1
|
Tan J, Zeng L, Wang Y, Liu G, Huang L, Chen D, Wang X, Fan N, He Y, Liu X. Compound Heterozygous Variants of the CPAMD8 Gene Co-Segregating in Two Chinese Pedigrees With Pigment Dispersion Syndrome/Pigmentary Glaucoma. Front Genet 2022; 13:845081. [PMID: 35957697 PMCID: PMC9358689 DOI: 10.3389/fgene.2022.845081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms underlying the pathogenesis of pigment dispersion syndrome and pigmentary glaucoma remain unclear. In pedigree-based studies, familial aggregation and recurrences in relatives suggest a strong genetic basis for pigmentary glaucoma. In this study, we aimed to identify the genetic background of two Chinese pedigrees with pigmentary glaucoma. All members of these two pedigrees who enrolled in the study underwent a comprehensive ophthalmologic examination, and genomic DNA was extracted from peripheral venous blood samples. Whole-exome sequencing and candidate gene verifications were performed to identify the disease-causing variants; in addition, screening of the CPAMD8 gene was performed on 38 patients of sporadic pigmentary glaucoma. Changes in the structure and function of abnormal proteins caused by gene variants were analyzed with a bioinformatics assessment. Pigmentary glaucoma was identified in a total of five patients from the two pedigrees, as were compound heterozygous variants of the CPAMD8 gene. No signs of pigmentary glaucoma were found in carriers of monoallelic CPAMD8 variant/variants. All four variants were inherited in an autosomal recessive mode. In addition to the 38 patients of sporadic pigmentary glaucoma, 13 variants of the CPAMD8 gene were identified in 11 patients. This study reported a possible association between CPAMD8 variants and pigment dispersion syndrome/pigmentary glaucoma.
Collapse
Affiliation(s)
- Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Liuzhi Zeng
- Department of Ophthalmology, Chengdu First People’s Hospital, Chengdu, China
| | - Yun Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Guo Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Longxiang Huang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Defu Chen
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xizhen Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Ning Fan
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Yu He
- Department of Ophthalmology, Chengdu First People’s Hospital, Chengdu, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen, China
- Department of Ophthalmology, Shenzhen People’s Hospital, The 2nd Clinical Medical College, Jinan University, Shenzhen, China
- *Correspondence: Xuyang Liu,
| |
Collapse
|
2
|
Pu L, Zhou R, Li Q, Qing G. Distribution of Pigment Particles in Aqueous Drainage Structures in a DBA/2J Mouse Model of Pigmentary Glaucoma. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 35648639 PMCID: PMC9172048 DOI: 10.1167/iovs.63.6.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To characterize the distribution of pigment particles in aqueous drainage structures of DBA/2J mice with different intraocular pressure (IOP) levels. Methods DBA/2J mice were monitored from 9 to 44 weeks of age. IOP measurements were performed periodically. At 12, 20, 28, and 36 weeks, three mice were randomly selected for each time point and divided into three IOP groups. The morphology, size, and quantity of pigment particles in aqueous drainage structures were determined via transmission electron microscopy combined with ImageJ-based analysis. Between-group differences were evaluated with a one-way analysis of variance and Fisher's least significant difference test. Results In the anterior chamber, 74.2% (187/252) of pigment particles were round (diameter range, 0.20–0.73 µm), and 25.8% (65/252) were oval (length range, 0.35–1.20 µm ). In the high-IOP group (IOP≥15 mmHg), pigment particles in the trabecular meshwork (TM) were more abundant and larger in size than those in the normal-IOP group (P<0.001). All separate pigment particles in the TM of the high-IOP group were >0.4 µm in size. The diameters of round (IOP≤10 mmHg, 0.44±0.13 µm; IOP between 10 and 15 mmHg, 0.57±0.13 µm; IOP≥15 mmHg, 0.61±0.12 µm) and the lengths of oval (0.65±0.14 µm vs. 0.77±0.12 µm vs. 0.88±0.15 µm, respectively) pigment particles in the TM differed among groups (F=27.258 and F=27.295, respectively; both P<0.001). No such differences were discovered in the iris and around Schlemm's canal (P>0.05). Conclusions In DBA/2J mice, large and medium pigment particles (>0.4 µm) seem to play an important role in causing aqueous outflow obstruction and IOP elevation.
