1
|
Gui M, Lv L, Qin L, Wang C. Vestibular dysfunction in Parkinson's disease: a neglected topic. Front Neurol 2024; 15:1398764. [PMID: 38846039 PMCID: PMC11153727 DOI: 10.3389/fneur.2024.1398764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Dizziness and postural instability are frequently observed symptoms in patient with Parkinson's disease (PD), potentially linked to vestibular dysfunction. Despite their significant impact on quality of life, these symptoms are often overlooked and undertreated in clinical practice. This review aims to summarize symptoms associated with vestibular dysfunction in patients with PD and discusses vestibular-targeted therapies for managing non-specific dizziness and related symptoms. We conducted searches in PubMed and Web of Science using keywords related to vestibular dysfunction, Parkinson's disease, dizziness, and postural instability, alongside the reference lists of relevant articles. The available evidence suggests the prevalence of vestibular dysfunction-related symptoms in patients with PD and supports the idea that vestibular-targeted therapies may be effective in improving PD symptoms.
Collapse
Affiliation(s)
- Meilin Gui
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingling Lv
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lixia Qin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- China National Clinical Research Center on Mental Disorders, Changsha, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
2
|
Beylergil SB, Noecker AM, Kilbane C, McIntyre CC, Shaikh AG. Does Vestibular Motion Perception Correlate with Axonal Pathways Stimulated by Subthalamic Deep Brain Stimulation in Parkinson's Disease? CEREBELLUM (LONDON, ENGLAND) 2024; 23:554-569. [PMID: 37308757 DOI: 10.1007/s12311-023-01576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
Perception of our linear motion - heading - is critical for postural control, gait, and locomotion, and it is impaired in Parkinson's disease (PD). Deep brain stimulation (DBS) has variable effects on vestibular heading perception, depending on the location of the electrodes within the subthalamic nucleus (STN). Here, we aimed to find the anatomical correlates of heading perception in PD. Fourteen PD participants with bilateral STN DBS performed a two-alternative forced-choice discrimination task where a motion platform delivered translational forward movements with a heading angle varying between 0 and 30° to the left or to the right with respect to the straight-ahead direction. Using psychometric curves, we derived the heading discrimination threshold angle of each patient from the response data. We created patient-specific DBS models and calculated the percentages of stimulated axonal pathways that are anatomically adjacent to the STN and known to play a major role in vestibular information processing. We performed correlation analyses to investigate the extent of these white matter tracts' involvement in heading perception. Significant positive correlations were identified between improved heading discrimination for rightward heading and the percentage of activated streamlines of the contralateral hyperdirect, pallido-subthalamic, and subthalamo-pallidal pathways. The hyperdirect pathways are thought to provide top-down control over STN connections to the cerebellum. In addition, STN may also antidromically activate collaterals of hyperdirect pathway that projects to the precerebellar pontine nuclei. In select cases, there was strong activation of the cerebello-thalamic projections, but it was not consistently present in all participants. Large volumetric overlap between the volume of tissue activation and the STN in the left hemisphere positively impacted rightward heading perception. Altogether, the results suggest heavy involvement of basal ganglia cerebellar network in STN-induced modulation of vestibular heading perception in PD.
Collapse
Affiliation(s)
- Sinem Balta Beylergil
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Angela M Noecker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Camilla Kilbane
- Department of Neurology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA
- Movement Disorders Center, Neurological Institute, University Hospitals, Cleveland, OH, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Aasef G Shaikh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Department of Neurology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA.
- Movement Disorders Center, Neurological Institute, University Hospitals, Cleveland, OH, USA.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Electrical stimulation of the peripheral and central vestibular system using noninvasive (galvanic vestibular stimulation, GVS) or invasive (intracranial electrical brain stimulation, iEBS) approaches have a long history of use in studying self-motion perception and balance control. The aim of this review is to summarize recent electrophysiological studies of the effects of GVS, and functional mapping of the central vestibular system using iEBS in awake patients. RECENT FINDINGS The use of GVS has become increasingly common in the assessment and treatment of a wide range of clinical disorders including vestibulopathy and Parkinson's disease. The results of recent single unit recording studies have provided new insight into the neural mechanisms underlying GVS-evoked improvements in perceptual and motor responses. Furthermore, the application of iEBS in patients with epilepsy or during awake brain surgery has provided causal evidence of vestibular information processing in mostly the middle cingulate cortex, posterior insula, inferior parietal lobule, amygdala, precuneus, and superior temporal gyrus. SUMMARY Recent studies have established that GVS evokes robust and parallel activation of both canal and otolith afferents that is significantly different from that evoked by natural head motion stimulation. Furthermore, there is evidence that GVS can induce beneficial neural plasticity in the central pathways of patients with vestibular loss. In addition, iEBS studies highlighted an underestimated contribution of areas in the medial part of the cerebral hemispheres to the cortical vestibular network.
