1
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Simmatis LER, Robin J, Spilka MJ, Yunusova Y. Detecting bulbar amyotrophic lateral sclerosis (ALS) using automatic acoustic analysis. Biomed Eng Online 2024; 23:15. [PMID: 38311731 PMCID: PMC10838438 DOI: 10.1186/s12938-023-01174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/19/2023] [Indexed: 02/06/2024] Open
Abstract
Automatic speech assessments have the potential to dramatically improve ALS clinical practice and facilitate patient stratification for ALS clinical trials. Acoustic speech analysis has demonstrated the ability to capture a variety of relevant speech motor impairments, but implementation has been hindered by both the nature of lab-based assessments (requiring travel and time for patients) and also by the opacity of some acoustic feature analysis methods. These challenges and others have obscured the ability to distinguish different ALS disease stages/severities. Validation of automated acoustic analysis tools could enable detection of early signs of ALS, and these tools could be deployed to screen and monitor patients without requiring clinic visits. Here, we sought to determine whether acoustic features gathered using an automated assessment app could detect ALS as well as different levels of speech impairment severity resulting from ALS. Speech samples (readings of a standardized, 99-word passage) from 119 ALS patients with varying degrees of disease severity as well as 22 neurologically healthy participants were analyzed, and 53 acoustic features were extracted. Patients were stratified into early and late stages of disease (ALS-early/ALS-E and ALS-late/ALS-L) based on the ALS Functional Ratings Scale-Revised bulbar score (FRS-bulb) (median [interquartile range] of FRS-bulbar scores: 11[3]). The data were analyzed using a sparse Bayesian logistic regression classifier. It was determined that the current relatively small set of acoustic features could distinguish between ALS and controls well (area under receiver-operating characteristic curve/AUROC = 0.85), that the ALS-E patients could be separated well from control participants (AUROC = 0.78), and that ALS-E and ALS-L patients could be reasonably separated (AUROC = 0.70). These results highlight the potential for automated acoustic analyses to detect and stratify ALS.
Collapse
Affiliation(s)
- Leif E R Simmatis
- KITE-Toronto Rehabilitation Institute, UHN, Toronto, ON, Canada.
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Research Institute, Toronto, ON, Canada.
| | | | | | - Yana Yunusova
- KITE-Toronto Rehabilitation Institute, UHN, Toronto, ON, Canada
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
3
|
Bede P, Lulé D, Müller HP, Tan EL, Dorst J, Ludolph AC, Kassubek J. Presymptomatic grey matter alterations in ALS kindreds: a computational neuroimaging study of asymptomatic C9orf72 and SOD1 mutation carriers. J Neurol 2023; 270:4235-4247. [PMID: 37178170 PMCID: PMC10421803 DOI: 10.1007/s00415-023-11764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND The characterisation of presymptomatic disease-burden patterns in asymptomatic mutation carriers has a dual academic and clinical relevance. The understanding of disease propagation mechanisms is of considerable conceptual interests, and defining the optimal time of pharmacological intervention is essential for improved clinical trial outcomes. METHODS In a prospective, multimodal neuroimaging study, 22 asymptomatic C9orf72 GGGGCC hexanucleotide repeat carriers, 13 asymptomatic subjects with SOD1, and 54 "gene-negative" ALS kindreds were enrolled. Cortical and subcortical grey matter alterations were systematically appraised using volumetric, morphometric, vertex, and cortical thickness analyses. Using a Bayesian approach, the thalamus and amygdala were further parcellated into specific nuclei and the hippocampus was segmented into anatomically defined subfields. RESULTS Asymptomatic GGGGCC hexanucleotide repeat carriers in C9orf72 exhibited early subcortical changes with the preferential involvement of the pulvinar and mediodorsal regions of the thalamus, as well as the lateral aspect of the hippocampus. Volumetric approaches, morphometric methods, and vertex analyses were anatomically consistent in capturing focal subcortical changes in asymptomatic C9orf72 hexanucleotide repeat expansion carriers. SOD1 mutation carriers did not exhibit significant subcortical grey matter alterations. In our study, none of the two asymptomatic cohorts exhibited cortical grey matter alterations on either cortical thickness or morphometric analyses. DISCUSSION The presymptomatic radiological signature of C9orf72 is associated with selective thalamic and focal hippocampal degeneration which may be readily detectable before cortical grey matter changes ensue. Our findings confirm selective subcortical grey matter involvement early in the course of C9orf72-associated neurodegeneration.
