1
|
Alshareef GH, Mohammed AE, Abumaree M, Basmaeil YS. Phenotypic and Functional Responses of Human Decidua Basalis Mesenchymal Stem/Stromal Cells to Lipopolysaccharide of Gram-Negative Bacteria. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2021; 14:51-69. [PMID: 34754198 PMCID: PMC8572118 DOI: 10.2147/sccaa.s332952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
Introduction Human decidua basalis mesenchymal stem cells (DBMSCs) are potential therapeutics for the medication to cure inflammatory diseases, like atherosclerosis. The current study investigates the capacity of DBMSCs to stay alive and function in a harmful inflammatory environment induced by high levels of lipopolysaccharide (LPS). Methods DBMSCs were exposed to different levels of LPS, and their viability and functional responses (proliferation, adhesion, and migration) were examined. Furthermore, DBMSCs’ expression of 84 genes associated with their functional activities in the presence of LPS was investigated. Results Results indicated that LPS had no significant effect on DBMSCs’ adhesion, migration, and proliferation (24 h and 72 h) (p > 0.05). However, DBMSCs’ proliferation was significantly reduced at 10 µg/mL of LPS at 48 h (p < 0.05). In addition, inflammatory cytokines and receptors related to adhesion, proliferation, migration, and differentiation were significantly overexpressed when DBMSCs were treated with 10 µg/mL of LPS (p < 0.05). Conclusion These results indicated that DBMSCs maintained their functional activities (proliferation, adhesion, and migration) in the presence of LPS as there was no variation between the treated DBMSCs and the control group. This study will lay the foundation for future preclinical and clinical studies to confirm the appropriateness of DBMSCs as a potential medication to cure inflammatory diseases, like atherosclerosis.
Collapse
Affiliation(s)
- Ghofran Hasan Alshareef
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Afrah E Mohammed
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Mohammed Abumaree
- Stem Cell & Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Yasser S Basmaeil
- Stem Cell & Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
FGF23 ameliorates ischemia-reperfusion induced acute kidney injury via modulation of endothelial progenitor cells: targeting SDF-1/CXCR4 signaling. Cell Death Dis 2021; 12:409. [PMID: 33866326 PMCID: PMC8053200 DOI: 10.1038/s41419-021-03693-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/09/2023]
Abstract
The levels of fibroblast growth factor 23 (FGF23) rapidly increases after acute kidney injury (AKI). However, the role of FGF23 in AKI is still unclear. Here, we observe that pretreatment with FGF23 protein into ischemia-reperfusion induced AKI mice ameliorates kidney injury by promoting renal tubular regeneration, proliferation, vascular repair, and attenuating tubular damage. In vitro assays demonstrate that SDF-1 induces upregulation of its receptor CXCR4 in endothelial progenitor cells (EPCs) via a non-canonical NF-κB signaling pathway. FGF23 crosstalks with the SDF-1/CXCR4 signaling and abrogates SDF-1-induced EPC senescence and migration, but not angiogenesis, in a Klotho-independent manner. The downregulated pro-angiogenic IL-6, IL-8, and VEGF-A expressions after SDF-1 infusion are rescued after adding FGF23. Diminished therapeutic ability of SDF-1-treated EPCs is counteracted by FGF23 in a SCID mouse in vivo AKI model. Together, these data highlight a revolutionary and important role that FGF23 plays in the nephroprotection of IR-AKI.
Collapse
|
3
|
Zhao L, Hu C, Han F, Cai F, Wang J, Chen J. Preconditioning is an effective strategy for improving the efficiency of mesenchymal stem cells in kidney transplantation. Stem Cell Res Ther 2020; 11:197. [PMID: 32448356 PMCID: PMC7245776 DOI: 10.1186/s13287-020-01721-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
The inevitable side effects caused by lifelong immunosuppressive agents in kidney transplantation patients spurred the exploration of novel immunosuppressive strategies with definite curative effects and minimal adverse effects. Mesenchymal stem cells (MSCs) have become a promising candidate due to their role in modulating the immune system. Encouraging results obtained from experimental models have promoted the translation of this strategy into clinical settings. However, the demonstration of only marginal or transient benefits by several recent clinical controlled studies has made physicians hesitant to adopt the routine utilization of this procedure in clinical settings. Impaired MSC function after infusion in vivo was thought to be the main reason for their limited effects. For this reason, some preconditioning methods were developed. In this review, we aim to outline the current understanding of the preconditioning methods being explored as a strategy to improve the therapeutic effects of MSCs in kidney transplantation and promote its clinical translation.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fanghao Cai
