1
|
Cheng M, Lu D, Li K, Wang Y, Tong X, Qi X, Yan C, Ji K, Wang J, Wang W, Lv H, Zhang X, Kong W, Zhang J, Ma J, Li K, Wang Y, Feng J, Wei P, Li Q, Shen C, Fu XD, Ma Y, Zhang X. Mitochondrial respiratory complex IV deficiency recapitulates amyotrophic lateral sclerosis. Nat Neurosci 2025; 28:748-756. [PMID: 40069360 DOI: 10.1038/s41593-025-01896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/17/2025] [Indexed: 03/23/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is categorized into ~10% familial and ~90% sporadic cases. While familial ALS is caused by mutations in many genes of diverse functions, the underlying pathogenic mechanisms of ALS, especially in sporadic ALS (sALS), are largely unknown. Notably, about half of the cases with sALS showed defects in mitochondrial respiratory complex IV (CIV). To determine the causal role of this defect in ALS, we used transcription activator-like effector-based mitochondrial genome editing to introduce mutations in CIV subunits in rat neurons. Our results demonstrate that neuronal CIV deficiency is sufficient to cause a number of ALS-like phenotypes, including cytosolic TAR DNA-binding protein 43 redistribution, selective motor neuron loss and paralysis. These results highlight CIV deficiency as a potential cause of sALS and shed light on the specific vulnerability of motor neurons, marking an important advance in understanding and therapeutic development of sALS.
Collapse
Affiliation(s)
- Man Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dan Lu
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kexin Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Wang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiwen Tong
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaolong Qi
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junlin Wang
- Department of Neurology, Xiangya Hospital, Central South University, National Regional Center for Neurological Diseases, Nanchang, China
| | - Wei Wang
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huijiao Lv
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Medical Primate Research Center and Neuroscience Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weining Kong
- Medical Primate Research Center and Neuroscience Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Zhang
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Ma
- Medical Primate Research Center and Neuroscience Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Keru Li
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaheng Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyu Feng
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Panpan Wei
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qiushuang Li
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chengyong Shen
- Department of Neurobiology of the First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Xiang-Dong Fu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yuanwu Ma
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model and National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Medical Primate Research Center and Neuroscience Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaorong Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
- Key Laboratory for Nucleic Acid Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Xu M, Li T, Liu X, Islam B, Xiang Y, Zou X, Wang J. Mechanism and Clinical Application Prospects of Mitochondrial DNA Single Nucleotide Polymorphism in Neurodegenerative Diseases. Neurochem Res 2024; 50:61. [PMID: 39673588 DOI: 10.1007/s11064-024-04311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Mitochondrial dysfunction is well recognized as a critical component of the complicated pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. This review investigates the influence of mitochondrial DNA single nucleotide polymorphisms on mitochondrial function, as well as their role in the onset and progression of these neurodegenerative diseases. Furthermore, the contemporary approaches to mitochondrial regulation in these disorders are discussed. Our objective is to uncover early diagnostic targets and formulate precision medicine strategies for neurodegenerative diseases, thereby offering new paths for preventing and treating these conditions.
Collapse
Affiliation(s)
- Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Binish Islam
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yuyue Xiang
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xiyan Zou
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
3
|
Harvey C, Weinreich M, Lee JA, Shaw AC, Ferraiuolo L, Mortiboys H, Zhang S, Hop PJ, Zwamborn RA, van Eijk K, Julian TH, Moll T, Iacoangeli A, Al Khleifat A, Quinn JP, Pfaff AL, Kõks S, Poulton J, Battle SL, Arking DE, Snyder MP, Veldink JH, Kenna KP, Shaw PJ, Cooper-Knock J. Rare and common genetic determinants of mitochondrial function determine severity but not risk of amyotrophic lateral sclerosis. Heliyon 2024; 10:e24975. [PMID: 38317984 PMCID: PMC10839612 DOI: 10.1016/j.heliyon.2024.e24975] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving selective vulnerability of energy-intensive motor neurons (MNs). It has been unclear whether mitochondrial function is an upstream driver or a downstream modifier of neurotoxicity. We separated upstream genetic determinants of mitochondrial function, including genetic variation within the mitochondrial genome or autosomes; from downstream changeable factors including mitochondrial DNA copy number (mtCN). Across three cohorts including 6,437 ALS patients, we discovered that a set of mitochondrial haplotypes, chosen because they are linked to measurements of mitochondrial function, are a determinant of ALS survival following disease onset, but do not modify ALS risk. One particular haplotype appeared to be neuroprotective and was significantly over-represented in two cohorts of long-surviving ALS patients. Causal inference for mitochondrial function was achievable using mitochondrial haplotypes, but not autosomal SNPs in traditional Mendelian randomization (MR). Furthermore, rare loss-of-function genetic variants within, and reduced MN expression of, ACADM and DNA2 lead to ∼50 % shorter ALS survival; both proteins are implicated in mitochondrial function. Both mtCN and cellular vulnerability are linked to DNA2 function in ALS patient-derived neurons. Finally, MtCN responds dynamically to the onset of ALS independently of mitochondrial haplotype, and is correlated with disease severity. We conclude that, based on the genetic measures we have employed, mitochondrial function is a therapeutic target for amelioration of disease severity but not prevention of ALS.