Collapse
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin, D02 RS90, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| | - Dorothée Lulé
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Dublin, D02 RS90, Ireland
| | - Johannes Dorst
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- German Centre of Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
- German Centre of Neurodegenerative Diseases (DZNE), Ulm, Germany
| |
Collapse
|
4
|
Fernandes F, Barbalho I, Bispo Júnior A, Alves L, Nagem D, Lins H, Arrais Júnior E, Coutinho KD, Morais AHF, Santos JPQ, Machado GM, Henriques J, Teixeira C, Dourado Júnior MET, Lindquist ARR, Valentim RAM. Digital Alternative Communication for Individuals with Amyotrophic Lateral Sclerosis: What We Have. J Clin Med 2023; 12:5235. [PMID: 37629277 PMCID: PMC10455505 DOI: 10.3390/jcm12165235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic Lateral Sclerosis is a disease that compromises the motor system and the functional abilities of the person in an irreversible way, causing the progressive loss of the ability to communicate. Tools based on Augmentative and Alternative Communication are essential for promoting autonomy and improving communication, life quality, and survival. This Systematic Literature Review aimed to provide evidence on eye-image-based Human-Computer Interaction approaches for the Augmentative and Alternative Communication of people with Amyotrophic Lateral Sclerosis. The Systematic Literature Review was conducted and guided following a protocol consisting of search questions, inclusion and exclusion criteria, and quality assessment, to select primary studies published between 2010 and 2021 in six repositories: Science Direct, Web of Science, Springer, IEEE Xplore, ACM Digital Library, and PubMed. After the screening, 25 primary studies were evaluated. These studies showcased four low-cost, non-invasive Human-Computer Interaction strategies employed for Augmentative and Alternative Communication in people with Amyotrophic Lateral Sclerosis. The strategies included Eye-Gaze, which featured in 36% of the studies; Eye-Blink and Eye-Tracking, each accounting for 28% of the approaches; and the Hybrid strategy, employed in 8% of the studies. For these approaches, several computational techniques were identified. For a better understanding, a workflow containing the development phases and the respective methods used by each strategy was generated. The results indicate the possibility and feasibility of developing Human-Computer Interaction resources based on eye images for Augmentative and Alternative Communication in a control group. The absence of experimental testing in people with Amyotrophic Lateral Sclerosis reiterates the challenges related to the scalability, efficiency, and usability of these technologies for people with the disease. Although challenges still exist, the findings represent important advances in the fields of health sciences and technology, promoting a promising future with possibilities for better life quality.
Collapse
Affiliation(s)
- Felipe Fernandes
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Ingridy Barbalho
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Arnaldo Bispo Júnior
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Luca Alves
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Danilo Nagem
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Hertz Lins
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Ernano Arrais Júnior
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Karilany D. Coutinho
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Antônio H. F. Morais
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Natal 59015-000, Brazil; (A.H.F.M.); (J.P.Q.S.)
| | - João Paulo Q. Santos
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Natal 59015-000, Brazil; (A.H.F.M.); (J.P.Q.S.)
| | | | - Jorge Henriques
- Department of Informatics Engineering, Center for Informatics and Systems of the University of Coimbra, Universidade de Coimbra, 3030-788 Coimbra, Portugal; (J.H.); (C.T.)
| | - César Teixeira
- Department of Informatics Engineering, Center for Informatics and Systems of the University of Coimbra, Universidade de Coimbra, 3030-788 Coimbra, Portugal; (J.H.); (C.T.)
| | - Mário E. T. Dourado Júnior
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
- Department of Integrated Medicine, Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil
| | - Ana R. R. Lindquist
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Ricardo A. M. Valentim
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| |
Collapse
|
5
|
Bede P, Pradat PF. Editorial: The gap between academic advances and therapy development in motor neuron disease. Curr Opin Neurol 2023; 36:335-337. [PMID: 37462047 DOI: 10.1097/wco.0000000000001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, School of Medicine, Trinity College
- Department of Neurology, St James's Hospital, Dublin, Ireland
- Department of Neurology, Pitié-Salpêtrière University Hospital
| | - Pierre-Francois Pradat
- Department of Neurology, Pitié-Salpêtrière University Hospital
- Laboratoire d'Imagerie Biomédicale, Sorbonne University, CNRS, INSERM, Paris, France
| |
Collapse
|
6
|
Tavazzi E, Longato E, Vettoretti M, Aidos H, Trescato I, Roversi C, Martins AS, Castanho EN, Branco R, Soares DF, Guazzo A, Birolo G, Pala D, Bosoni P, Chiò A, Manera U, de Carvalho M, Miranda B, Gromicho M, Alves I, Bellazzi R, Dagliati A, Fariselli P, Madeira SC, Di Camillo B. Artificial intelligence and statistical methods for stratification and prediction of progression in amyotrophic lateral sclerosis: A systematic review. Artif Intell Med 2023; 142:102588. [PMID: 37316101 DOI: 10.1016/j.artmed.2023.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder characterised by the progressive loss of motor neurons in the brain and spinal cord. The fact that ALS's disease course is highly heterogeneous, and its determinants not fully known, combined with ALS's relatively low prevalence, renders the successful application of artificial intelligence (AI) techniques particularly arduous. OBJECTIVE This systematic review aims at identifying areas of agreement and unanswered questions regarding two notable applications of AI in ALS, namely the automatic, data-driven stratification of patients according to their phenotype, and the prediction of ALS progression. Differently from previous works, this review is focused on the methodological landscape of AI in ALS. METHODS We conducted a systematic search of the Scopus and PubMed databases, looking for studies on data-driven stratification methods based on unsupervised techniques resulting in (A) automatic group discovery or (B) a transformation of the feature space allowing patient subgroups to be identified; and for studies on internally or externally validated methods for the prediction of ALS progression. We described the selected studies according to the following characteristics, when applicable: variables used, methodology, splitting criteria and number of groups, prediction outcomes, validation schemes, and metrics. RESULTS Of the starting 1604 unique reports (2837 combined hits between Scopus and PubMed), 239 were selected for thorough screening, leading to the inclusion of 15 studies on patient stratification, 28 on prediction of ALS progression, and 6 on both stratification and prediction. In terms of variables used, most stratification and prediction studies included demographics and features derived from the ALSFRS or ALSFRS-R scores, which were also the main prediction targets. The most represented stratification methods were K-means, and hierarchical and expectation-maximisation clustering; while random forests, logistic regression, the Cox proportional hazard model, and various flavours of deep learning were the most widely used prediction methods. Predictive model validation was, albeit unexpectedly, quite rarely performed in absolute terms (leading to the exclusion of 78 eligible studies), with the overwhelming majority of included studies resorting to internal validation only. CONCLUSION This systematic review highlighted a general agreement in terms of input variable selection for both stratification and prediction of ALS progression, and in terms of prediction targets. A striking lack of validated models emerged, as well as a general difficulty in reproducing many published studies, mainly due to the absence of the corresponding parameter lists. While deep learning seems promising for prediction applications, its superiority with respect to traditional methods has not been established; there is, instead, ample room for its application in the subfield of patient stratification. Finally, an open question remains on the role of new environmental and behavioural variables collected via novel, real-time sensors.