Collapse
Affiliation(s)
- Liping Pu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Rongyao Zhou
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Qian Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Guoping Qing
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| |
Collapse
|
3
|
Ocular phenotypes in a mouse model of impaired glucocerebrosidase activity. Sci Rep 2021; 11:6079. [PMID: 33727605 PMCID: PMC7971029 DOI: 10.1038/s41598-021-85528-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/02/2021] [Indexed: 01/08/2023] Open
Abstract
Mutations in the GBA1 gene encoding glucocerebrosidase (GCase) are linked to Gaucher (GD) and Parkinson's Disease (PD). Since some GD and PD patients develop ocular phenotypes, we determined whether ocular phenotypes might result from impaired GCase activity and the corresponding accumulation of glucosylceramide (GluCer) and glucosylsphingosine (GluSph) in the Gba1D409V/D409V knock-in (Gba KI/KI; "KI") mouse. Gba KI mice developed age-dependent pupil dilation deficits to an anti-muscarinic agent; histologically, the iris covered the anterior part of the lens with adhesions between the iris and the anterior surface of the lens (posterior synechia). This may prevent pupil dilation in general, beyond an un-responsiveness of the iris to anti-muscarinics. Gba KI mice displayed atrophy and pigment dispersion of the iris, and occlusion of the iridocorneal angle by pigment-laden cells, reminiscent of secondary open angle glaucoma. Gba KI mice showed progressive thinning of the retina consistent with retinal degeneration. GluSph levels were increased in the anterior and posterior segments of the eye, suggesting that accumulation of lipids in the eye may contribute to degeneration in this compartment. We conclude that the Gba KI model provides robust and reproducible eye phenotypes which may be used to test for efficacy and establish biomarkers for GBA1-related therapies.
Collapse
|
4
|
Schnichels S, Hurst J, de Vries JW, Ullah S, Frößl K, Gruszka A, Löscher M, Bartz-Schmidt KU, Spitzer MS, Herrmann A. Improved Treatment Options for Glaucoma with Brimonidine-Loaded Lipid DNA Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9445-9456. [PMID: 33528240 DOI: 10.1021/acsami.0c18626] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glaucoma is the second leading cause of irreversible blindness worldwide. Among others, elevated intraocular pressure (IOP) is one of the hallmarks of the disease. Antiglaucoma drugs such as brimonidine can lower the IOP but their adherence to the ocular surface is low, leading to a low drug uptake. This results in a frequent dropping regime causing low compliance by the patients. Lipid DNA nanoparticles (NPs) have the intrinsic ability to bind to the ocular surface and can be loaded with different drugs. Here, we report DNA NPs functionalized for loading of brimonidine through specific aptamers and via hydrophobic interactions with double stranded micelles. Both NP systems exhibited improved affinity toward the cornea and retained release of the drug as compared to controls both in vitro and in vivo. Both NP types were able to lower the IOP in living animals significantly more than pristine brimonidine. Importantly, the brimonidine-loaded NPs showed no toxicity and improved efficacy and hence should improve compliance. In conclusion, this drug-delivery system offers high chances of an improved treatment for glaucoma and thus preserving vision in the aging population.