Collapse
Affiliation(s)
- Christophe Lopez
- Aix Marseille Univ, CNRS, Laboratory of Cognitive Neuroscience (LNC), FR3C, Marseille, France
| | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University
- Department of Neuroscience, Johns Hopkins University
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore 21205 MD, USA
| |
Collapse
|
4
|
Agharazi H, Hardin EC, Flannery K, Beylergil SB, Noecker A, Kilbane C, Factor SA, McIntyre C, Shaikh AG. Physiological measures and anatomical correlates of subthalamic deep brain stimulation effect on gait in Parkinson's disease. J Neurol Sci 2023; 449:120647. [PMID: 37100017 DOI: 10.1016/j.jns.2023.120647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/25/2023] [Accepted: 04/08/2023] [Indexed: 04/28/2023]
Abstract
We examined whether conflicting visual and non-visual information leads to gait abnormalities and how the subthalamic deep brain stimulation (STN DBS) influences gait dysfunction in Parkinson's disease (PD). We used a motion capture system to measure the kinematics of the lower limbs during treadmill walking in immersive virtual reality. The visual information provided in the virtual reality paradigm was modulated to create a mismatch between the optic-flow velocity of the visual scene and the walking speed on the treadmill. In each mismatched condition, we calculated the step duration, step length, step phase, step height, and asymmetries. The key finding of our study was that mismatch between treadmill walking speed and the optic-flow velocity did not consistently alter gait parameters in PD. We also found that STN DBS improved the PD gait pattern by changing the stride length and step height. The effects on phase and left/right asymmetry were not statistically significant. The DBS parameters and location also determined its effects on gait. Statistical effects on stride length and step height were noted when the DBS volume of activated tissue (VTA) was in the dorsal aspect of the subthalamus. The statistically significant effects of STN DBS was present when VTA significantly overlapped with MR tractogrphically measured motor and pre-motor hyperdirect pathways. In summary, our results provide novel insight into ways for controlling walking behavior in PD using STN DBS.
Collapse
Affiliation(s)
- Hanieh Agharazi
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | - Elizabeth C Hardin
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Katherine Flannery
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | | | - Angela Noecker
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Camilla Kilbane
- Neurological Institute, University Hospitals, Cleveland, OH, United States of America; Department of Neurology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Stewart A Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Program, Department of Neurology, Emory University, Atlanta, GA, United States of America
| | - Cameron McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Aasef G Shaikh
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America; Neurological Institute, University Hospitals, Cleveland, OH, United States of America; Department of Neurology, Case Western Reserve University, Cleveland, OH, United States of America; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
5
|
Tarnutzer AA, Ward BK, Shaikh AG. Novel ways to modulate the vestibular system: Magnetic vestibular stimulation, deep brain stimulation and transcranial magnetic stimulation / transcranial direct current stimulation. J Neurol Sci 2023; 445:120544. [PMID: 36621040 DOI: 10.1016/j.jns.2023.120544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
BACKGROUND Advances in neurotechnologies are revolutionizing our understanding of complex neural circuits and enabling new treatments for disorders of the human brain. In the vestibular system, electromagnetic stimuli can now modulate vestibular reflexes and sensations of self-motion by artificially stimulating the labyrinth, cerebellum, cerebral cortex, and their connections. OBJECTIVE In this narrative review, we describe evolving neuromodulatory techniques including magnetic vestibular stimulation (MVS), deep brain stimulation (DBS), transcranial magnetic stimulation (TMS), and transcranial direct-current stimulation (tDCS) and discuss current and potential future application in the field of neuro-otology. RESULTS MVS triggers both vestibular nystagmic (persistent) and perceptual (lasting ∼1 min) responses that may serve as a model to study central adaptational mechanisms and pathomechanisms of hemispatial neglect. By systematically mapping DBS electrodes, targeted stimulation of central vestibular pathways allowed modulating eye movements, vestibular heading perception, spatial attention and graviception, resulting in reduced anti-saccade error rates and hypometria, improved heading discrimination, shifts in verticality perception and transiently decreased spatial attention. For TMS/tDCS treatment trials have demonstrated amelioration of vestibular symptoms in various neuro-otological conditions, including chronic vestibular insufficiency, Mal-de-Debarquement and cerebellar ataxia. CONCLUSION Neuromodulation has a bright future as a potential treatment of vestibular dysfunction. MVS, DBS and TMS may provide new and sophisticated, customizable, and specific treatment options of vestibular symptoms in humans. While promising treatment responses have been reported for TMS/tDCS, treatment trials for vestibular disorders using MVS or DBS have yet to be defined and performed.
Collapse
Affiliation(s)
- A A Tarnutzer
- Neurology, Cantonal Hospital of Baden, Baden, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| | - B K Ward
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A G Shaikh
- Department of Neurology, University Hospitals and Cleveland VA Medical Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|