Collapse
Affiliation(s)
- Erica Tavazzi
- Department of Information Engineering, University of Padova, Via Gradenigo 6/b, Padua, 35131, Italy
| | - Enrico Longato
- Department of Information Engineering, University of Padova, Via Gradenigo 6/b, Padua, 35131, Italy
| | - Martina Vettoretti
- Department of Information Engineering, University of Padova, Via Gradenigo 6/b, Padua, 35131, Italy
| | - Helena Aidos
- LASIGE and Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, 1749-016, Portugal
| | - Isotta Trescato
- Department of Information Engineering, University of Padova, Via Gradenigo 6/b, Padua, 35131, Italy
| | - Chiara Roversi
- Department of Information Engineering, University of Padova, Via Gradenigo 6/b, Padua, 35131, Italy
| | - Andreia S Martins
- LASIGE and Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, 1749-016, Portugal
| | - Eduardo N Castanho
- LASIGE and Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, 1749-016, Portugal
| | - Ruben Branco
- LASIGE and Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, 1749-016, Portugal
| | - Diogo F Soares
- LASIGE and Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, 1749-016, Portugal
| | - Alessandro Guazzo
- Department of Information Engineering, University of Padova, Via Gradenigo 6/b, Padua, 35131, Italy
| | - Giovanni Birolo
- Department of Medical Sciences, University of Torino, Corso Dogliotti 14, Turin, 10126, Italy
| | - Daniele Pala
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, Pavia, 27100, Italy
| | - Pietro Bosoni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, Pavia, 27100, Italy
| | - Adriano Chiò
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Umberto Manera
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Mamede de Carvalho
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, 1649-028, Portugal
| | - Bruno Miranda
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, 1649-028, Portugal
| | - Marta Gromicho
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, 1649-028, Portugal
| | - Inês Alves
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, 1649-028, Portugal
| | - Riccardo Bellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, Pavia, 27100, Italy
| | - Arianna Dagliati
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, Pavia, 27100, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Torino, Corso Dogliotti 14, Turin, 10126, Italy
| | - Sara C Madeira
- LASIGE and Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, 1749-016, Portugal
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Via Gradenigo 6/b, Padua, 35131, Italy; Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Viale dell'Università, 16, Legnaro (PD), 35020, Italy.
| |
Collapse
|
7
|
Tahedl M, Tan EL, Chipika RH, Hengeveld JC, Vajda A, Doherty MA, McLaughlin RL, Siah WF, Hardiman O, Bede P. Brainstem-cortex disconnection in amyotrophic lateral sclerosis: bulbar impairment, genotype associations, asymptomatic changes and biomarker opportunities. J Neurol 2023:10.1007/s00415-023-11682-6. [PMID: 37022479 DOI: 10.1007/s00415-023-11682-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Bulbar dysfunction is a cardinal feature of ALS with important quality of life and management implications. The objective of this study is the longitudinal evaluation of a large panel imaging metrics pertaining to bulbar dysfunction, encompassing cortical measures, structural and functional cortico-medullary connectivity indices and brainstem metrics. METHODS A standardised, multimodal imaging protocol was implemented with clinical and genetic profiling to systematically appraise the biomarker potential of specific metrics. A total of 198 patients with ALS and 108 healthy controls were included. RESULTS Longitudinal analyses revealed progressive structural and functional disconnection between the motor cortex and the brainstem over time. Cortical thickness reduction was an early feature on cross-sectional analyses with limited further progression on longitudinal follow-up. Receiver operating characteristic analyses of the panel of MR metrics confirmed the discriminatory potential of bulbar imaging measures between patients and controls and area-under-the-curve values increased significantly on longitudinal follow-up. C9orf72 carriers exhibited lower brainstem volumes, lower cortico-medullary structural connectivity and faster cortical thinning. Sporadic patients without bulbar symptoms, already exhibit significant brainstem and cortico-medullary connectivity alterations. DISCUSSION Our results indicate that ALS is associated with multi-level integrity change from cortex to brainstem. The demonstration of significant corticobulbar alterations in patients without bulbar symptoms confirms considerable presymptomatic disease burden in sporadic ALS. The systematic assessment of radiological measures in a single-centre academic study helps to appraise the diagnostic and monitoring utility of specific measures for future clinical and clinical trial applications.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | | | - Alice Vajda
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - We Fong Siah
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
8
|
Hippocampal Metabolic Alterations in Amyotrophic Lateral Sclerosis: A Magnetic Resonance Spectroscopy Study. Life (Basel) 2023; 13:life13020571. [PMID: 36836928 PMCID: PMC9965919 DOI: 10.3390/life13020571] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Magnetic resonance spectroscopy (MRS) in amyotrophic lateral sclerosis (ALS) has been overwhelmingly applied to motor regions to date and our understanding of frontotemporal metabolic signatures is relatively limited. The association between metabolic alterations and cognitive performance in also poorly characterised. MATERIAL AND METHODS In a multimodal, prospective pilot study, the structural, metabolic, and diffusivity profile of the hippocampus was systematically evaluated in patients with ALS. Patients underwent careful clinical and neurocognitive assessments. All patients were non-demented and exhibited normal memory performance. 1H-MRS spectra of the right and left hippocampi were acquired at 3.0T to determine the concentration of a panel of metabolites. The imaging protocol also included high-resolution T1-weighted structural imaging for subsequent hippocampal grey matter (GM) analyses and diffusion tensor imaging (DTI) for the tractographic evaluation of the integrity of the hippocampal perforant pathway zone (PPZ). RESULTS ALS patients exhibited higher hippocampal tNAA, tNAA/tCr and tCho bilaterally, despite the absence of volumetric and PPZ diffusivity differences between the two groups. Furthermore, superior memory performance was associated with higher hippocampal tNAA/tCr bilaterally. Both longer symptom duration and greater functional disability correlated with higher tCho levels. CONCLUSION Hippocampal 1H-MRS may not only contribute to a better academic understanding of extra-motor disease burden in ALS, but given its sensitive correlations with validated clinical metrics, it may serve as practical biomarker for future clinical and clinical trial applications. Neuroimaging protocols in ALS should incorporate MRS in addition to standard structural, functional, and diffusion sequences.