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Junni Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China. .,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Zhao L, Hu C, Zhang P, Jiang H, Chen J. Novel preconditioning strategies for enhancing the migratory ability of mesenchymal stem cells in acute kidney injury. Stem Cell Res Ther 2018; 9:225. [PMID: 30139368 PMCID: PMC6108125 DOI: 10.1186/s13287-018-0973-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) remains a worldwide public health issue due to its increasing incidence, significant mortality, and lack of specific target-orientated therapy. Developments in mesenchymal stem cell (MSC) research make MSCs a promising candidate for AKI management but relevant clinical trials show confusing results (NCT00733876, NCT01602328). One primary cause of the limited therapeutic effect may result from poor engraftment of transplanted cells. To solve this problem, investigators have developed a series of preconditioning strategies to improve MSC engraftment in animal AKI models. In this review, we summarize these previous studies, providing an integrated and updated view of different preconditioning strategies aimed at promoting the therapeutic effect of MSCs in AKI patients.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Zhang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Hua Jiang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China. .,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Pesaresi M, Bonilla-Pons SA, Simonte G, Sanges D, Di Vicino U, Cosma MP. Endogenous Mobilization of Bone-Marrow Cells Into the Murine Retina Induces Fusion-Mediated Reprogramming of Müller Glia Cells. EBioMedicine 2018. [PMID: 29525572 PMCID: PMC5952225 DOI: 10.1016/j.ebiom.2018.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Müller glial cells (MGCs) represent the most plastic cell type found in the retina. Following injury, zebrafish and avian MGCs can efficiently re-enter the cell cycle, proliferate and generate new functional neurons. The regenerative potential of mammalian MGCs, however, is very limited. Here, we showed that N-methyl-d-aspartate (NMDA) damage stimulates murine MGCs to re-enter the cell cycle and de-differentiate back to a progenitor-like stage. These events are dependent on the recruitment of endogenous bone marrow cells (BMCs), which, in turn, is regulated by the stromal cell-derived factor 1 (SDF1)-C-X-C motif chemokine receptor type 4 (CXCR4) pathway. BMCs mobilized into the damaged retina can fuse with resident MGCs, and the resulting hybrids undergo reprogramming followed by re-differentiation into cells expressing markers of ganglion and amacrine neurons. Our findings constitute an important proof-of-principle that mammalian MGCs retain their regenerative potential, and that such potential can be activated via cell fusion with recruited BMCs. In this perspective, our study could contribute to the development of therapeutic strategies based on the enhancement of mammalian endogenous repair capabilities. Endogenous bone marrow cells migrate into NMDA-damaged murine retinae and fuse with retinal Müller glial cells (MGCs). MGCs can be reprogrammed to retinal progenitors to then differentiate into ganglion and amacrine neurons. Modulation of the SDF1/CXCR4 pathway regulates BMC migration, BMC-MGC fusion, and MGC reprogramming.
Retinal degeneration is present in a large and heterogeneous group of debilitating diseases, often not curable. Cell therapy represents an interesting approach to regenerate injured retinal tissue. However, it comes with some hurdles in terms of engraftment and differentiation of the transplanted cells. Here, we reported that murine Müller glia cells can be converted into retinal neurons after fusion with endogenous bone marrow cells. The efficiency of this mechanism can be enhanced by perturbation of the SDF1/CXCR4 signaling pathway. Our study provides an important proof-of-principle that the limited endogenous regeneration capability of mammals can be enhanced by modulation of specific signaling pathways.
Collapse
Affiliation(s)
- Martina Pesaresi
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergi A Bonilla-Pons
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.; Universitat de Barcelona (UB), Barcelona, Spain
| | - Giacoma Simonte
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniela Sanges
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Umberto Di Vicino
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.; ICREA, Barcelona, Spain..
| |
Collapse
|
6
|
Nuzzi R, Scalabrin S, Becco A, Panzica G. Gonadal Hormones and Retinal Disorders: A Review. Front Endocrinol (Lausanne) 2018; 9:66. [PMID: 29551993 PMCID: PMC5840201 DOI: 10.3389/fendo.2018.00066] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/14/2018] [Indexed: 12/27/2022] Open
Abstract
AIM Gonadal hormones are essential for reproductive function, but can act on neural and other organ systems, and are probably the cause of the large majority of known sex differences in function and disease. The aim of this review is to provide evidence for this hypothesis in relation to eye disorders and to retinopathies in particular. METHODS Epidemiological studies and research articles were reviewed. RESULTS Analysis of the biological basis for a relationship between eye diseases and hormones showed that estrogen, androgen, and progesterone receptors are present throughout the eye and that these steroids are locally produced in ocular tissues. Sex hormones can have a neuroprotective action on the retina and modulate ocular blood flow. There are differences between the male and the female retina; moreover, sex hormones can influence the development (or not) of certain disorders. For example, exposure to endogenous estrogens, depending on age at menarche and menopause and number of pregnancies, and exposure to exogenous estrogens, as in hormone replacement therapy and use of oral contraceptives, appear to protect against age-related macular degeneration (both drusenoid and neurovascular types), whereas exogenous testosterone therapy is a risk factor for central serous chorioretinopathy. Macular hole is more common among women than men, particularly in postmenopausal women probably owing to the sudden drop in estrogen production in later middle age. Progestin therapy appears to ameliorate the course of retinitis pigmentosa. Diabetic retinopathy, a complication of diabetes, may be more common among men than women. CONCLUSION We observed a correlation between many retinopathies and sex, probably as a result of the protective effect some gonadal hormones may exert against the development of certain disorders. This may have ramifications for the use of hormone therapy in the treatment of eye disease and of retinal disorders in particular.
