1
|
Titova A, Nikolaev S, Bilyalov A, Filatov N, Brovkin S, Shestakov D, Khatkov I, Pismennaya E, Bondarev V, Antyuxina M, Shagimardanova E, Bodunova N, Gusev O. Extreme Tolerance of Extraocular Muscles to Diseases and Aging: Why and How? Int J Mol Sci 2024; 25:4985. [PMID: 38732204 PMCID: PMC11084950 DOI: 10.3390/ijms25094985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The extraocular muscles (EOMs) possess unique characteristics that set them apart from other skeletal muscles. These muscles, responsible for eye movements, exhibit remarkable resistance to various muscular dystrophies and aging, presenting a significant contrast to the vulnerability of skeletal muscles to these conditions. In this review, we delve into the cellular and molecular underpinnings of the distinct properties of EOMs. We explore their structural complexity, highlighting differences in fiber types, innervation patterns, and developmental origins. Notably, EOM fibers express a diverse array of myosin heavy-chain isoforms, retaining embryonic forms into adulthood. Moreover, their motor innervation is characterized by a high ratio of nerve fibers to muscle fibers and the presence of unique neuromuscular junctions. These features contribute to the specialized functions of EOMs, including rapid and precise eye movements. Understanding the mechanisms behind the resilience of EOMs to disease and aging may offer insights into potential therapeutic strategies for treating muscular dystrophies and myopathies affecting other skeletal muscles.
Collapse
Affiliation(s)
- Angelina Titova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergey Nikolaev
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia
| | - Airat Bilyalov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia
| | - Nikita Filatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergei Brovkin
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia
| | | | - Igor Khatkov
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia
| | | | | | | | - Elena Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia
| | - Natalia Bodunova
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia
| | - Oleg Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Life Improvement by Future Technologies (LIFT) Center, 121205 Moscow, Russia
| |
Collapse
|
2
|
A fast Myosin super enhancer dictates muscle fiber phenotype through competitive interactions with Myosin genes. Nat Commun 2022; 13:1039. [PMID: 35210422 PMCID: PMC8873246 DOI: 10.1038/s41467-022-28666-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
The contractile properties of adult myofibers are shaped by their Myosin heavy chain isoform content. Here, we identify by snATAC-seq a 42 kb super-enhancer at the locus regrouping the fast Myosin genes. By 4C-seq we show that active fast Myosin promoters interact with this super-enhancer by DNA looping, leading to the activation of a single promoter per nucleus. A rainbow mouse transgenic model of the locus including the super-enhancer recapitulates the endogenous spatio-temporal expression of adult fast Myosin genes. In situ deletion of the super-enhancer by CRISPR/Cas9 editing demonstrates its major role in the control of associated fast Myosin genes, and deletion of two fast Myosin genes at the locus reveals an active competition of the promoters for the shared super-enhancer. Last, by disrupting the organization of fast Myosin, we uncover positional heterogeneity within limb skeletal muscles that may underlie selective muscle susceptibility to damage in certain myopathies. The contractile properties of adult myofibers are shaped by their Myosin heavy chain isoform content. Here the authors show that a super enhancer controls the spatiotemporal expression of the genes at the fast myosin heavy chain locus by DNA looping and that this expression profile is recapitulated in a rainbow transgenic mouse model of the locus.
