1
|
Wei Y, Zhao L, Wei J, Yu X, Wei L, Ni R, Li T. Hippocampal transcriptome analysis in ClockΔ19 mice identifies pathways associated with glial cell differentiation and myelination. J Affect Disord 2025; 376:280-293. [PMID: 39855567 DOI: 10.1016/j.jad.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND ClockΔ19 mice demonstrate behavioral characteristics and neurobiological changes that closely resemble those observed in bipolar disorder (BD). Notably, abnormalities in the hippocampus have been observed in patients with BD, yet direct molecular investigation of human hippocampal tissue remains challenging due to its limited accessibility. METHODS To model BD, ClockΔ19 mice were employed. Weighted gene co-expression network analysis (WGCNA) was utilized to identify mutation-related modules, and changes in cell populations were determined using the computational deconvolution CIBERSORTx. Furthermore, GeneMANIA and protein-protein interactions (PPIs) were leveraged to construct a comprehensive interaction network. RESULTS 174 differentially expressed genes (DEGs) were identified, revealing abnormalities in rhythmic processes, mitochondrial metabolism, and various cell functions including morphology, differentiation, and receptor activity. Analysis identified 5 modules correlated with the mutation, with functional enrichment highlighting disturbances in rhythmic processes and neural cell differentiation due to the mutation. Furthermore, a decrease in neural stem cells (NSC), and an increase in astrocyte-restricted precursors (ARP), ependymocytes (EPC), and hemoglobin-expressing vascular cells (Hb-VC) in the mutant mice were observed. A network comprising 12 genes that link rhythmic processes to neural cell differentiation in the hippocampus was also identified. LIMITATIONS This study focused on the hippocampus of mice, hence the applicability of these findings to human patients warrants further exploration. CONCLUSION The ClockΔ19 mutation may disrupt circadian rhythm, myelination, and the differentiation of neural stem cells (NSCs) into glial cells. These abnormalities are linked to altered expression of key genes, including DPB, CIART, NR1D1, GFAP, SLC20A2, and KL. Furthermore, interactions between SLC20A2 and KL might provide a connection between circadian rhythm regulation and cell type transitions.
Collapse
Affiliation(s)
- Yingying Wei
- Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liansheng Zhao
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinxue Wei
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueli Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Long Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rongjun Ni
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Yang D, Huang H, Zeng T, Wang L, Ying C, Chen X, Zhou X, Sun F, Chen Y, Li S, Wang B, Wu S, Xie F, Cen Z, Luo W. Unveiling distinct clinical manifestations of primary familial brain calcifications in Asian and European patients: A study based on 10-year individual-level data. Parkinsonism Relat Disord 2025; 132:107290. [PMID: 39827654 DOI: 10.1016/j.parkreldis.2025.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Primary Familial Brain Calcification (PFBC) can manifest clinically with a complex and heterogeneous array of symptoms, including parkinsonism, dysarthria, and cognitive impairment. However, the distinct presentations of PFBC in Asian and European populations remain unclear. METHODS We conducted a systematic search of PubMed for studies involving genetically confirmed PFBC patients. Demographic data, genetic information, radiological examinations, and clinical characteristics were extracted for each case. RESULTS The study included 120 publications and 564 genetically confirmed PFBC patients. Asian and European PFBC populations represented 54 % and 37 % of global patients, respectively. While calcification patterns showed no significant differences between Asian and European PFBC patients, European autosomal dominant PFBC variant carriers were more likely to exhibit clinical symptoms compared to their Asian counterparts (OR = 2.90, 95 % CI 1.55-5.60) and had an earlier estimated age of onset (median age 42 vs 58). CONCLUSION The interaction between regional differences and genetically determined calcification severity may collectively influence PFBC symptom progression. Future research should further explore the potential roles of gene modifiers, ethnic background, socioeconomic and environmental exposure factors underlying regional differences in PFBC progression.
Collapse
Affiliation(s)
- Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Zeng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lebo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenxin Ying
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinhui Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinbo Zhou
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangyue Sun
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yilin Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengqi Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Wu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhidong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Hayashi K, Suzuki A, Nakaya Y, Takaku N, Miura T, Sato M, Kobayashi Y. Migraine With Aura Accompanied by Myoclonus: A Case Report. Cureus 2024; 16:e69046. [PMID: 39391443 PMCID: PMC11464945 DOI: 10.7759/cureus.69046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Migraine is a condition characterized by pulsating headaches, often accompanied by photophobia, phonophobia, and/or gastrointestinal symptoms such as nausea and vomiting. Approximately 15% to one-third of migraine patients experience an aura either before or during the headache. To the best of our knowledge, the occurrence of migraine with myoclonus is extremely rare. This report describes a rare case of migraine with aura accompanied by myoclonus. The patient is a 46-year-old man who developed a visual aura followed by vomiting and a throbbing headache on the right side. As the headache intensified, involuntary movements of the left lower extremity appeared. Brain magnetic resonance imaging (MRI) revealed no structural abnormalities or stroke lesions; however, arterial spin labeling MRI showed hypoperfusion in the right cerebral hemisphere. An ophthalmological evaluation was unremarkable. He was diagnosed with migraine with myoclonus, and the intravenous administration of diazepam and sumatriptan resulted in the cessation of the myoclonus and mild relief of the headache. By the day after admission, the myoclonus and visual symptoms had completely disappeared. The headache resolved by the third day of admission.