Collapse
Affiliation(s)
- Raffaele Nuzzi
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, Italy
- *Correspondence: Raffaele Nuzzi,
| | - Simona Scalabrin
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Alice Becco
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Giancarlo Panzica
- Laboratory of Neuroendocrinology, Department of Neuroscience Rita Levi-Montalcini, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| |
Collapse
|
7
|
Kung F, Wang W, Tran TS, Townes-Anderson E. Sema3A Reduces Sprouting of Adult Rod Photoreceptors In Vitro. Invest Ophthalmol Vis Sci 2017; 58:4318–4331. [PMID: 28806446 PMCID: PMC5555408 DOI: 10.1167/iovs.16-21075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose Rod photoreceptor terminals respond to retinal injury with retraction and sprouting. Since the guidance cue Semaphorin3A (Sema3A) is observed in the retina after injury, we asked whether Sema3A contributes to structural plasticity in rod photoreceptors. Methods We used Western blots and alkaline phosphatase (AP)-tagged neuropilin-1 (NPN-1) to detect the expression of Sema3A in an organotypic model of porcine retinal detachment. We then examined Sema3A binding to cultured salamander rod photoreceptors using AP-tagged Sema3A. For functional analysis, we used a microspritzer to apply a gradient of Sema3A-Fc to isolated salamander rod photoreceptors over 24 hours. Results Sema3A protein was biochemically detected in porcine retinal explants in the retina 7, 24, and 72 hours after detachment. In sections, NPN-1 receptor was bound to the inner and outer retina. For isolated rod photoreceptors, Sema3A localized to synaptic terminals and to neuritic processes after 1 week in vitro. In microspritzed rod photoreceptors, process initiation occurred away from high concentrations of Sema3A. Sema3A significantly decreased the number of processes formed by rod photoreceptors although the average length of processes was not affected. The cellular orientation of rod photoreceptors relative to the microspritzer also significantly changed over time; this effect was reduced with the Sema3A inhibitor, xanthofulvin. Conclusion Sema3A is expressed in the retina after detachment, binds to rod photoreceptors, affects cell orientation, and reduces photoreceptor process initiation in vitro. Our results suggest that Sema3A contributes to axonal retraction in retinal injury, whereas rod neuritic sprouting and regenerative synaptogenesis may require a reduction in semaphorin signaling.
Collapse
Affiliation(s)
- Frank Kung
- Joint Program in Biomedical Engineering, Rutgers University, Graduate School of Biomedical Sciences, New Jersey Institute of Technology, Newark, United States
| | - Weiwei Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Newark, New Jersey, United States
| | - Tracy S Tran
- Department of Biological Sciences, Rutgers University, Newark College of Arts and Sciences, Newark, New Jersey, United States
| | - Ellen Townes-Anderson
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Newark, New Jersey, United States
| |
Collapse
|
8
|
Protective Effect of Tang Wang One Decoction on the Retinal Vessels of Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8635127. [PMID: 28367226 PMCID: PMC5358445 DOI: 10.1155/2017/8635127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 11/29/2022]
Abstract
Objective. This study aimed to determine the influence of Tang Wang One Decoction (TWOD) on the retinal vessels of diabetic rats. Methods. The hemorheology of diabetic rats was observed. Morphological studies of retinal vessels were conducted using optical microscopy and electron microscopy. Immunological histochemistry assay was used to measure the expression levels of MMP-9, occludin, and claudin-5. Results. Obvious pathological damage was observed in the retinal vessels of diabetic rats. TWOD positively affected the hemorheology and morphology of retinal vessels. The decoction also decreased the expression of MMP-9 and increased the expression of occludin and claudin-5. Conclusions. The results suggest that the retinal protective effects of TWOD might be related to downregulation of MMP-9 and upregulation of occludin and claudin-5.
Collapse
|
9
|
DeLeve LD, Wang X, Wang L. VEGF-sdf1 recruitment of CXCR7+ bone marrow progenitors of liver sinusoidal endothelial cells promotes rat liver regeneration. Am J Physiol Gastrointest Liver Physiol 2016; 310:G739-46. [PMID: 26939868 PMCID: PMC4867332 DOI: 10.1152/ajpgi.00056.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
In liver injury, recruitment of bone marrow (BM) progenitors of liver sinusoidal endothelial cells (sprocs) is necessary for normal liver regeneration. Hepatic vascular endothelial growth factor (VEGF) is a central regulator of the recruitment process. We examine whether stromal cell-derived factor 1 [sdf1, or CXC ligand 12 (CXCL12)] acts downstream from VEGF to mediate recruitment of BM sprocs, what the sdf1 receptor type [CXC receptor (CXCR)-4 or CXCR7] is on sprocs, and whether sdf1 signaling is required for normal liver regeneration. Studies were performed in the rat partial hepatectomy model. Tracking studies of BM sprocs were performed in wild-type Lewis rats that had undergone BM transplantation from transgenic enhanced green fluorescent protein-positive Lewis rats. Knockdown studies were performed using antisense oligonucleotides (ASOs). Expression of sdf1 doubles in liver and liver sinusoidal endothelial cells (LSECs) after partial hepatectomy. Upregulation of sdf1 expression increases proliferation of sprocs in the BM, mobilization of CXCR7(+) BM sprocs to the circulation, and engraftment of CXCR7(+) BM sprocs in the liver and promotes liver regeneration. Knockdown of hepatic VEGF with ASOs decreases hepatic sdf1 expression and plasma sdf1 levels. When the effect of VEGF knockdown on sdf1 is offset by infusion of sdf1, VEGF knockdown-induced impairment of BM sproc recruitment after partial hepatectomy is completely attenuated and liver regeneration is normalized. These data demonstrate that the VEGF-sdf1 pathway regulates recruitment of CXCR7(+) BM sprocs to the hepatic sinusoid after partial hepatectomy and is required for normal liver regeneration.