Collapse
|
3
|
Hoh JFY. Myosin heavy chains in extraocular muscle fibres: Distribution, regulation and function. Acta Physiol (Oxf) 2021; 231:e13535. [PMID: 32640094 DOI: 10.1111/apha.13535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
This review examines kinetic properties and distribution of the 11 isoforms of myosin heavy chain (MyHC) expressed in extraocular muscle (EOM) fibre types and the regulation and function of these MyHCs. Although recruitment and discharge characteristics of ocular motoneurons during fixation and eye movements are well documented, work directly linking these properties with motor unit contractile speed and MyHC composition is lacking. Recruitment of motor units according to Henneman's size principle has some support in EOMs but needs consolidation. Both neurogenic and myogenic mechanisms regulate MyHC expression as in other muscle allotypes. Developmentally, multiply-innervated (MIFs) and singly-innervated fibres (SIFs) are derived presumably from distinct myoblast lineages, ending up expressing MyHCs in the slow and fast ends of the kinetic spectrum respectively. They modulate the synaptic inputs of their motoneurons through different retrogradely transported neurotrophins, thereby specifying their tonic and phasic impulse patterns. Immunohistochemical analyses of EOMs regenerating in situ and in limb muscle beds suggest that the very impulse patterns driving various ocular movements equip effectors with appropriate MyHC compositions and speeds to accomplish their tasks. These experiments also suggest that satellite cells of SIFs and MIFs are distinct lineages expressing different MyHCs during regeneration. MyHC compositions and functional characteristics of orbital fibres show longitudinal variations that facilitate linear ocular rotation during saccades. Palisade endings on global MIFs are postulated to respond to active and passive tensions by triggering axon reflexes that play important roles during fixation, saccades and vergence. How EOMs implement Listings law during ocular rotation is discussed.
Collapse
Affiliation(s)
- Joseph F. Y. Hoh
- Discipline of Physiology and the Bosch Institute School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| |
Collapse
|
4
|
Pandorf CE, Haddad F, Owerkowicz T, Carroll LP, Baldwin KM, Adams GR. Regulation of myosin heavy chain antisense long noncoding RNA in human vastus lateralis in response to exercise training. Am J Physiol Cell Physiol 2020; 318:C931-C942. [PMID: 32130073 DOI: 10.1152/ajpcell.00166.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alterations to muscle activity or loading state can induce changes in expression of myosin heavy chain (MHC). For example, sedentary individuals that initiate exercise training can induce a pronounced shift from IIx to IIa MHC. We sought to examine the regulatory response of MHC RNA in human subjects in response to exercise training. In particular, we examined how natural antisense RNA transcripts (NATs) are regulated throughout the MHC gene locus that includes MYH2 (IIa), MYH1 (IIx), MYH4 (IIb), and MYH8 (Neonatal) in vastus lateralis before and after a 5-wk training regime that consisted of a combination of aerobic and resistance types of exercise. The exercise program induced a IIx to IIa MHC shift that was associated with a corresponding increase in transcription on the antisense strand of the IIx MHC gene and a decrease in antisense transcription of the IIa MHC gene, suggesting an inhibitory mechanism mediated by NATs. We also report that the absence of expression of IIb MHC in human limb muscle is associated with the abundant expression of antisense transcript overlapping the IIb MHC coding gene, which is the opposite expression pattern as compared with that previously observed in rats. The NAT provides a possible regulatory mechanism for the suppressed expression of IIb MHC in humans. These data indicate that NATs may play a regulatory role with regard to the coordinated shifts in MHC gene expression that occur in human muscle in response to exercise training.
Collapse
Affiliation(s)
- Clay E Pandorf
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia
| | - Fadia Haddad
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Tomasz Owerkowicz
- Department of Biology, California State University, San Bernardino, California
| | - Leslie P Carroll
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia
| | - Kenneth M Baldwin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Gregory R Adams
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
5
|
Mascarello F, Toniolo L, Cancellara P, Reggiani C, Maccatrozzo L. Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species. Ann Anat 2016; 207:9-20. [PMID: 26970499 DOI: 10.1016/j.aanat.2016.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
In the mammalian genome, among myosin heavy chain (MyHC) isoforms a family can be identified as sarcomeric based on their molecular structure which allows thick filament formation. In this study we aimed to assess the expression of the 10 sarcomeric isoforms in human skeletal muscles, adopting this species as a reference for comparison with all other mammalian species. To this aim, we set up the condition for quantitative Real Time PCR assay to detect and quantify MyHC mRNA expression in a wide variety of human muscles from somitic, presomitic and preotic origin. Specific patterns of expression of the following genes MYH1, MYH2, MYH3, MYH4, MYH6, MYH7, MYH8, MYH13, MYH14/7b and MYH15 were demonstrated in various muscle samples. On the same muscle samples which were analysed for mRNA expression, the corresponding MyHC proteins were studied with SDS PAGE and Western blot. The mRNA-protein comparison allowed the identification of 10 distinct proteins based on the electrophoretic migration rate. Three groups were formed based on the migration rate: fast migrating comprising beta/slow/1, alpha cardiac and fast 2B, slow migrating comprising fast 2X, fast 2A and two developmental isoforms (NEO and EMB), intermediate migrating comprising EO MyHC, slow B (product of MYH15), slow tonic (product of MYH14/7b). Of special interest was the demonstration of a protein band corresponding to 2B-MyHC in laryngeal muscles and the finding that all 10 isoforms are expressed in extraocular muscles. These latter muscles are the unique localization for extraocular, slow B (product of MYH15) and slow tonic (product of MYH14/7b).
