1
|
He Y, Qiu Y, Xiong Y, Shen Y, Jiang K, Yi H, Huang P, Zhu Y, Zhu M, Zhou M, Hong D, Tan D. Clinical and genetic characteristics of myotonia congenita in Chinese population. Channels (Austin) 2024; 18:2349823. [PMID: 38720415 PMCID: PMC11086022 DOI: 10.1080/19336950.2024.2349823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/22/2024] [Indexed: 05/12/2024] Open
Abstract
Myotonia congenita (MC) is a rare hereditary muscle disease caused by variants in the CLCN1 gene. Currently, the correlation of phenotype-genotype is still uncertain between dominant-type Thomsen (TMC) and recessive-type Becker (BMC). The clinical data and auxiliary examinations of MC patients in our clinic were retrospectively collected. Electromyography was performed in 11 patients and available family members. Whole exome sequencing was conducted in all patients. The clinical and laboratory data of Chinese MC patients reported from June 2004 to December 2022 were reviewed. A total of 11 MC patients were included in the study, with a mean onset age of 12.64 ± 2.73 years. The main symptom was muscle stiffness of limbs. Warm-up phenomenon and percussion myotonia were found in all patients. Electromyogram revealed significant myotonic charges in all patients and two asymptomatic carriers, while muscle MRI and biopsy showed normal or nonspecific changes. Fourteen genetic variants including 6 novel variants were found in CLCN1. Ninety-eight Chinese patients were re-analyzed and re-summarized in this study. There were no significant differences in the demographic data, clinical characteristics, and laboratory findings between 52 TMC and 46 BMC patients. Among the 145 variants in CLCN1, some variants, including the most common variant c.892 G>A, could cause TMC in some families and BMC in others. This study expanded the clinical and genetic spectrum of Chinese patients with MC. It was difficult to distinguish between TMC and BMC only based on the clinical, laboratory, and genetic characteristics.
Collapse
Affiliation(s)
- Yuting He
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yusen Qiu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ying Xiong
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Shen
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kaiyan Jiang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hancun Yi
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengcheng Huang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Zhu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Min Zhu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Meihong Zhou
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dandan Tan
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Nakamura Y, Sato H, Kakiuchi K, Miyano Y, Hosokawa T, Arawaka S. [A pedigree of myotonia congenita with a novel mutation p.F343C of the CLCN1 gene]. Rinsho Shinkeigaku 2024; 64:344-348. [PMID: 38644209 DOI: 10.5692/clinicalneurol.cn-001929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
A Japanese woman experienced slowness of movement in her early teens and difficulty in opening her hands during pregnancy. On admission to our hospital at 42 years of age, she showed grip myotonia with warm-up phenomenon. However, she had neither muscle weakness, muscle atrophy, cold-induced symptomatic worsening nor episodes of transient weakness of the extremities. Needle electromyography of the first dorsal interosseous and anterior tibial muscles demonstrated myotonic discharges. Whole exome sequencing of the patient revealed a heterozygous single-base substitution in the CLCN1 gene (c.1028T>G, p.F343C). The same substitution was identified in affected members of her family (mother and brother) by Sanger sequencing, but not in healthy family members (father and a different brother). We diagnosed myotonia congenita (Thomsen disease) with a novel CLCN1 mutation in this pedigree. This mutation causes a single amino acid substitution in the I-J extracellular loop region of CLCN1. Amino acid changes in the I-J loop region are rare in an autosomal-dominantly inherited form of myotonia congenita. We think that this pedigree is precious to understand the pathogenesis of myotonia congenita.
Collapse
Affiliation(s)
- Yoshitsugu Nakamura
- Department of Internal Medicine IV, Division of Neurology, Osaka Medical and Pharmaceutical University Faculty of Medicine
| | - Hidenori Sato
- Department of Multiomics, Institute of Well-being, Yamagata University
| | - Kensuke Kakiuchi
- Department of Internal Medicine IV, Division of Neurology, Osaka Medical and Pharmaceutical University Faculty of Medicine
| | - Yuki Miyano
- Department of Multiomics, Institute of Well-being, Yamagata University
| | - Takafumi Hosokawa
- Department of Internal Medicine IV, Division of Neurology, Osaka Medical and Pharmaceutical University Faculty of Medicine
| | - Shigeki Arawaka
- Department of Internal Medicine IV, Division of Neurology, Osaka Medical and Pharmaceutical University Faculty of Medicine
| |
Collapse
|