Collapse
Affiliation(s)
- Laurie D. DeLeve
- Division of Gastrointestinal and Liver Disease, Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Xiangdong Wang
- Division of Gastrointestinal and Liver Disease, Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lei Wang
- Division of Gastrointestinal and Liver Disease, Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
10
|
Wan X, Xia W, Gendoo Y, Chen W, Sun W, Sun D, Cao C. Upregulation of stromal cell-derived factor 1 (SDF-1) is associated with macrophage infiltration in renal ischemia-reperfusion injury. PLoS One 2014; 9:e114564. [PMID: 25478952 PMCID: PMC4257711 DOI: 10.1371/journal.pone.0114564] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/05/2014] [Indexed: 11/24/2022] Open
Abstract
Background Stromal cell-derived factor-1(SDF-1) is a chemotactic and angiogenic factor that mediates the repair of various tissues. As macrophages are important contributors to ischemic kidney injury, we examine the role of SDF-1 in a rodent model of ischemia-reperfusion (I/R) injury. Methods Male wild-type (WT) (C57BL/6) mice were subjected to bilateral I/R injury or sham operation in the presence or absence of macrophage depletion (liposomal clodronate [0.2 ml/20–25 g body weight i.p.]). Macrophage accumulation was assessed by immunohistochemistry. Tissue levels of SDF-1 (ELISA) and SDF-1 mRNA expression (real-time PCR) were measured. The cellular location of SDF-1 was assessed using immunohistochemical staining. Results Immunofluorescence staining of renal tissue sections confirmed macrophage depletion by liposomal clodronate. SDF-1 production was elevated in response to I/R injury and was significantly increased upon macrophage depletion. SDF-1 positive cells initially appeared initially in the cortex, and subsequently diffused to the outer medulla after I/R injury. Conclusions Our study demonstrates that SDF-1 is significantly upregulated during renal I/R. We hypothesize that SDF-1 upregulation may be an important macrophage effector mechanism during I/R injury.
Collapse
Affiliation(s)
- Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenkai Xia
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yasser Gendoo
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Department of surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjin Sun
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong Sun
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changchun Cao
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
11
|
Brenner C, Kränkel N, Kühlenthal S, Israel L, Remm F, Fischer C, Herbach N, Speer T, Grabmaier U, Laskowski A, Gross L, Theiss H, Wanke R, Landmesser U, Franz WM. Short-term inhibition of DPP-4 enhances endothelial regeneration after acute arterial injury via enhanced recruitment of circulating progenitor cells. Int J Cardiol 2014; 177:266-75. [PMID: 25499391 DOI: 10.1016/j.ijcard.2014.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 08/06/2014] [Accepted: 09/15/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Endothelial injuries regularly occur in atherosclerosis and during interventional therapies of the arterial occlusive disease. Disturbances in the endothelial integrity can lead to insufficient blood supply and bear the risk of thrombus formation and acute vascular occlusion. At present, effective therapeutics to restore endothelial integrity are barely available. We analyzed the effect of pharmacological DPP-4-inhibition by Sitagliptin on endogenous progenitor cell-based endothelial regeneration via the SDF-1α/CXCR4-axis after acute endothelial damage in a mouse model of carotid injury. METHODS AND RESULTS Induction of a defined endothelial injury was performed in the carotid artery of C57Bl/6 mice which led to a local upregulation of SDF-1α expression. Animals were treated with placebo, Sitagliptin or Sitagliptin+AMD3100. Using mass spectrometry we could prove that Sitagliptin prevented cleavage of the chemokine SDF-1α. Accordingly, increased SDF-1α concentrations enhanced recruitment of systemically applied and endogenous circulating CXCR4+ progenitor cells to the site of vascular injury followed by a significantly accelerated reendothelialization as compared to placebo-treated animals. Improved endothelial recovery, as well as recruitment of circulating CXCR4+ progenitor cells (CD133+, Flk1+), was reversed by CXCR4-antagonization through AMD3100. In addition, short-term Sitagliptin treatment did not significantly promote neointimal or medial hyperplasia. CONCLUSION Sitagliptin can accelerate endothelial regeneration after acute endothelial injury. DPP-4 inhibitors prevent degradation of the chemokine SDF-1α and thus improve the recruitment of regenerative circulating CXCR4+ progenitor cells which mediate local endothelial cell proliferation without adversely affecting vessel wall architecture.