Collapse
Affiliation(s)
- Francesco Mascarello
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, Legnaro, 35020 Padova, Italy.
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova Via Marzolo 3, 35131 Padova, Italy
| | - Pasqua Cancellara
- Department of Biomedical Sciences, University of Padova Via Marzolo 3, 35131 Padova, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova Via Marzolo 3, 35131 Padova, Italy
| | - Lisa Maccatrozzo
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, Legnaro, 35020 Padova, Italy
| |
Collapse
|
6
|
Willoughby CL, Fleuriet J, Walton MM, Mustari MJ, McLoon LK. Adaptability of the Immature Ocular Motor Control System: Unilateral IGF-1 Medial Rectus Treatment. Invest Ophthalmol Vis Sci 2015; 56:3484-96. [PMID: 26030103 DOI: 10.1167/iovs.15-16761] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Unilateral treatment with sustained release IGF-1 to one medial rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop as a result of changes in extraocular muscles during the critical period of development of binocularity. METHODS Sustained release IGF-1 pellets were implanted unilaterally on one medial rectus muscle in normal infant monkeys during the first 2 weeks of life. Eye position was monitored using standard photographic methods. After 3 months of treatment, myofiber and neuromuscular size, myosin composition, and innervation density were quantified in all rectus muscles and compared to those in age-matched controls. RESULTS Sustained unilateral IGF-1 treatments resulted in strabismus for all treated subjects; 3 of the 4 subjects had a clinically significant strabismus of more than 10°. Both the treated medial rectus and the untreated ipsilateral antagonist lateral rectus muscles had significantly larger myofibers. No adaptation in myofiber size occurred in the contralateral functionally yoked lateral rectus or in myosin composition, neuromuscular junction size, or nerve density. CONCLUSIONS Sustained unilateral IGF-1 treatment to extraocular muscles during the sensitive period of development of orthotropic eye alignment and binocularity was sufficient to disturb ocular motor development, resulting in strabismus in infant monkeys. This could be due to altering fusion of gaze during the early sensitive period. Serial measurements of eye alignment suggested the IGF-1-treated infants received insufficient coordinated binocular experience, preventing the establishment of normal eye alignment. Our results uniquely suggest that abnormal signaling by the extraocular muscles may be a cause of strabismus.
Collapse
Affiliation(s)
- Christy L Willoughby
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jérome Fleuriet
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Mark M Walton
- Washington National Primate Research Center, Seattle, Washington, United States
| | - Michael J Mustari
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Linda K McLoon
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
7
|
Luo Q, Douglas M, Burkholder T, Sokoloff AJ. Absence of developmental and unconventional myosin heavy chain in human suprahyoid muscles. Muscle Nerve 2014; 49:534-44. [PMID: 23835800 DOI: 10.1002/mus.23946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Contradictory reports of the myosin heavy chain (MHC) composition of adult human suprahyoid muscles leave unresolved the extent to which these muscles express developmental and unconventional MHC. METHODS By immunohistochemistry, separation sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)-Coomassie, separation SDS-PAGE-Western blot, and mRNA PCR, we tested for conventional MHCI, MHCIIA, MHCIIX, developmental MHC embryonic and MHC neonatal, and unconventional MHC alpha-cardiac, MHC extraocular, and MHC slow tonic in adult human anterior digastric (AD), geniohyoid (GH), and mylohyoid (MH) muscles. RESULTS By separation SDS-PAGE-Coomassie and Western blot, only conventional MHC are present. By immunohistochemistry all muscle fibers are positive for MHCI, MHCIIA, or MHCIIX, and fewer than 4 fibers/mm(2) are positive for developmental or unconventional MHC. By PCR, mRNA of MHCI and MHCIIA dominate, with sporadically detectable MHC alpha-cardiac and without detectable mRNA of other developmental and unconventional MHC. CONCLUSIONS We conclude that human suprahyoid muscles AD, GH, and MH are composed almost exclusively of conventional MHC isoforms.