Collapse
Affiliation(s)
- Calum Harvey
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Marcel Weinreich
- Clinical Neurobiology, German Cancer Research Center and University Hospital Heidelberg, Germany
| | - James A.K. Lee
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Allan C. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sai Zhang
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Paul J. Hop
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ramona A.J. Zwamborn
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kristel van Eijk
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thomas H. Julian
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Alfredo Iacoangeli
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
| | - Ahmad Al Khleifat
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, Liverpool, UK
| | - Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Perth, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Perth, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - Stephanie L. Battle
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael P. Snyder
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Project MinE ALS Sequencing Consortium
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- Clinical Neurobiology, German Cancer Research Center and University Hospital Heidelberg, Germany
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, UK
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, Liverpool, UK
- Perron Institute for Neurological and Translational Science, Perth, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan H. Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kevin P. Kenna
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Gupta L, Nune A, Naveen R, Verma R, Prasad P, Kharbanda R, Rathore U, Rai MK, Singh MK, Anuja AK, Agarwal V. The prevalence and clinical characteristics of anti-HMGCR (anti-3-hydroxy-3-methyl-glutaryl-coenzyme A reductase) antibodies in idiopathic inflammatory myopathy: an analysis from the MyoCite registry. Rheumatol Int 2022; 42:1143-1154. [PMID: 35031847 DOI: 10.1007/s00296-021-05063-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
This study aimed to determine the prevalence and clinical characteristics of anti-HMGCR antibodies in idiopathic inflammatory myositis (IIM) at a tertiary care centre in northern India. Data (adult and children) were retrieved from the MyoCite dataset, identifying patients with polymyositis, dermatomyositis, and antibody-negative IIM whilst fulfilling the ACR/EULAR criteria. SLE, sarcoidosis, and systemic sclerosis were included for comparison as disease controls. The baseline clinical profile, laboratory tests, and muscle biopsies were retrieved and analysed. Descriptive statistics and non-parametric statistics were used for comparison. Among 128 IIM (112 adults, 16 children, M:F 1:2.8) of age 37 (24-47) years and 6 (3-17) months disease duration, 4 (3.6%) young adults tested positive for anti-HMGCR antibodies. All children and disease control tested negative for the antibody. Anti-HMGCR + IIM exhibited higher muscle enzymes [AST (367 vs 104 IU/L, p = 0.045), ALT (502 vs 78 IU/L, p = 0.004), and CPK (12,242 vs 699 IU/L, p = 0.001] except lactate dehydrogenase with less frequent systemic features such as fatigue than antibody-negative IIM. One young girl presented with a Limb-girdle muscular dystrophy (LGMD) with chronic pattern. None of the patients exhibited rashes, statin exposure, or cancer, though one had anti-Ro52 and mild disease. Our observations depict a younger population while affirming previous literature, including NM-like presentation, and chronic LGMD-like pattern of weakness in one case. Although a small number of children were included, ours is one of the few paediatric studies that evaluated HMGCR antibodies thus far. Further investigations in a larger Indian cohort are warranted to substantiate our findings.
Collapse
Affiliation(s)
- Latika Gupta
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
- Department of Rheumatology, New Cross Hospital, Royal Wolverhampton Trust, Wolverhampton, WV10 0QP, UK.
| | - Arvind Nune
- Department of Rheumatology, Southport and Ormskirk Hospital NHS Trust, Southport, UK
| | - R Naveen
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ritu Verma
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Pallavi Prasad
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rajat Kharbanda
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Upendra Rathore
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Mohit Kumar Rai
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Mantabya Kumar Singh
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Anamika Kumari Anuja
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|