Collapse
Affiliation(s)
- Sven Schnichels
- Centre for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, Tübingen D-72076, Germany
| | - José Hurst
- Centre for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, Tübingen D-72076, Germany
| | - Jan Willem de Vries
- Centre for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, Tübingen D-72076, Germany
| | - Sami Ullah
- Centre for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, Tübingen D-72076, Germany
| | - Katharina Frößl
- Centre for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, Tübingen D-72076, Germany
| | - Agnieszka Gruszka
- Centre for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, Tübingen D-72076, Germany
| | - Marina Löscher
- Centre for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, Tübingen D-72076, Germany
| | - Karl-Ulrich Bartz-Schmidt
- Centre for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, Tübingen D-72076, Germany
| | - Martin S Spitzer
- Clinic for Ophthalmology, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, Hamburg D-20246, Germany
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen 52056, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| |
Collapse
|
5
|
Wang B, Kasper M, Laffer B, Meyer zu Hörste G, Wasmuth S, Busch M, Jalilvand TV, Thanos S, Heiligenhaus A, Bauer D, Heinz C. Increased Hydrostatic Pressure Promotes Primary M1 Reaction and Secondary M2 Polarization in Macrophages. Front Immunol 2020; 11:573955. [PMID: 33154752 PMCID: PMC7591771 DOI: 10.3389/fimmu.2020.573955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
Patients with chronic anterior uveitis are at particularly high risk of developing secondary glaucoma when corticosteroids [e.g., dexamethasone (Dex)] are used or when inflammatory activity has regressed. Macrophage migration into the eye increases when secondary glaucoma develops and may play an important role in the development of secondary glaucoma. Our aim was to evaluate in vitro if increased hydrostatic pressure and corticosteroids could induce changes in macrophages phenotype. By using a pressure chamber cell culture system, we assessed the effect of increased hydrostatic pressure (HP), inflammation, and immunosuppression (Dex) on the M1/M2 phenotype of macrophages. Bone marrow-derived macrophages (BMDMs) were stimulated with medium, lipopolysaccharide (LPS, 100 ng/ml), Dex (200 ng/ml), or LPS + Dex and incubated with different HP (0, 20, or 60 mmHg) for 2 or 7 days. The numbers of CD86+/CD206- (M1 phenotype), CD86-/CD206+ (M2 phenotype), CD86+/CD206+ (intermediate phenotype), F4/80+/TNF-α+, and F4/80+/IL-10+ macrophages were determined by flow cytometry. TNF-α and IL-10 levels in cell culture supernatants were quantified by ELISA. TNF-α, IL-10, fibronectin, and collagen IV expression in BMDMs were detected by immunofluorescence microscopy. Higher HP polarizes macrophages primarily to an M1 phenotype (LPS, 60 vs. 0 mmHg, d2: p = 0.0034) with less extra cellular matrix (ECM) production and secondary to an M2 phenotype (medium, 60 vs. 0 mmHg, d7: p = 0.0089) (medium, 60 vs. 20 mmHg, d7: p = 0.0433) with enhanced ECM production. Dex induces an M2 phenotype (Dex, medium vs. Dex, d2: p < 0.0001; d7: p < 0.0001) with more ECM production. Higher HP further increased M2 polarization of Dex-treated macrophages (Dex, 60 vs. 0 mmHg, d2: p = 0.0417; d7: p = 0.0454). These changes in the M1/M2 phenotype by high HP or Dex treatment may play a role in the pathogenesis of secondary uveitic glaucoma- or glucocorticoid (GC)-induced glaucoma.