Collapse
Affiliation(s)
- Qingwei Luo
- Department of Physiology, Emory University, 615 Michael Street, Atlanta, Georgia, 30322, USA
| | | | | | | |
Collapse
|
8
|
Smerdu V, Cvetko E. Myosin heavy chain-2b transcripts and isoform are expressed in human laryngeal muscles. Cells Tissues Organs 2013; 198:75-86. [PMID: 23796659 DOI: 10.1159/000351293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
Three fast myosin heavy chain (MyHC) isoforms, i.e. MyHC-2a, -2x and -2b, are expressed in skeletal muscles of smaller mammals. In contrast, only MyHC-2a and -2x have been revealed in humans so far. The expression of MyHC isoforms is known to be wider in the functionally more specialized laryngeal muscles. Though mRNA transcripts of the MyHC-2b gene were found to be expressed in certain human skeletal and laryngeal muscles, the corresponding isoform has not been demonstrated in these muscles. To our knowledge, we are the first to demonstrate not only the expression of MyHC-2b transcripts using an in situ hybridization technique but also the corresponding protein, i.e. the MyHC-2b isoform, in some human laryngeal muscles by immunohistochemistry but not by polyacrylamide gel electrophoresis. Using a set of antibodies specific to MyHC isoforms, we demonstrated that MyHC-2b was always co-expressed with the major MyHC isoforms, not only with the fast ones (MyHC-2a and -2x) but with the slow isoform (MyHC-1) as well.
Collapse
Affiliation(s)
- Vika Smerdu
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| | | |
Collapse
|
9
|
Park KA, Lim J, Sohn S, Oh SY. Myosin heavy chain isoform expression in human extraocular muscles: longitudinal variation and patterns of expression in global and orbital layers. Muscle Nerve 2012; 45:713-20. [PMID: 22499099 DOI: 10.1002/mus.23240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION We investigated the distribution of myosin heavy chain (MyHC) isoforms along the length of the global and orbital layers of human extraocular muscles (EOMs). METHODS Whole muscle tissue extracts of human EOMs were cross-sectioned consecutively and separated into orbital and global layers. The extracts from these layers were subjected to electrophoretic analysis, followed by quantification with scanning densitometry. RESULTS MyHC isoforms displayed different distributions along the lengths of EOMs. In the orbital and global layers of all EOMs except for the superior oblique muscle, MyHCeom was enriched in the central regions. MyHCIIa and MyHCI were most abundant in the proximal and distal ends. CONCLUSIONS A variation in MyHC isoform expression was apparent along the lengths of human EOMs. These results provide a basis for understanding the molecular mechanisms underlying the functional diversity of EOMs.
Collapse
Affiliation(s)
- Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| | | | | | | |
Collapse
|
10
|
Myosin heavy chain composition of the human sternocleidomastoid muscle. Ann Anat 2012; 194:467-72. [PMID: 22658700 DOI: 10.1016/j.aanat.2012.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 04/17/2012] [Accepted: 05/02/2012] [Indexed: 11/24/2022]
Abstract
The sternocleidomastoid (SCM) muscle is one of the neck muscles responsible for head posture and control of head movement. It functions in rotation, inclination, protraction, extension and flexion of the head, whilst chewing and in exerting increased respiratory efforts. This study is the first one describing the myosin heavy chain (MyHC) isoform composition of the SCM muscle of presumably healthy young males for the purpose of better understanding the contractile properties of the muscle as well as to help in evaluation of pathologically altered structure of the muscle. Autopsy samples were processed immunohistochemically to reveal the MyHC isoform composition. The muscle fibres expressed MyHC-1 (31.5%), -2a (29.7%) and -2x (4.3%) or co-expressed MyHC-2a with MyHC-2x (26.8%), MyHC-1 with MyHC-2a (4.1%) and/or MyHC-1, -2a with -2x (1.1%). In addition to the MyHC isoforms, characteristic of adult limb muscles, a very low percentage of muscle fibres (0.2-2.7%) expressed MyHC-neo, which is normally not found in adult limb muscles. Only two samples exhibited MyHC-neo at a rather higher percentage (6.3% and 7.5%) of muscle fibres. The high share of hybrid fibres and the presence of MyHC-neo in the SCM muscle differ from that of adult limb muscles where hybrid fibres are rare and the expression of immature MyHC isoforms occurs only in pathological or experimental conditions. Since the SCM muscle shares the same embryogenic potential as limb muscles, its distinct MyHC expression appears to be associated with twin innervation and with the intrinsic specialisation to perform multiple functions.