Collapse
|
9
|
Tavazzi E, Gatta R, Vallati M, Cotti Piccinelli S, Filosto M, Padovani A, Castellano M, Di Camillo B. Leveraging process mining for modeling progression trajectories in amyotrophic lateral sclerosis. BMC Med Inform Decis Mak 2023; 22:346. [PMID: 36732801 PMCID: PMC9896660 DOI: 10.1186/s12911-023-02113-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease whose spreading and progression mechanisms are still unclear. The ability to predict ALS prognosis would improve the patients' quality of life and support clinicians in planning treatments. In this paper, we investigate ALS evolution trajectories using Process Mining (PM) techniques enriched to both easily mine processes and automatically reveal how the pathways differentiate according to patients' characteristics. METHODS We consider data collected in two distinct data sources, namely the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) dataset and a real-world clinical register (ALS-BS) including data of patients followed up in two tertiary clinical centers of Brescia (Italy). With a focus on the functional abilities progressively impaired as the disease progresses, we use two Process Discovery methods, namely the Directly-Follows Graph and the CareFlow Miner, to mine the population disease trajectories on the PRO-ACT dataset. We characterize the impairment trajectories in terms of patterns, timing, and probabilities, and investigate the effect of some patients' characteristics at onset on the followed paths. Finally, we perform a comparative study of the impairment trajectories mined in PRO-ACT versus ALS-BS. RESULTS We delineate the progression pathways on PRO-ACT, identifying the predominant disabilities at different stages of the disease: for instance, 85% of patients enter the trials without disabilities, and 48% of them experience the impairment of Walking/Self-care abilities first. We then test how a spinal onset increases the risk of experiencing the loss of Walking/Self-care ability as first impairment (52% vs. 27% of patients develop it as the first impairment in the spinal vs. the bulbar cohorts, respectively), as well as how an older age at onset corresponds to a more rapid progression to death. When compared, the PRO-ACT and the ALS-BS patient populations present some similarities in terms of natural progression of the disease, as well as some differences in terms of observed trajectories plausibly due to the trial scheduling and recruitment criteria. CONCLUSIONS We exploited PM to provide an overview of the evolution scenarios of an ALS trial population and to preliminary compare it to the progression observed in a clinical cohort. Future work will focus on further improving the understanding of the disease progression mechanisms, by including additional real-world subjects as well as by extending the set of events considered in the impairment trajectories.
Collapse
Affiliation(s)
- Erica Tavazzi
- Department of Information Engineering, University of Padova, Via Gradenigo 6/b, 35131 Padua, Italy
| | - Roberto Gatta
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25121 Brescia, Italy
| | - Mauro Vallati
- School of Computing and Engineering, University of Huddersfield, Huddersfield, HD1 3DH UK
| | - Stefano Cotti Piccinelli
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25121 Brescia, Italy
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Via Paolo Richiedei 16, 25064 Gussago, Italy
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25121 Brescia, Italy
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Via Paolo Richiedei 16, 25064 Gussago, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25121 Brescia, Italy
- Unit of Neurology, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Maurizio Castellano
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25121 Brescia, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Via Gradenigo 6/b, 35131 Padua, Italy
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Viale dell’Università, 16, 35020 Legnaro, Italy
| |
Collapse
|
10
|
Mulkerrin G, França MC, Lope J, Tan EL, Bede P. Neuroimaging in hereditary spastic paraplegias: from qualitative cues to precision biomarkers. Expert Rev Mol Diagn 2022; 22:745-760. [PMID: 36042576 DOI: 10.1080/14737159.2022.2118048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION : Hereditary spastic paraplegias (HSP) include a clinically and genetically heterogeneous group of conditions. Novel imaging modalities have been increasingly applied to HSP cohorts which helps to quantitatively evaluate the integrity of specific anatomical structures and develop monitoring markers for both clinical care and future clinical trials. AREAS COVERED : Advances in HSP imaging are systematically reviewed with a focus on cohort sizes, imaging modalities, study design, clinical correlates, methodological approaches, and key findings. EXPERT OPINION : A wide range of imaging techniques have been recently applied to HSP cohorts. Common shortcomings of existing studies include the evaluation of genetically unconfirmed or admixed cohorts, limited sample sizes, unimodal imaging approaches, lack of postmortem validation, and a limited clinical battery, often exclusively focusing on motor aspects of the condition. A number of innovative methodological approaches have also be identified, such as robust longitudinal study designs, the implementation of multimodal imaging protocols, complementary cognitive assessments, and the comparison of HSP cohorts to MND cohorts. Collaborative multicentre initiatives may overcome sample limitations, and comprehensive clinical profiling with motor, extrapyramidal, cerebellar, and neuropsychological assessments would permit systematic clinico-radiological correlations. Academic achievements in HSP imaging have the potential to be developed into viable clinical applications to expedite the diagnosis and monitor disease progression.