Collapse
Affiliation(s)
- Bo Wang
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Maren Kasper
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Björn Laffer
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Gerd Meyer zu Hörste
- Institution of Neurology and Institution for Translational Neurology, Universitätsklinikum Münster, Münster, Germany
| | - Susanne Wasmuth
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Martin Busch
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | | | - Solon Thanos
- Institution of Experimental Ophthalmology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Arnd Heiligenhaus
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
- Ophthalmology, University of Duisburg-Essen, Essen, Germany
| | - Dirk Bauer
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Carsten Heinz
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
- Ophthalmology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Schnichels S, Paquet-Durand F, Löscher M, Tsai T, Hurst J, Joachim SC, Klettner A. Retina in a dish: Cell cultures, retinal explants and animal models for common diseases of the retina. Prog Retin Eye Res 2020; 81:100880. [PMID: 32721458 DOI: 10.1016/j.preteyeres.2020.100880] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
For many retinal diseases, including age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR), the exact pathogenesis is still unclear. Moreover, the currently available therapeutic options are often unsatisfactory. Research designed to remedy this situation heavily relies on experimental animals. However, animal models often do not faithfully reproduce human disease and, currently, there is strong pressure from society to reduce animal research. Overall, this creates a need for improved disease models to understand pathologies and develop treatment options that, at the same time, require fewer or no experimental animals. Here, we review recent advances in the field of in vitro and ex vivo models for AMD, glaucoma, and DR. We highlight the difficulties associated with studies on complex diseases, in which both the initial trigger and the ensuing pathomechanisms are unclear, and then delineate which model systems are optimal for disease modelling. To this end, we present a variety of model systems, ranging from primary cell cultures, over organotypic cultures and whole eye cultures, to animal models. Specific advantages and disadvantages of such models are discussed, with a special focus on their relevance to putative in vivo disease mechanisms. In many cases, a replacement of in vivo research will mean that several different in vitro models are used in conjunction, for instance to analyze and validate causative molecular pathways. Finally, we argue that the analytical decomposition into appropriate cell and tissue model systems will allow making significant progress in our understanding of complex retinal diseases and may furthermore advance the treatment testing.
Collapse
Affiliation(s)
- Sven Schnichels
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany.
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Germany
| | - Marina Löscher
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - José Hurst
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Kiel, Germany
| |
Collapse
|
7
|
Schnichels S, Hurst J, de Vries JW, Ullah S, Gruszka A, Kwak M, Löscher M, Dammeier S, Bartz-Schmidt KU, Spitzer MS, Herrmann A. Self-assembled DNA nanoparticles loaded with travoprost for glaucoma-treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102260. [PMID: 32629041 DOI: 10.1016/j.nano.2020.102260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 11/29/2022]
Abstract
Lipid DNA nanoparticles (NPs) exhibit an intrinsic affinity to the ocular surface and can be loaded by hybridization with fluorophore-DNA conjugates or with the anti-glaucoma drug travoprost by hybridizing an aptamer that binds the medication. In the travoprost-loaded NPs (Trav-NPs), the drug is bound by specific, non-covalent interactions, not requiring any chemical modification of the active pharmaceutical ingredient. Fluorescently labeled Trav-NPs show a long-lasting adherence to the eye, up to sixty minutes after eye drop instillation. Biosafety of the Trav-NPs was proved and in vivo. Ex vivo and in vivo quantification of travoprost via LC-MS revealed that Trav-NPs deliver at least twice the amount of the drug at every time-point investigated compared to the pristine drug. The data successfully show the applicability of a DNA-based drug delivery system in the field of ophthalmology for the treatment of a major retinal eye disease, i.e. glaucoma.
Collapse
Affiliation(s)
- Sven Schnichels
- Centre for Ophthalmology, University Eye Hospital Tübingen, Tübingen, Germany.
| | - José Hurst
- Centre for Ophthalmology, University Eye Hospital Tübingen, Tübingen, Germany
| | - Jan Willem de Vries
- Centre for Ophthalmology, University Eye Hospital Tübingen, Tübingen, Germany
| | - Sami Ullah
- Centre for Ophthalmology, University Eye Hospital Tübingen, Tübingen, Germany
| | - Agnieszka Gruszka
- Centre for Ophthalmology, University Eye Hospital Tübingen, Tübingen, Germany
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, Republic of Korea
| | - Marina Löscher
- Centre for Ophthalmology, University Eye Hospital Tübingen, Tübingen, Germany
| | - Sascha Dammeier
- Institute for Ophthalmic Research Tübingen, Tübingen, Germany
| | | | - Martin S Spitzer
- Clinic for Ophthalmology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands; DWI - Leibniz Institute for Interactive Materials, Aachen, Germany; Institute for Technical and Macromolecular Chemistry, Aachen, Germany.