Collapse
Affiliation(s)
- Koji Hayashi
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, JPN
| | - Asuka Suzuki
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, JPN
| | - Yuka Nakaya
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, JPN
| | - Naoko Takaku
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, JPN
| | - Toyoaki Miura
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, JPN
| | - Mamiko Sato
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, JPN
- Graduate School of Health Science, Fukui Health Science University, Fukui, JPN
| | - Yasutaka Kobayashi
- Graduate School of Health Science, Fukui Health Science University, Fukui, JPN
| |
Collapse
|
4
|
Chen SY, Ho CJ, Lu YT, Lin CH, Lan MY, Tsai MH. The Genetics of Primary Familial Brain Calcification: A Literature Review. Int J Mol Sci 2023; 24:10886. [PMID: 37446066 DOI: 10.3390/ijms241310886] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Primary familial brain calcification (PFBC), also known as Fahr's disease, is a rare inherited disorder characterized by bilateral calcification in the basal ganglia according to neuroimaging. Other brain regions, such as the thalamus, cerebellum, and subcortical white matter, can also be affected. Among the diverse clinical phenotypes, the most common manifestations are movement disorders, cognitive deficits, and psychiatric disturbances. Although patients with PFBC always exhibit brain calcification, nearly one-third of cases remain clinically asymptomatic. Due to advances in the genetics of PFBC, the diagnostic criteria of PFBC may need to be modified. Hitherto, seven genes have been associated with PFBC, including four dominant inherited genes (SLC20A2, PDGFRB, PDGFB, and XPR1) and three recessive inherited genes (MYORG, JAM2, and CMPK2). Nevertheless, around 50% of patients with PFBC do not have pathogenic variants in these genes, and further PFBC-associated genes are waiting to be identified. The function of currently known genes suggests that PFBC could be caused by the dysfunction of the neurovascular unit, the dysregulation of phosphate homeostasis, or mitochondrial dysfunction. An improved understanding of the underlying pathogenic mechanisms for PFBC may facilitate the development of novel therapies.
Collapse
Affiliation(s)
- Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| |
Collapse
|
5
|
Monfrini E, Arienti F, Rinchetti P, Lotti F, Riboldi GM. Brain Calcifications: Genetic, Molecular, and Clinical Aspects. Int J Mol Sci 2023; 24:ijms24108995. [PMID: 37240341 DOI: 10.3390/ijms24108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Many conditions can present with accumulation of calcium in the brain and manifest with a variety of neurological symptoms. Brain calcifications can be primary (idiopathic or genetic) or secondary to various pathological conditions (e.g., calcium-phosphate metabolism derangement, autoimmune disorders and infections, among others). A set of causative genes associated with primary familial brain calcification (PFBC) has now been identified, and include genes such as SLC20A2, PDGFB, PDGFRB, XPR1, MYORG, and JAM2. However, many more genes are known to be linked with complex syndromes characterized by brain calcifications and additional neurologic and systemic manifestations. Of note, many of these genes encode for proteins involved in cerebrovascular and blood-brain barrier functions, which both represent key anatomical structures related to these pathological phenomena. As a growing number of genes associated with brain calcifications is identified, pathways involved in these conditions are beginning to be understood. Our comprehensive review of the genetic, molecular, and clinical aspects of brain calcifications offers a framework for clinicians and researchers in the field.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy
| | - Federica Arienti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy
| | - Paola Rinchetti
- Columbia University Irving Medical Center, Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology and Neurology, New York, NY 10032, USA
| | - Francesco Lotti
- Columbia University Irving Medical Center, Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology and Neurology, New York, NY 10032, USA
| | - Giulietta M Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY 10017, USA
| |
Collapse
|
6
|
Elston MS, Elajnaf T, Hannan FM, Thakker RV. Autosomal dominant hypocalcemia type 1 (ADH1) associated with myoclonus and intracerebral calcifications. J Endocr Soc 2022; 6:bvac042. [PMID: 35402765 PMCID: PMC8989155 DOI: 10.1210/jendso/bvac042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
Abstract
Autosomal dominant hypocalcemia type 1 (ADH1) is a disorder of extracellular calcium homeostasis caused by germline gain-of-function mutations of the calcium-sensing receptor (CaSR). Over 35% of ADH1 patients have intracerebral calcifications predominantly affecting the basal ganglia. The clinical consequences of such calcifications remain to be fully characterized, although the majority of patients with these calcifications are considered to be asymptomatic. We report a 20-year-old female proband with a severe form of ADH1 associated with recurrent hypocalcemic and hypercalcemic episodes, persistent childhood hyperphosphatemia, and a low calcium/phosphate ratio. From the age of 18 years, she had experienced recurrent myoclonic jerks affecting the upper limbs that were not associated with epileptic seizures, extra-pyramidal features, cognitive impairment, or alterations in serum calcium concentrations. Computerised tomography (CT) scans revealed calcifications of the globus pallidus regions of the basal ganglia bilaterally, and also the frontal lobes at the grey-white matter junction, and posterior horn choroid plexuses. The patient’s myoclonus resolved following treatment with levetiracetam. CASR mutational analysis identified a reported germline gain-of-function heterozygous missense mutation, c.2363T>G; p.(Phe788Cys), which affects an evolutionarily conserved phenylalanine residue located in transmembrane domain helix 5 of the CaSR protein. Analysis of the cryo-electron microscopy CaSR structure predicted the wild-type Phe788 residue to form interactions with neighbouring phenylalanine residues, which likely maintain the CaSR in an inactive state. The p.(Phe788Cys) mutation was predicted to disrupt these interactions, thereby leading to CaSR activation. These findings reveal myoclonus as a novel finding in an ADH1 patient with intracerebral calcifications.
Collapse
Affiliation(s)
- Marianne S Elston
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
| | - Taha Elajnaf
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, UK
| | - Fadil M Hannan
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|