Collapse
Affiliation(s)
| | - Marcondes C França
- Department of Neurology, The State University of Campinas, São Paulo, Brazil
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Peter Bede
- Department of Neurology, St James's Hospital, Dublin, Ireland.,Computational Neuroimaging Group, Trinity College Dublin, Ireland
| |
Collapse
|
11
|
Pancotti C, Birolo G, Rollo C, Sanavia T, Di Camillo B, Manera U, Chiò A, Fariselli P. Deep learning methods to predict amyotrophic lateral sclerosis disease progression. Sci Rep 2022; 12:13738. [PMID: 35962027 PMCID: PMC9374680 DOI: 10.1038/s41598-022-17805-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a highly complex and heterogeneous neurodegenerative disease that affects motor neurons. Since life expectancy is relatively low, it is essential to promptly understand the course of the disease to better target the patient's treatment. Predictive models for disease progression are thus of great interest. One of the most extensive and well-studied open-access data resources for ALS is the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) repository. In 2015, the DREAM-Phil Bowen ALS Prediction Prize4Life Challenge was held on PRO-ACT data, where competitors were asked to develop machine learning algorithms to predict disease progression measured through the slope of the ALSFRS score between 3 and 12 months. However, although it has already been successfully applied in several studies on ALS patients, to the best of our knowledge deep learning approaches still remain unexplored on the ALSFRS slope prediction in PRO-ACT cohort. Here, we investigate how deep learning models perform in predicting ALS progression using the PRO-ACT data. We developed three models based on different architectures that showed comparable or better performance with respect to the state-of-the-art models, thus representing a valid alternative to predict ALS disease progression.
Collapse
Affiliation(s)
- Corrado Pancotti
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy.
| | - Cesare Rollo
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Tiziana Sanavia
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padua, 35131, Padua, Italy
| | - Umberto Manera
- ALS Center, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, 10126, Turin, Italy
| | - Adriano Chiò
- ALS Center, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, 10126, Turin, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| |
Collapse
|
12
|
Bede P, Chang KM, Tan EL. Machine-learning in motor neuron diseases: Prospects and pitfalls. Eur J Neurol 2022; 29:2555-2556. [PMID: 35699315 PMCID: PMC9546434 DOI: 10.1111/ene.15443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Kai Ming Chang
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Department of Electronics and Computer Science, University of Southampton, Southampton, UK
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
McKenna MC, Tahedl M, Lope J, Chipika RH, Li Hi Shing S, Doherty MA, Hengeveld JC, Vajda A, McLaughlin RL, Hardiman O, Hutchinson S, Bede P. Mapping cortical disease-burden at individual-level in frontotemporal dementia: implications for clinical care and pharmacological trials. Brain Imaging Behav 2022; 16:1196-1207. [PMID: 34882275 PMCID: PMC9107414 DOI: 10.1007/s11682-021-00523-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 01/25/2023]
Abstract
Imaging studies of FTD typically present group-level statistics between large cohorts of genetically, molecularly or clinically stratified patients. Group-level statistics are indispensable to appraise unifying radiological traits and describe genotype-associated signatures in academic studies. However, in a clinical setting, the primary objective is the meaningful interpretation of imaging data from individual patients to assist diagnostic classification, inform prognosis, and enable the assessment of progressive changes compared to baseline scans. In an attempt to address the pragmatic demands of clinical imaging, a prospective computational neuroimaging study was undertaken in a cohort of patients across the spectrum of FTD phenotypes. Cortical changes were evaluated in a dual pipeline, using standard cortical thickness analyses and an individualised, z-score based approach to characterise subject-level disease burden. Phenotype-specific patterns of cortical atrophy were readily detected with both methodological approaches. Consistent with their clinical profiles, patients with bvFTD exhibited orbitofrontal, cingulate and dorsolateral prefrontal atrophy. Patients with ALS-FTD displayed precentral gyrus involvement, nfvPPA patients showed widespread cortical degeneration including insular and opercular regions and patients with svPPA exhibited relatively focal anterior temporal lobe atrophy. Cortical atrophy patterns were reliably detected in single individuals, and these maps were consistent with the clinical categorisation. Our preliminary data indicate that standard T1-weighted structural data from single patients may be utilised to generate maps of cortical atrophy. While the computational interpretation of single scans is challenging, it offers unrivalled insights compared to visual inspection. The quantitative evaluation of individual MRI data may aid diagnostic classification, clinical decision making, and assessing longitudinal changes.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Marlene Tahedl
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Institute for Psychology, University of Regensburg, Regensburg, Germany
| | - Jasmin Lope
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
14
|
McKenna MC, Li Hi Shing S, Murad A, Lope J, Hardiman O, Hutchinson S, Bede P. Focal thalamus pathology in frontotemporal dementia: Phenotype-associated thalamic profiles. J Neurol Sci 2022; 436:120221. [DOI: 10.1016/j.jns.2022.120221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/25/2022]
|
15
|
Clusters of anatomical disease-burden patterns in ALS: a data-driven approach confirms radiological subtypes. J Neurol 2022; 269:4404-4413. [PMID: 35333981 PMCID: PMC9294023 DOI: 10.1007/s00415-022-11081-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/28/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is associated with considerable clinical heterogeneity spanning from diverse disability profiles, differences in UMN/LMN involvement, divergent progression rates, to variability in frontotemporal dysfunction. A multitude of classification frameworks and staging systems have been proposed based on clinical and neuropsychological characteristics, but disease subtypes are seldom defined based on anatomical patterns of disease burden without a prior clinical stratification. A prospective research study was conducted with a uniform imaging protocol to ascertain disease subtypes based on preferential cerebral involvement. Fifteen brain regions were systematically evaluated in each participant based on a comprehensive panel of cortical, subcortical and white matter integrity metrics. Using min–max scaled composite regional integrity scores, a two-step cluster analysis was conducted. Two radiological clusters were identified; 35.5% of patients belonging to ‘Cluster 1’ and 64.5% of patients segregating to ‘Cluster 2’. Subjects in Cluster 1 exhibited marked frontotemporal change. Predictor ranking revealed the following hierarchy of anatomical regions in decreasing importance: superior lateral temporal, inferior frontal, superior frontal, parietal, limbic, mesial inferior temporal, peri-Sylvian, subcortical, long association fibres, commissural, occipital, ‘sensory’, ‘motor’, cerebellum, and brainstem. While the majority of imaging studies first stratify patients based on clinical criteria or genetic profiles to describe phenotype- and genotype-associated imaging signatures, a data-driven approach may identify distinct disease subtypes without a priori patient categorisation. Our study illustrates that large radiology datasets may be potentially utilised to uncover disease subtypes associated with unique genetic, clinical or prognostic profiles.