| |
Collapse
|
8
|
Chinnery HR, McMenamin PG, Dando SJ. Macrophage physiology in the eye. Pflugers Arch 2017; 469:501-515. [DOI: 10.1007/s00424-017-1947-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
|
9
|
Hovhannisyan A, Benkner B, Biesemeier A, Schraermeyer U, Kukley M, Münch TA. Effects of the jimpy mutation on mouse retinal structure and function. J Comp Neurol 2015; 523:2788-806. [PMID: 26011242 DOI: 10.1002/cne.23818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/30/2014] [Accepted: 05/19/2015] [Indexed: 12/15/2022]
Abstract
The Jimpy mutant mouse has a point mutation in the proteolipid protein gene (plp1). The resulting misfolding of the protein leads to oligodendrocyte death, myelin destruction, and failure to produce adequately myelinated axons in the central nervous system (CNS). It is not known how the absence of normal myelination during development influences neural function. We characterized the Jimpy mouse retina to find out whether lack of myelination in the optic nerve during development has an effect on normal functioning and morphology of the retina. Optokinetic reflex measurements showed that Jimpy mice had, in general, a functional visual system. Both PLP1 antibody staining and reverse transcriptase-polymerase chain reaction for plp1 mRNA showed that plp1 is not expressed in the wild-type retina. However, in the optic nerve, plp1 is normally expressed, and consequently, in Jimpy mutant mice, myelination of axons in the optic nerve was mostly absent. Nevertheless, neither axon count nor axon ultrastructure in the optic nerve was affected. Physiological recordings of ganglion cell activity using microelectrode arrays revealed a decrease of stimulus-evoked activity at mesopic light levels. Morphological analysis of the retina did not show any significant differences in the gross morphology, such as thickness of retinal layers or cell number in the inner and outer nuclear layer. The cell bodies in the inner nuclear layer, however, were larger in the peripheral retina of Jimpy mutant mice. Antibody labeling against cell type-specific markers showed that the number of rod bipolar and horizontal cells was increased in Jimpy mice. In conclusion, whereas the Jimpy mutation has dramatic effects on the myelination of retinal ganglion cell axons, it has moderate effects on retinal morphology and function.
Collapse
Affiliation(s)
- Anahit Hovhannisyan
- Retinal Circuits and Optogenetics, Center for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,Neuron Glia Interactions, Center for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Boris Benkner
- Retinal Circuits and Optogenetics, Center for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Antje Biesemeier
- Section of Experimental Vitreoretinal Surgery, Center for Ophthalmology, 72076, Tübingen, Germany
| | - Ulrich Schraermeyer
- Section of Experimental Vitreoretinal Surgery, Center for Ophthalmology, 72076, Tübingen, Germany
| | - Maria Kukley
- Neuron Glia Interactions, Center for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Thomas A Münch
- Retinal Circuits and Optogenetics, Center for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
10
|
Echevarria F, Walker C, Abella S, Won M, Sappington R. Stressor-dependent Alterations in Glycoprotein 130: Implications for Glial Cell Reactivity, Cytokine Signaling and Ganglion Cell Health in Glaucoma. ACTA ACUST UNITED AC 2013; 4. [PMID: 25018894 DOI: 10.4172/2155-9570.1000286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The interleukin-6 (IL-6) family of cytokines is associated with retinal ganglion cell (RGC) survival and glial reactivity in glaucoma. The purpose of this study was to evaluate glaucoma-related changes in glycoprotein-130 (gp130), the common signal transducer of the IL-6 family of cytokines, as they relate to RGC health, glial reactivity and expression of IL-6 cytokine family members. METHODS For all experiments, we examined healthy retina (young C57), aged retina (aged C57), retina predisposed to glaucoma (young DBA/2) and retina with IOP-induced glaucoma (aged DBA/2). We determined retinal gene expression of gp130 and IL-6 family members, using quantitative PCR, and protein expression of gp130, using multiplex ELISA. For protein localization and