Collapse
Affiliation(s)
- Christoph Brenner
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany; Institute of Physiology, Cardiovascular Research, University of Zurich, Campus Irchel, Zurich, Switzerland; Department of Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria.
| | - Nicolle Kränkel
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland; Institute of Physiology, Cardiovascular Research, University of Zurich, Campus Irchel, Zurich, Switzerland
| | - Sarah Kühlenthal
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Lars Israel
- Institute of Molecular Biology, Adolf-Butenandt-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Friederike Remm
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Cornelia Fischer
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Nadja Herbach
- Institute of Veterinary Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Timo Speer
- Institute of Physiology, Cardiovascular Research, University of Zurich, Campus Irchel, Zurich, Switzerland; Department of Internal Medicine IV, Saarland University Hospital, Homburg/Saar, Germany
| | - Ulrich Grabmaier
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Alexandra Laskowski
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Lisa Gross
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Hans Theiss
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Ulf Landmesser
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland; Institute of Physiology, Cardiovascular Research, University of Zurich, Campus Irchel, Zurich, Switzerland
| | - Wolfgang-Michael Franz
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany; Department of Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
12
|
Saito Y, Shimada M, Utsunomiya T, Ikemoto T, Yamada S, Morine Y, Imura S, Mori H, Arakawa Y, Kanamoto M, Iwahashi S, Takasu C. Homing effect of adipose-derived stem cells to the injured liver: the shift of stromal cell-derived factor 1 expressions. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2014; 21:873-80. [PMID: 25131380 DOI: 10.1002/jhbp.147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Whether systemically transplanted human adipose-derived stem cells (ADSCs) homed to the injured liver in nude mice under stress with subsequent hepatectomy (Hx) and ischemia-reperfusion (I/R) was investigated in the present study. The types of cells in the liver that were involved in the homing of ADSCs were clarified, with focus on the stromal-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR-4) axis. METHODS Adipose-derived stem cells were transplanted intravenously immediately after 70% Hx and I/R. ADSCs were traced by in vivo imaging for 24 h after transplantation and ADSCs were histologically detected in the liver. SDF-1 and CXCR-4 expressions in the liver were evaluated by real time RT-PCR. The immunohistochemical analysis of SDF-1 was also performed to identify SDF-1 expressing cells in the liver. RESULTS Adipose-derived stem cells were found in various organs immediately following transplantation and almost accumulated in remnant liver or spleen at 6 h after transplantation. ADSCs were also histologically revealed in the harvested liver. Hx and I/R injury significantly enhanced SDF-1 expressions regardless of ADSCs transplantation, and only ADSC transplantation increased CXCR-4 expressions. The predominant SDF-1 positive cells in the liver were equally identified in parenchymal and non-parenchymal cells at 6 h, but shifted to non-parenchymal cells at 24 h after transplantation. CONCLUSIONS Systemically transplanted ADSCs homed to the injured liver after transplantation, possibly based on the mechanisms of SDF-1/CXCR-4 axis. Therefore, systemic transplantation might be an effective and practical route for the transplantation of ADSCs.
Collapse
Affiliation(s)
- Yu Saito
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
17β-estradiol mediates upregulation of stromal cell-derived factor-1 in the retina through activation of estrogen receptor in an ischemia-reperfusion injury model. Graefes Arch Clin Exp Ophthalmol 2014; 253:17-23. [DOI: 10.1007/s00417-014-2657-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/03/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022] Open
|
14
|
Liu N, Tian J, Cheng J, Zhang J. Migration of CXCR4 gene-modified bone marrow-derived mesenchymal stem cells to the acute injured kidney. J Cell Biochem 2014; 114:2677-89. [PMID: 23794207 DOI: 10.1002/jcb.24615] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/14/2013] [Indexed: 12/13/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) can migrate to the injured kidney after acute kidney injury (AKI) with limited efficiency. This study investigated the effect of CXCR4 overexpression on BMSC migration to the AKI kidney and the possible mechanisms. CXCR4 gene-modified BMSCs (CXCR4-BMSCs) and null-BMSCs were prepared and transplanted into the AKI mice. Blood indicators, histology, expression of stromal cell-derived factor 1 (SDF-1), and BMSC migration were investigated. Hypoxia/re-oxygenation-pretreated renal tubular epithelial cells (HR-RTECs) were prepared to generate AKI in vitro. The chemotaxis experiment was performed using the transwell chamber. The phosphorylation of AKT and MAPK in the BMSCs was also investigated. The CXCR4-BMSCs showed a remarkable expression of CXCR4. The SDF-1 expression in the AKI renal tissue was increased. CXCR4-BMSCs transplantation sharply increased the accumulation of BMSCs in the renal tissue, which was consistent with a greater improvement of renal function. The in vitro experiments showed that the migration of BMSCs to the HR-RTEC culturing chamber was CXCR4-dependent, and could be fully inhibited by AMD3100, a CXCR4-specific antagonist. The migration could also be partly blocked by either LY294002 (PI3K inhibitor) or PD98059 (MAPK inhibitor). Phosphorylated Akt and MAPK were increased in the BMSCs co-cultured with HR-RTECs and their expression was the highest in the CXCR4-BMSCs, which could be recovered by AMD3100. Overexpression of CXCR4 gene could enhance BMSC migration to the kidney area after AKI. The SDF-1/CXCR4 axis via its activation of PI3K/AKT and MAPK in BMSCs could be the possible mechanisms underlying this function.