Collapse
|
16
|
Tavazzi E, Daberdaku S, Zandonà A, Vasta R, Nefussy B, Lunetta C, Mora G, Mandrioli J, Grisan E, Tarlarini C, Calvo A, Moglia C, Drory V, Gotkine M, Chiò A, Di Camillo B. Predicting functional impairment trajectories in amyotrophic lateral sclerosis: a probabilistic, multifactorial model of disease progression. J Neurol 2022; 269:3858-3878. [PMID: 35266043 PMCID: PMC9217910 DOI: 10.1007/s00415-022-11022-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 12/02/2022]
Abstract
Objective To employ Artificial Intelligence to model, predict and simulate the amyotrophic lateral sclerosis (ALS) progression over time in terms of variable interactions, functional impairments, and survival. Methods We employed demographic and clinical variables, including functional scores and the utilisation of support interventions, of 3940 ALS patients from four Italian and two Israeli registers to develop a new approach based on Dynamic Bayesian Networks (DBNs) that models the ALS evolution over time, in two distinct scenarios of variable availability. The method allows to simulate patients’ disease trajectories and predict the probability of functional impairment and survival at different time points. Results DBNs explicitly represent the relationships between the variables and the pathways along which they influence the disease progression. Several notable inter-dependencies were identified and validated by comparison with literature. Moreover, the implemented tool allows the assessment of the effect of different markers on the disease course, reproducing the probabilistically expected clinical progressions. The tool shows high concordance in terms of predicted and real prognosis, assessed as time to functional impairments and survival (integral of the AU-ROC in the first 36 months between 0.80–0.93 and 0.84–0.89 for the two scenarios, respectively). Conclusions Provided only with measurements commonly collected during the first visit, our models can predict time to the loss of independence in walking, breathing, swallowing, communicating, and survival and it can be used to generate in silico patient cohorts with specific characteristics. Our tool provides a comprehensive framework to support physicians in treatment planning and clinical decision-making. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-11022-0.
Collapse
Affiliation(s)
- Erica Tavazzi
- Department of Information Engineering, University of Padova, Padua, Italy
| | | | - Alessandro Zandonà
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Rosario Vasta
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | | | | | - Gabriele Mora
- Istituti Clinici Scientifici Maugeri IRCCS, Milan, Italy
| | | | - Enrico Grisan
- Department of Information Engineering, University of Padova, Padua, Italy
- School of Engineering, London South Bank University, London, UK
| | | | - Andrea Calvo
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | - Cristina Moglia
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | - Vivian Drory
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Marc Gotkine
- Hadassah University Hospital Medical Center, Jerusalem, Israel
| | - Adriano Chiò
- Department of Neuroscience, University of Torino, "Rita Levi Montalcini", Turin, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padua, Italy.
- Department of Comparative Biomedicine and Food Science, University of Padova, Via Gradenigo 6/B, 35131, Padua, Italy.
| |
Collapse
|
17
|
McKenna MC, Murad A, Huynh W, Lope J, Bede P. The changing landscape of neuroimaging in frontotemporal lobar degeneration: from group-level observations to single-subject data interpretation. Expert Rev Neurother 2022; 22:179-207. [PMID: 35227146 DOI: 10.1080/14737175.2022.2048648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION While the imaging signatures of frontotemporal lobar degeneration (FTLD) phenotypes and genotypes are well-characterised based on group-level descriptive analyses, the meaningful interpretation of single MRI scans remains challenging. Single-subject MRI classification frameworks rely on complex computational models and large training datasets to categorise individual patients into diagnostic subgroups based on distinguishing imaging features. Reliable individual subject data interpretation is hugely important in the clinical setting to expedite the diagnosis and classify individuals into relevant prognostic categories. AREAS COVERED This article reviews (1) the neuroimaging studies that propose single-subject MRI classification strategies in symptomatic and pre-symptomatic FTLD, (2) potential practical implications and (3) the limitations of current single-subject data interpretation models. EXPERT OPINION Classification studies in FTLD have demonstrated the feasibility of categorising individual subjects into diagnostic groups based on multiparametric imaging data. Preliminary data indicate that pre-symptomatic FTLD mutation carriers may also be reliably distinguished from controls. Despite momentous advances in the field, significant further improvements are needed before these models can be developed into viable clinical applications.