cell-specific expression, we performed co-immunolabeling for gp130 and cell type-specific markers. We used quantitative microscopy to measure layer-specific expression of gp130 and its relationships to astrocyte and Müller glia reactivity and RGC axonal transport, as determined by uptake and transport of cholera toxin β-subunit (CTB). RESULTS Gene expression of gp130 was elevated with all glaucoma-related stressors, but only normal aging increased protein levels. In healthy retina, gp130 localized primarily to the inner retina, where it was expressed by astrocytes, Müller cells and RGCs. Layer-specific analysis of gp130 expression revealed increased expression in aging retina and decreased expression in glaucomatous retina that was eccentricity-dependent. These glaucoma-related changes in gp130 expression correlated with the level of GFAP and glutamine synthetase expression, as well as axonal transport in RGCs. The relationships between gp130, glial reactivity and RGC health could impact signaling by many IL-6 family cytokines, which exhibited overall increased expression in a stressor-dependent manner. CONCLUSIONS Glaucoma-related stressors, including normal aging, glaucoma predisposition and IOP-induced glaucoma, differentially alter expression of gp130 and these alterations have direct implications for astrocyte and Müller glia reactivity, RGC health and cytokine signaling.
Collapse
Affiliation(s)
- Fd Echevarria
- Neuroscience Graduate Program, Vanderbilt University School of Medicine, 11425 Medical Research Building IV, Nashville, TN 37232-0654, USA ; Department of Ophthalmology and Visual Sciences (Vanderbilt Eye Institute), Vanderbilt University School of Medicine, 11425 Medical Research Building IV, Nashville, TN 37232-0654, USA
| | - Cc Walker
- Department of Ophthalmology and Visual Sciences (Vanderbilt Eye Institute), Vanderbilt University School of Medicine, 11425 Medical Research Building IV, Nashville, TN 37232-0654, USA
| | - Sk Abella
- Department of Ophthalmology and Visual Sciences (Vanderbilt Eye Institute), Vanderbilt University School of Medicine, 11425 Medical Research Building IV, Nashville, TN 37232-0654, USA
| | - M Won
- Department of Ophthalmology and Visual Sciences (Vanderbilt Eye Institute), Vanderbilt University School of Medicine, 11425 Medical Research Building IV, Nashville, TN 37232-0654, USA
| | - Rm Sappington
- Department of Ophthalmology and Visual Sciences (Vanderbilt Eye Institute), Vanderbilt University School of Medicine, 11425 Medical Research Building IV, Nashville, TN 37232-0654, USA ; Department of Pharmacology, Vanderbilt University School of Medicine, 11425 Medical Research Building IV, Nashville, TN 37232-0654, USA
| |
Collapse
|
11
|
Abstract
Changes in microglial cell activation and distribution are associated with neuronal decline in the central nervous system (CNS), particularly under pathological conditions. Activated microglia converge on the initial site of axonal degeneration in human glaucoma, yet their part in its pathophysiology remains unresolved. To begin with, it is unknown whether microglia activation precedes or is a late consequence of retinal ganglion cell (RGC) neurodegeneration. Here we address this critical element in DBA/2J (D2) mice, an established model of chronic inherited glaucoma, using as a control the congenic substrain DBA/2J Gpnmb(+/SjJ) (D2G), which is not affected by glaucoma. We analyzed the spatial distribution and timecourse of microglial changes in the retina, as well as within the proximal optic nerve prior to and throughout ages when neurodegeneration has been reported. Exclusively in D2 mice, we detected early microglia clustering in the inner central retina and unmyelinated optic nerve regions, with microglia activation peaking by 3 months of age. Between 5 and 8 months of age, activated microglia persisted and concentrated in the optic disc, but also localized to the retinal periphery. Collectively, our findings suggest microglia activation is an early alteration in the retina and optic nerve in D2 glaucoma, potentially contributing to disease onset or progression. Ultimately, detection of microglial activation may have value in early disease diagnosis, while modulation of microglial responses may alter disease progression.