Collapse
Affiliation(s)
- Nanmei Liu
- Department of Nephrology, The 455th Hospital of PLA, Shanghai, 200052, China
| | | | | | | |
Collapse
|
15
|
Liu ZC, Yu EH, Liu W, Liu XC, Tang SB, Zhu BH. Translocation of protein kinase C δ contributes to the moderately high glucose-, but not hypoxia-induced proliferation in primary cultured human retinal endothelial cells. Mol Med Rep 2014; 9:1780-6. [PMID: 24626810 DOI: 10.3892/mmr.2014.2049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/10/2014] [Indexed: 11/05/2022] Open
Abstract
Diabetic retinopathy is one of the most common complications in patients with diabetes and affects ~75% of them within 15 years of the onset of the disease. Activation of protein kinase C (PKC) is a key feature of diabetes mellitus and may be involved in the pathogenesis of diabetic retinopathy. The present study aimed to examine the translocation of protein kinase C (PKC) isoforms, which are triggered by high an moderately high glucose levels as well as hypoxic conditions. The underlying cell mechanisms of PKC translocation in primary cultured human retinal endothelial cells (HRECs) were also investigated. The expression levels of PKC isoforms were assessed using western blot analysis. Cell proliferation was determined using the MTT assay and DNA synthesis was assessed by bromodeoxyuridine incorporation. Translocation of PKC isoforms was examined by western blot analysis and immunofluorescence. The expression of PKC α, βI, βII, δ and ε was detected, while PKC ζ was not detected in HRECs. The results of the present study were consistent with the findings of a previous study by our group, reporting that moderately high glucose levels and hypoxia, but not high glucose levels, significantly increased cell proliferation. It was demonstrated that the PKC δ isoform was translocated from the cytosol to the membrane only under moderately high glucose conditions, while PKC α and ε isoforms were translocated from the cytosol to the membrane at high glucose conditions. In addition, PKC βI was translocated under all three conditions. Translocation of PKC βII was comparable among all groups. Furthermore, rottlerin, an inhibitor of PKC δ, blocked cell proliferation, which was induced by moderately high glucose levels, but not by hypoxia. Ro32-0432, an inhibitor of PKC α, βI and ε, did not significantly affect proliferation of HRECs in all treatment groups. In conclusion, the present study suggested that PKC α, βI, βII, δ and ε were expressed in primary cultured HRECs, whereas PKC ζ was not. Cell proliferation induced by moderately high glucose concentrations was associated with translocation of the PKC δ isoform; however, hypoxic conditions did not induce translocation.
Collapse
Affiliation(s)
- Zhao-Chun Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - En-Hong Yu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiao-Chang Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shi-Bo Tang
- Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bang-Hao Zhu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
16
|
Liu N, Han G, Cheng J, Huang J, Tian J. Erythropoietin promotes the repair effect of acute kidney injury by bone-marrow mesenchymal stem cells transplantation. Exp Biol Med (Maywood) 2013; 238:678-86. [PMID: 23918879 DOI: 10.1177/1535370213489486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bone-marrow mesenchymal stem cells (BMSCs) transplantation is effective for acute kidney injury (AKI) repair but with limited efficiency. In the present study, BMSCs marked by bromodeoxyuridine (BrdU) were transplanted to the AKI mouse model with erythropoietin (EPO) being subcutaneously injected. The blood urea nitrogen (BUN) and serum creatinine (Scr) levels, pathological changes, distribution of BMSCs, expressions of the cytokeratin 18 (CK18) and the stromal cell-derived factor 1 (SDF-1) in the nephridial tissues were measured. The directional migration of BMSCs to the AKI microenvironment in vitro was also tested. The results showed that BMSCs transplantation or EPO injection alone decreased the BUN and Scr levels and the acute tubular necrosis (ATN) scoring in varied degrees. The combination of these decreased the above indicators’ levels significantly. BrdU+ cells (BMSCs) were observed in the AKI nephridial tissues, and CK18 expressed in the cytoplasm of these cells. EPO injection increased the proportion of BrdU+ cells with the enhanced expression of SDF-1 in the AKI nephridial tissues. EPO increased the migrating number of BMSCs to the AKI microenvironment in vitro, and additional anti-SDF-1 treatment with SDF-1 antibody neutralized this effect. Our results showed that EPO increased the number of the transplanted BMSCs in the injured nephridial tissues and enhanced the AKI repair effect of BMSCs transplantation. The enhanced kidney-homing efficiency for BMSCs mediated by the SDF-1/CXCR4 pathway is one of the possible mechanisms for EPO performance.