Collapse
Affiliation(s)
| | - Aizuri Murad
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - William Huynh
- Brain and Mind Centre, University of Sydney, Australia
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, France
| |
Collapse
|
18
|
McKenna MC, Tahedl M, Murad A, Lope J, Hardiman O, Hutchinson S, Bede P. White matter microstructure alterations in frontotemporal dementia: Phenotype-associated signatures and single-subject interpretation. Brain Behav 2022; 12:e2500. [PMID: 35072974 PMCID: PMC8865163 DOI: 10.1002/brb3.2500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 01/01/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Frontotemporal dementias (FTD) include a genetically heterogeneous group of conditions with distinctive molecular, radiological and clinical features. The majority of radiology studies in FTD compare FTD subgroups to healthy controls to describe phenotype- or genotype-associated imaging signatures. While the characterization of group-specific imaging traits is academically important, the priority of clinical imaging is the meaningful interpretation of individual datasets. METHODS To demonstrate the feasibility of single-subject magnetic resonance imaging (MRI) interpretation, we have evaluated the white matter profile of 60 patients across the clinical spectrum of FTD. A z-score-based approach was implemented, where the diffusivity metrics of individual patients were appraised with reference to demographically matched healthy controls. Fifty white matter tracts were systematically evaluated in each subject with reference to normative data. RESULTS The z-score-based approach successfully detected white matter pathology in single subjects, and group-level inferences were analogous to the outputs of standard track-based spatial statistics. CONCLUSIONS Our findings suggest that it is possible to meaningfully evaluate the diffusion profile of single FTD patients if large normative datasets are available. In contrast to the visual review of FLAIR and T2-weighted images, computational imaging offers objective, quantitative insights into white matter integrity changes even at single-subject level.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Marlene Tahedl
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Aizuri Murad
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| |
Collapse
|
19
|
Bede P, Murad A, Lope J, Li Hi Shing S, Finegan E, Chipika RH, Hardiman O, Chang KM. Phenotypic categorisation of individual subjects with motor neuron disease based on radiological disease burden patterns: A machine-learning approach. J Neurol Sci 2022; 432:120079. [PMID: 34875472 DOI: 10.1016/j.jns.2021.120079] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Motor neuron disease is an umbrella term encompassing a multitude of clinically heterogeneous phenotypes. The early and accurate categorisation of patients is hugely important, as MND phenotypes are associated with markedly different prognoses, progression rates, care needs and benefit from divergent management strategies. The categorisation of patients shortly after symptom onset is challenging, and often lengthy clinical monitoring is needed to assign patients to the appropriate phenotypic subgroup. In this study, a multi-class machine-learning strategy was implemented to classify 300 patients based on their radiological profile into diagnostic labels along the UMN-LMN spectrum. A comprehensive panel of cortical thickness measures, subcortical grey matter variables, and white matter integrity metrics were evaluated in a multilayer perceptron (MLP) model. Additional exploratory analyses were also carried out using discriminant function analyses (DFA). Excellent classification accuracy was achieved for amyotrophic lateral sclerosis in the testing cohort (93.7%) using the MLP model, but poor diagnostic accuracy was detected for primary lateral sclerosis (43.8%) and poliomyelitis survivors (60%). Feature importance analyses highlighted the relevance of white matter diffusivity metrics and the evaluation of cerebellar indices, cingulate measures and thalamic radiation variables to discriminate MND phenotypes. Our data suggest that radiological data from single patients may be meaningfully interpreted if large training data sets are available and the provision of diagnostic probability outcomes may be clinically useful in patients with short symptom duration. The computational interpretation of multimodal radiology datasets herald viable diagnostic, prognostic and clinical trial applications.
Collapse
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland; Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.
| | - Aizuri Murad
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Kai Ming Chang
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Electronics and Computer Science, University of Southampton, UK
| |
Collapse
|
20
|
Finegan E, Siah WF, Li Hi Shing S, Chipika RH, Hardiman O, Bede P. Cerebellar degeneration in primary lateral sclerosis: an under-recognized facet of PLS. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:542-553. [PMID: 34991421 DOI: 10.1080/21678421.2021.2023188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
While primary lateral sclerosis (PLS) has traditionally been regarded as a pure upper motor neuron disorder, recent clinical, neuroimaging and postmortem studies have confirmed significant extra-motor involvement. Sporadic reports have indicated that in addition to the motor cortex and corticospinal tracts, the cerebellum may also be affected in PLS. Cerebellar manifestations are difficult to ascertain in PLS as the clinical picture is dominated by widespread upper motor neuron signs. The likely contribution of cerebellar dysfunction to gait disturbance, falls, pseudobulbar affect and dysarthria may be overlooked in the context of progressive spasticity. The objective of this study is the comprehensive characterization of cerebellar gray and white matter degeneration in PLS using multiparametric quantitative neuroimaging methods to systematically evaluate each cerebellar lobule and peduncle. Forty-two patients with PLS and 117 demographically-matched healthy controls were enrolled in a prospective MRI study. Complementary volumetric and voxelwise analyses revealed focal cerebellar alterations instead of global cerebellar atrophy. Bilateral gray matter volume reductions were observed in lobules III, IV and VIIb. Significant diffusivity alterations within the superior cerebellar peduncle indicate disruption of the main cerebellar outflow tracts. These findings suggest that the considerable intra-cerebellar disease-burden is coupled with concomitant cerebro-cerebellar connectivity disruptions. While cerebellar dysfunction is challenging to demonstrate clinically, cerebellar pathology is likely to be a significant contributor to disability in PLS.
