Danish Multiple Sclerosis Center, Department of Neurology, , 2600 Glostrup, Denmark
| | - Jeppe Romme Christensen
- Copenhagen University Hospital – Rigshospitalet Danish Multiple Sclerosis Center, Department of Neurology, , 2600 Glostrup, Denmark
| | - Finn Sellebjerg
- Copenhagen University Hospital – Rigshospitalet Danish Multiple Sclerosis Center, Department of Neurology, , 2600 Glostrup, Denmark
- University of Copenhagen Department of Clinical Medicine, , 2200 Copenhagen, Denmark
| | - Hartwig R. Siebner
- Copenhagen University Hospital - Amager & Hvidovre Danish Research Centre for Magnetic Resonance, , 2650 Hvidovre, Denmark
- Copenhagen University Hospital - Bispebjerg & Frederiksberg Department of Neurology, , 2400 Copenhagen, Denmark
- University of Copenhagen Department of Clinical Medicine, , 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Kerbrat A, Gros C, Badji A, Bannier E, Galassi F, Combès B, Chouteau R, Labauge P, Ayrignac X, Carra-Dalliere C, Maranzano J, Granberg T, Ouellette R, Stawiarz L, Hillert J, Talbott J, Tachibana Y, Hori M, Kamiya K, Chougar L, Lefeuvre J, Reich DS, Nair G, Valsasina P, Rocca MA, Filippi M, Chu R, Bakshi R, Callot V, Pelletier J, Audoin B, Maarouf A, Collongues N, De Seze J, Edan G, Cohen-Adad J. Multiple sclerosis lesions in motor tracts from brain to cervical cord: spatial distribution and correlation with disability. Brain 2020; 143:2089-2105. [PMID: 32572488 DOI: 10.1093/brain/awaa162] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/27/2020] [Accepted: 04/02/2020] [Indexed: 11/12/2022] Open
Abstract
Despite important efforts to solve the clinico-radiological paradox, correlation between lesion load and physical disability in patients with multiple sclerosis remains modest. One hypothesis could be that lesion location in corticospinal tracts plays a key role in explaining motor impairment. In this study, we describe the distribution of lesions along the corticospinal tracts from the cortex to the cervical spinal cord in patients with various disease phenotypes and disability status. We also assess the link between lesion load and location within corticospinal tracts, and disability at baseline and 2-year follow-up. We retrospectively included 290 patients (22 clinically isolated syndrome, 198 relapsing remitting, 39 secondary progressive, 31 primary progressive multiple sclerosis) from eight sites. Lesions were segmented on both brain (T2-FLAIR or T2-weighted) and cervical (axial T2- or T2*-weighted) MRI scans. Data were processed using an automated and publicly available pipeline. Brain, brainstem and spinal cord portions of the corticospinal tracts were identified using probabilistic atlases to measure the lesion volume fraction. Lesion frequency maps were produced for each phenotype and disability scores assessed with Expanded Disability Status Scale score and pyramidal functional system score. Results show that lesions were not homogeneously distributed along the corticospinal tracts, with the highest lesion frequency in the corona radiata and between C2 and C4 vertebral levels. The lesion volume fraction in the corticospinal tracts was higher in secondary and primary progressive patients (mean = 3.6 ± 2.7% and 2.9 ± 2.4%), compared to relapsing-remitting patients (1.6 ± 2.1%, both P < 0.0001). Voxel-wise analyses confirmed that lesion frequency was higher in progressive compared to relapsing-remitting patients, with significant bilateral clusters in the spinal cord corticospinal tracts (P < 0.01). The baseline Expanded Disability Status Scale score was associated with lesion volume fraction within the brain (r = 0.31, P < 0.0001), brainstem (r = 0.45, P < 0.0001) and spinal cord (r = 0.57, P < 0.0001) corticospinal tracts. The spinal cord corticospinal tracts lesion volume fraction remained the strongest factor in the multiple linear regression model, independently from cord atrophy. Baseline spinal cord corticospinal tracts lesion volume fraction was also associated with disability progression at 2-year follow-up (P = 0.003). Our results suggest a cumulative effect of lesions within the corticospinal tracts along the brain, brainstem and spinal cord portions to explain physical disability in multiple sclerosis patients, with a predominant impact of intramedullary lesions.
Collapse
Affiliation(s)
- Anne Kerbrat
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada.,CHU Rennes, Neurology department, Empenn U 1128 Inserm, CIC1414 Inserm, Rennes, France
| | - Charley Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada
| | - Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Elise Bannier
- CHU Rennes, Radiology department, Rennes, France.,Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1128, Rennes, France
| | - Francesca Galassi
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1128, Rennes, France
| | - Benoit Combès
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1128, Rennes, France
| | - Raphaël Chouteau
- CHU Rennes, Neurology department, Empenn U 1128 Inserm, CIC1414 Inserm, Rennes, France
| | - Pierre Labauge
- MS Unit, Department of Neurology, CHU Montpellier, Montpellier, France
| | - Xavier Ayrignac
- MS Unit, Department of Neurology, CHU Montpellier, Montpellier, France
| | | | - Josefina Maranzano
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada.,University of Quebec in Trois-Rivieres, Quebec, Canada
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Russell Ouellette
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Leszek Stawiarz
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jason Talbott
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA, USA
| | | | - Masaaki Hori
- Toho University Omori Medical Center, Tokyo, Japan
| | | | - Lydia Chougar
- Department of Neuroradiology, La Pitié Salpêtrière Hospital, Paris, France
| | - Jennifer Lefeuvre
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Renxin Chu
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Rohit Bakshi
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Virginie Callot
- AP-HM, Pôle d'imagerie médicale, Hôpital de la Timone, CEMEREM, Marseille, France.,Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Jean Pelletier
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Bertrand Audoin
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Adil Maarouf
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Nicolas Collongues
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 67 000 Strasbourg, France.,Département de Neurologie, Centre Hospitalier Universitaire de Strasbourg, 67200 Strasbourg, France.,Centre d'investigation Clinique, INSERM U1434, Centre Hospitalier Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Jérôme De Seze
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 67 000 Strasbourg, France.,Département de Neurologie, Centre Hospitalier Universitaire de Strasbourg, 67200 Strasbourg, France.,Centre d'investigation Clinique, INSERM U1434, Centre Hospitalier Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Gilles Edan
- CHU Rennes, Neurology department, Empenn U 1128 Inserm, CIC1414 Inserm, Rennes, France
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada.,Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Canada
| |
Collapse
|