Collapse
Affiliation(s)
- Nanmei Liu
- Department of Nephrology, 455th hospital of PLA, Shanghai 200052, China
| | - Guofeng Han
- Department of Nephrology, 455th hospital of PLA, Shanghai 200052, China
| | - Jin Cheng
- Department of Nephrology, 455th hospital of PLA, Shanghai 200052, China
| | - Jian Huang
- Department of Nephrology, 455th hospital of PLA, Shanghai 200052, China
| | - Jun Tian
- Department of Nephrology, 455th hospital of PLA, Shanghai 200052, China
| |
Collapse
|
17
|
Liu N, Tian J, Cheng J, Zhang J. Effect of erythropoietin on the migration of bone marrow-derived mesenchymal stem cells to the acute kidney injury microenvironment. Exp Cell Res 2013; 319:2019-2027. [DOI: 10.1016/j.yexcr.2013.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 01/16/2023]
|
18
|
Liu N, Patzak A, Zhang J. CXCR4-overexpressing bone marrow-derived mesenchymal stem cells improve repair of acute kidney injury. Am J Physiol Renal Physiol 2013; 305:F1064-73. [PMID: 23884141 DOI: 10.1152/ajprenal.00178.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) can repair acute kidney injury (AKI), but with limited effect. We test the hypothesis that CXCR4 overexpression improves the repair ability of BMSCs and that this is related to increased homing of BMSCs and increased release of cytokines. Hypoxia/reoxygenation-pretreated renal tubular epithelial cells (HR-RTECs) were used. BMSCs, null-BMSCs, and CXCR4-BMSCs were cocultured with HR-RTECs. The number of migrating BMSCs was counted. Proliferating cell nuclear antigen (PCNA) expression, cell death, and expressions of cleaved caspase-3 and Bcl-2 in cocultured HR-RTECs were measured. Cytokeratin 18 (CK18) expression and cytokine secretions of the BMSCs cultured with HR-RTEC supernatant were detected. BMSC homing, renal function, proliferation, and cell death of tubular cells were assayed in the AKI mouse model. CXCR4-BMSCs showed a remarkable expression of CXCR4. Stromal cell-derived factor-1 in the HR-RTEC supernatant was increased. Migration of BMSCs was CXCR4-dependent. Proportions of CK18(+) cells in BMSCs, null-BMSCs, and CXCR4-BMSCs showed no difference. However, CXCR4 overexpression in BMSCs stimulated secretion of bone morphogenetic protein-7, hepatocyte growth factor, and interleukin 10. The neutralizing anti-CXCR4 antibody AMD3100 abolished this. In cocultured HR-RTECs the proportions of PCNA(+) cells and Bcl-2 expression were enhanced; however, the proportion of annexin V(+) cells and expression of cleaved caspase-3 were reduced. The in vivo study showed increased homing of CXCR4-BMSCs in kidneys, which was associated with improved renal function, reduced acute tubular necrosis scoring, accelerated mitogenic response of tubular cells, and reduced tubular cell death. The enhanced homing and paracrine actions of BMSCs with CXCR4 overexpression suggest beneficial effects of such cells in BMSC-based therapy for AKI.
Collapse
Affiliation(s)
- Nanmei Liu
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | |
Collapse
|
19
|
Yang XT, Pan DC, Chen ET, Bi YY, Feng DF. Glial cells activation potentially contributes to the upregulation of stromal cell-derived factor-1α after optic nerve crush in rats. Neurochem Res 2013; 38:1996-2008. [PMID: 23832528 DOI: 10.1007/s11064-013-1106-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/17/2013] [Accepted: 06/29/2013] [Indexed: 02/04/2023]
Abstract
Stromal cell-derived factor-1α (SDF-1α) plays an important role after injury. However, little is known regarding its temporal and spatial expression patterns or how it interacts with glial cells after optic nerve crush injury. We characterized the temporal and spatial expression pattern of SDF-1α in the retina and optic nerve following optic nerve crush and demonstrated that SDF-1α is localized to the glial cells that are distributed in the retina and optic nerve. CXCR4, the receptor for SDF-1α, is expressed along the ganglion cell layer (GCL). The relative expression levels of Sdf-1α mRNA and SDF-1α protein in the retina and optic nerve 1, 2, 3, 5, 7, 10 and 14 days after injury were determined using real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay, respectively, and the Cxcr4 mRNA expression was determined using real-time PCR. Immunofluorescence and immunohistochemical approaches were used to detect the localization of SDF-1α and CXCR4 after injury. The upregulation of Sdf-1α and Cxcr4 mRNA was detected as early as day one after injury in the retina and day two in the optic nerve, the expression peaks 5-7 days after injury. The expression of Sdf-1α and Cxcr4 mRNA was maintained for at least 14 days after the optic nerve crush injury. Furthermore, SDF-1α-positive zones were distributed locally in the reactive glial cells, which suggested potential autocrine stimulation. CXCR4 was mainly expressed in the GCL, which was also adjacent to the the glial cells. These findings suggest that following optic nerve crush, the levels of endogenous SDF-1α and CXCR4 increase in the retina and optic nerve, where activated glial cells may act as a source of increased SDF-1α protein.