Collapse
Affiliation(s)
- Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Pathological neural networks and artificial neural networks in ALS: diagnostic classification based on pathognomonic neuroimaging features. J Neurol 2021; 269:2440-2452. [PMID: 34585269 PMCID: PMC9021106 DOI: 10.1007/s00415-021-10801-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022]
Abstract
The description of group-level, genotype- and phenotype-associated imaging traits is academically important, but the practical demands of clinical neurology centre on the accurate classification of individual patients into clinically relevant diagnostic, prognostic and phenotypic categories. Similarly, pharmaceutical trials require the precision stratification of participants based on quantitative measures. A single-centre study was conducted with a uniform imaging protocol to test the accuracy of an artificial neural network classification scheme on a cohort of 378 participants composed of patients with ALS, healthy subjects and disease controls. A comprehensive panel of cerebral volumetric measures, cortical indices and white matter integrity values were systematically retrieved from each participant and fed into a multilayer perceptron model. Data were partitioned into training and testing and receiver-operating characteristic curves were generated for the three study-groups. Area under the curve values were 0.930 for patients with ALS, 0.958 for disease controls, and 0.931 for healthy controls relying on all input imaging variables. The ranking of variables by classification importance revealed that white matter metrics were far more relevant than grey matter indices to classify single subjects. The model was further tested in a subset of patients scanned within 6 weeks of their diagnosis and an AUC of 0.915 was achieved. Our study indicates that individual subjects may be accurately categorised into diagnostic groups in an observer-independent classification framework based on multiparametric, spatially registered radiology data. The development and validation of viable computational models to interpret single imaging datasets are urgently required for a variety of clinical and clinical trial applications.
Collapse
|
22
|
Xu L, He B, Zhang Y, Chen L, Fan D, Zhan S, Wang S. Prognostic models for amyotrophic lateral sclerosis: a systematic review. J Neurol 2021; 268:3361-3370. [PMID: 33694050 DOI: 10.1007/s00415-021-10508-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Increasing prognostic models for amyotrophic lateral sclerosis (ALS) have been developed. However, no comprehensive evaluation of these models has been done. The purpose of this study was to map the prognostic models for ALS to assess their potential contribution and suggest future improvements on modeling strategy. METHODS Databases including Medline, Embase, Web of Science, and Cochrane library were searched from inception to 20 February 2021. All studies developing and/or validating prognostic models for ALS were selected. Information regarding modelling method and methodological quality was extracted. RESULTS A total of 28 studies describing the development of 34 models and the external validation of 19 models were included. The outcomes concerned were ALS progression (n = 12; 35%), change in weight (n = 1; 3%), respiratory insufficiency (n = 2; 6%), and survival (n = 19; 56%). Among the models predicting ALS progression or survival, the most frequently used predictors were age, ALS Functional Rating Scale/ALS Functional Rating Scale-Revised, site of onset, and disease duration. The modelling method adopted most was machine learning (n = 16; 47%). Most of the models (n = 25; 74%) were not presented. Discrimination and calibration were assessed in 12 (35%) and 2 (6%) models, respectively. Only one model by Westeneng et al. (Lancet Neurol 17:423-433, 2018) was assessed with overall low risk of bias and it performed well in both discrimination and calibration, suggesting a relatively reliable model for practice. CONCLUSIONS This study systematically reviewed the prognostic models for ALS. Their usefulness is questionable due to several methodological pitfalls and the lack of external validation done by fully independent researchers. Future research should pay more attention to the addition of novel promising predictors, external validation, and head-to-head comparisons of existing models.
Collapse
Affiliation(s)
- Lu Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Bingjie He
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yunjing Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Lu Chen
- Department of Neurology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China. .,Research Center of Clinical Epidemiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China. .,Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Shengfeng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
23
|
Li Hi Shing S, McKenna MC, Siah WF, Chipika RH, Hardiman O, Bede P. The imaging signature of C9orf72 hexanucleotide repeat expansions: implications for clinical trials and therapy development. Brain Imaging Behav 2021; 15:2693-2719. [PMID: 33398779 DOI: 10.1007/s11682-020-00429-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 01/14/2023]
Abstract
While C9orf72-specific imaging signatures have been proposed by both ALS and FTD research groups and considerable presymptomatic alterations have also been confirmed in young mutation carriers, considerable inconsistencies exist in the literature. Accordingly, a systematic review of C9orf72-imaging studies has been performed to identify consensus findings, stereotyped shortcomings, and unique contributions to outline future directions. A formal literature review was conducted according to the STROBE guidelines. All identified papers were individually reviewed for sample size, choice of controls, study design, imaging modalities, statistical models, clinical profiling, and identified genotype-associated pathological patterns. A total of 74 imaging papers were systematically reviewed. ALS patients with GGGGCC repeat expansions exhibit relatively limited motor cortex involvement and widespread extra-motor pathology. C9orf72 positive FTD patients often show preferential posterior involvement. Reports of thalamic involvement are relatively consistent across the various phenotypes. Asymptomatic hexanucleotide repeat carriers often exhibit structural and functional changes decades prior to symptom onset. Common shortcomings included sample size limitations, lack of disease-controls, limited clinical profiling, lack of genetic testing in healthy controls, and absence of post mortem validation. There is a striking paucity of longitudinal studies and existing presymptomatic studies have not evaluated the predictive value of radiological changes with regard to age of onset and phenoconversion. With the advent of antisense oligonucleotide therapies, the meticulous characterisation of C9orf72-associated changes has gained practical relevance. Neuroimaging offers non-invasive biomarkers for future clinical trials, presymptomatic ascertainment, diagnostic and prognostic applications.
Collapse
Affiliation(s)
- Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|