Collapse
|
11
|
Daugherty M, Luo Q, Sokoloff AJ. Myosin heavy chain composition of the human genioglossus muscle. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2012; 55:609-25. [PMID: 22337492 PMCID: PMC3816748 DOI: 10.1044/1092-4388(2011/10-0287)] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND The human tongue muscle genioglossus (GG) is active in speech, swallowing, respiration, and oral transport, behaviors encompassing a wide range of tongue shapes and movement speeds. Studies demonstrate substantial diversity in patterns of human GG motor unit activation, but whether this is accompanied by complex expression of muscle contractile proteins is not known. PURPOSE The authors tested for conventional myosin heavy chain (MHC) MHCI, MHCIIA, MHCIIX, developmental MHCembryonic and MHCneonatal and unconventional MHCαcardiac, MHCextraocular, and MHCslow tonic in antero-superior (GG-A) and posterior (GG-P) adult human GG. METHOD SDS-PAGE, Western blot, and immunohistochemistry were used to describe MHC composition of GG-A and GG-P and the prevalence of muscle fiber MHC phenotypes in GG-A. RESULTS By SDS-PAGE, only conventional MHC are present with ranking from most to least prevalent MHCIIA > MHCI > MHCIIX in GG-A and MHCI > MHCIIA > MHCIIX in GG-P. By immunohistochemistry, many muscle fibers contain MHCI, MHCIIA, and MHCIIX, but few contain developmental or unconventional MHC. GG-A is composed of 5 phenotypes (MHCIIA > MHCI-IIX > MHCI > MHCI-IIA > MHCIIX). Phenotypes MHCI, MHCIIA, and MHCI-IIX account for 96% of muscle fibers. CONCLUSIONS Despite activation of GG during kinematically diverse behaviors and complex patterns of GG motor unit activity, the human GG is composed of conventional MHC isoforms and 3 primary MHC phenotypes.
Collapse
|
12
|
Kohn TA, Curry JW, Noakes TD. Black wildebeest skeletal muscle exhibits high oxidative capacity and a high proportion of type IIx fibres. ACTA ACUST UNITED AC 2012; 214:4041-7. [PMID: 22071196 DOI: 10.1242/jeb.061572] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of the study was to investigate the skeletal muscle characteristics of black wildebeest (Connochaetes gnou) in terms of fibre type and metabolism. Samples were obtained post mortem from the vastus lateralis and longissimus lumborum muscles and analysed for myosin heavy chain (MHC) content. Citrate synthase (CS), 3-hydroxyacyl co A dehydrogenase (3HAD), phosphofructokinase (PFK), lactate dehydrogenase (LDH) and creatine kinase (CK) activities were measured spectrophotometrically to represent the major metabolic pathways in these muscles. Both muscles had less than 20% MHC I, whereas MHC IIa and MHC IIx were expressed in excess of 50% in the vastus lateralis and longissimus lumborum muscles, respectively. Overall fibre size was 2675±1034 μm(2), which is small compared with other species. Oxidative capacity (CS and 3HAD) in both muscles was high and did not differ from one another, but the longissimus lumborum had significantly (P<0.05) higher PFK, LDH and CK activities. No relationships were observed between fibre type and the oxidative and oxygen-independent metabolic capacity as measured by specific enzyme activities. This study confirms the presence of both fast-twitch fibres and high oxidative capacity in black wildebeest, indicating an animal that can run very fast but is also fatigue resistant.