Collapse
Affiliation(s)
- Xi-Tao Yang
- Department of Neurosurgery, Shanghai Third People's Hospital, Shanghai Jiaotong University School of Medicine, 280 Mo-He Road, Shanghai, 201900, China,
| | | | | | | | | |
Collapse
|
20
|
Pramanik R, Sheng X, Ichihara B, Heisterkamp N, Mittelman SD. Adipose tissue attracts and protects acute lymphoblastic leukemia cells from chemotherapy. Leuk Res 2013; 37:503-9. [PMID: 23332453 DOI: 10.1016/j.leukres.2012.12.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 12/15/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
Obesity is associated with an increased risk of acute lymphoblastic leukemia (ALL) relapse. Using mouse and cell co-culture models, we investigated whether adipose tissue attracts ALL to a protective microenvironment. Syngeneically implanted ALL cells migrated into adipose tissue within ten days. In vitro, murine ALL cells migrated towards adipose tissue explants and 3T3-L1 adipocytes. Human and mouse ALL cells migrated toward adipocyte conditioned media, which was mediated by SDF-1α. In addition, adipose tissue explants protected ALL cells against daunorubicin and vincristine. Our findings suggest that ALL migration into adipose tissue could contribute to drug resistance and potentially relapse.
Collapse
Affiliation(s)
- Rocky Pramanik
- Center for Endocrinology, Diabetes & Metabolism, Children's Hospital Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
BMP9 signaling has been implicated in hereditary hemorrhagic telangiectasia (HHT) and vascular remodeling, acting via the HHT target genes, endoglin and ALK1. This study sought to identify endothelial BMP9-regulated proteins that could affect the HHT phenotype. Gene ontology analysis of cDNA microarray data obtained after BMP9 treatment of primary human endothelial cells indicated regulation of chemokine, adhesion, and inflammation pathways. These responses included the up-regulation of the chemokine CXCL12/SDF1 and down-regulation of its receptor CXCR4. Quantitative mass spectrometry identified additional secreted proteins, including the chemokine CXCL10/IP10. RNA knockdown of endoglin and ALK1 impaired SDF1/CXCR4 regulation by BMP9. Because of the association of SDF1 with ischemia, we analyzed its expression under hypoxia in response to BMP9 in vitro, and during the response to hindlimb ischemia, in endoglin-deficient mice. BMP9 and hypoxia were additive inducers of SDF1 expression. Moreover, the data suggest that endoglin deficiency impaired SDF1 expression in endothelial cells in vivo. Our data implicate BMP9 in regulation of the SDF1/CXCR4 chemokine axis in endothelial cells and point to a role for BMP9 signaling via endoglin in a switch from an SDF1-responsive autocrine phenotype to an SDF1 nonresponsive paracrine state that represses endothelial cell migration and may promote vessel maturation.
Collapse
|
22
|
Otsuka H, Arimura N, Sonoda S, Nakamura M, Hashiguchi T, Maruyama I, Nakao S, Hafezi-Moghadam A, Sakamoto T. Stromal cell-derived factor-1 is essential for photoreceptor cell protection in retinal detachment. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2268-77. [PMID: 20889568 DOI: 10.2353/ajpath.2010.100134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stromal cell-derived factor-1 (SDF-1) causes chemotaxis of CXCR4-expressing bone marrow-derived cells. SDF-1 is involved in the pathogenesis of various vascular diseases, including those of the eye. However, the role of SDF-1 in neuronal diseases is not completely understood. Here, we show higher SDF-1 levels in the vitreous humor of patients with retinal detachment (RD) compared with normal patients. SDF-1 correlated positively with the duration as well as the extent of RD. Furthermore, SDF-1 correlated significantly with levels of interleukin-6 and interleukin-8, but not with vascular endothelial growth factor. Western blot analysis results showed significant SDF-1 up-regulation in detached rat retinas compared with normal animals. Immunohistochemistry data showed that SDF-1 was co-localized with the glial cells of the detached retina. SDF-1 blockade with a neutralizing antibody increased photoreceptor cell loss and macrophage accumulation in the subretinal space. The retinal precursor cell line R28 expressed CXCR4. SDF-1 rescued serum starvation-induced apoptosis in R28 cells and enhanced their ability to participate in wound closure in a scratch assay. Our results indicate a surprising, protective role for SDF-1 in RD. This effect may be mediated directly or indirectly through other cell types.
Collapse
Affiliation(s)
- Hiroki Otsuka
- Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Seo J, Kim YO, Jo I. Differential expression of stromal cell-derived factor 1 in human brain microvascular endothelial cells and pericytes involves histone modifications. Biochem Biophys Res Commun 2009; 382:519-24. [DOI: 10.1016/j.bbrc.2009.03.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/10/2009] [Indexed: 12/16/2022]
|