Collapse
Affiliation(s)
- Tertius Abraham Kohn
- UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Newlands, South Africa.
| | | | | |
Collapse
|
13
|
McKelvie P, Satchi K, McNab AA, Kennedy P. Orbicularis oculi: morphological changes mimicking mitochondrial cytopathy in a series of control normal muscles. Clin Exp Ophthalmol 2011; 40:497-502. [DOI: 10.1111/j.1442-9071.2011.02727.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
McLoon LK, Park HN, Kim JH, Pedrosa-Domellöf F, Thompson LV. A continuum of myofibers in adult rabbit extraocular muscle: force, shortening velocity, and patterns of myosin heavy chain colocalization. J Appl Physiol (1985) 2011; 111:1178-89. [PMID: 21778415 DOI: 10.1152/japplphysiol.00368.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extraocular muscle (EOM) myofibers do not fit the traditional fiber typing classifications normally used in noncranial skeletal muscle, in part, due to the complexity of their individual myofibers. With single skinned myofibers isolated from rectus muscles of normal adult rabbits, force and shortening velocity were determined for 220 fibers. Each fiber was examined for myosin heavy chain (MyHC) isoform composition by densitometric analysis of electrophoresis gels. Rectus muscle serial sections were examined for coexpression of eight MyHC isoforms. A continuum was seen in single myofiber shortening velocities as well as force generation, both in absolute force (g) and specific tension (kN/m(2)). Shortening velocity correlated with MyHCIIB, IIA, and I content, the more abundant MyHC isoforms expressed within individual myofibers. Importantly, single fibers with similar or identical shortening velocities expressed significantly different ratios of MyHC isoforms. The vast majority of myofibers in both the orbital and global layers expressed more than one MyHC isoform, with up to six isoforms in single fiber segments. MyHC expression varied significantly and unpredictably along the length of single myofibers. Thus EOM myofibers represent a continuum in their histological and physiological characteristics. This continuum would facilitate fine motor control of eye position, speed, and direction of movement in all positions of gaze and with all types of eye movements-from slow vergence movements to fast saccades. To fully understand how the brain controls eye position and movements, it is critical that this significant EOM myofiber heterogeneity be integrated into hypotheses of oculomotor control.
Collapse
Affiliation(s)
- Linda K McLoon
- Dept. of Ophthalmology, Univ. of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
15
|
Lewis C, Ohlendieck K. Proteomic profiling of naturally protected extraocular muscles from the dystrophin-deficient mdx mouse. Biochem Biophys Res Commun 2010; 396:1024-9. [PMID: 20471957 DOI: 10.1016/j.bbrc.2010.05.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/09/2010] [Indexed: 11/25/2022]
Abstract
Duchenne muscular dystrophy is the most frequent neuromuscular disorder of childhood. Although this x-linked muscle disease is extremely progressive, not all subtypes of skeletal muscles are affected in the same way. While extremities and trunk muscles are drastically weakened, extraocular muscles are usually spared in Duchenne patients. In order to determine the global protein expression pattern in these naturally protected muscles we have performed a comparative proteomic study of the established mdx mouse model of x-linked muscular dystrophy. Fluorescence difference in-gel electrophoretic analysis of 9-week-old dystrophin-deficient versus age-matched normal extraocular muscle, using a pH 4-7 gel range, identified out of 1088 recognized protein spots a moderate expression change in only seven protein species. Desmin, apolipoprotein A-I binding protein and perilipin-3 were found to be increased and gelsolin, gephyrin, transaldolase, and acyl-CoA dehydrogenase were shown to be decreased in mdx extraocular muscles. Immunoblotting revealed a drastic up-regulation of utrophin, comparable levels of beta-dystroglycan and key Ca(2+)-regulatory elements, and an elevated concentration of small stress proteins in mdx extraocular muscles. This suggests that despite the lack of dystrophin only a limited number of cellular systems are perturbed in mdx extraocular muscles, probably due to the substitution of dystrophin by its autosomal homolog. Utrophin appears to prevent the loss of dystrophin-associated proteins and Ca(2+)-handling elements in extraocular muscle tissue. Interestingly, the adaptive mechanisms that cause the sparing of extraocular fibers seem to be closely linked to an enhanced cellular stress response.
Collapse
Affiliation(s)
- Caroline Lewis
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | |
Collapse
|