Collapse
Affiliation(s)
- Alejandra Bosco
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | |
Collapse
|
12
|
Haraszti T, Trantow CM, Hedberg-Buenz A, Grunze M, Anderson MG. Spectral analysis by XANES reveals that GPNMB influences the chemical composition of intact melanosomes. Pigment Cell Melanoma Res 2011; 24:187-96. [PMID: 21029394 PMCID: PMC3021633 DOI: 10.1111/j.1755-148x.2010.00788.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
GPNMB is a unique melanosomal protein. Unlike many melanosomal proteins, GPNMB has not been associated with any forms of albinism, and it is unclear whether GPNMB has any direct influence on melanosomes. Here, melanosomes from congenic strains of C57BL/6J mice mutant for Gpnmb are compared to strain-matched controls using standard transmission electron microscopy and synchrotron-based X-ray absorption near-edge structure analysis (XANES). Whereas electron microscopy did not detect any ultrastructural changes in melanosomes lacking functional GPNMB, XANES uncovered multiple spectral phenotypes. These results directly demonstrate that GPNMB influences the chemical composition of melanosomes and more broadly illustrate the potential for using genetic approaches in combination with nano-imaging technologies to study organelle biology.
Collapse
Affiliation(s)
- Tamas Haraszti
- Institute of Physical Chemistry, University of Heidelberg, Heidelberg, Germany
- Max-Planck Institute for Metals Research, Stuttgart, Germany
| | - Colleen M. Trantow
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242
| | - Adam Hedberg-Buenz
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242
| | - Michael Grunze
- Institute of Physical Chemistry, University of Heidelberg, Heidelberg, Germany
- Institute for Molecular Biophysics, University of Maine, Orono, Maine 04469
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Michael G. Anderson
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
13
|
Trantow CM, Cuffy TL, Fingert JH, Kuehn MH, Anderson MG. Microarray analysis of iris gene expression in mice with mutations influencing pigmentation. Invest Ophthalmol Vis Sci 2011; 52:237-48. [PMID: 20739468 DOI: 10.1167/iovs.10-5479] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Several ocular diseases involve the iris, notably including oculocutaneous albinism, pigment dispersion syndrome, and exfoliation syndrome. To screen for candidate genes that may contribute to the pathogenesis of these diseases, genome-wide iris gene expression patterns were comparatively analyzed from mouse models of these conditions. METHODS Iris samples from albino mice with a Tyr mutation, pigment dispersion-prone mice with Tyrp1 and Gpnmb mutations, and mice resembling exfoliation syndrome with a Lyst mutation were compared with samples from wild-type mice. All mice were strain (C57BL/6J), age (60 days old), and sex (female) matched. Microarrays were used to compare transcriptional profiles, and differentially expressed transcripts were described by functional annotation clustering using DAVID Bioinformatics Resources. Quantitative real-time PCR was performed to validate a subset of identified changes. RESULTS Compared with wild-type C57BL/6J mice, each disease context exhibited a large number of statistically significant changes in gene expression, including 685 transcripts differentially expressed in albino irides, 403 in pigment dispersion-prone irides, and 460 in exfoliative-like irides. CONCLUSIONS Functional annotation clusterings were particularly striking among the overrepresented genes, with albino and pigment dispersion-prone irides both exhibiting overall evidence of crystallin-mediated stress responses. Exfoliative-like irides from mice with a Lyst mutation showed overall evidence of involvement of genes that influence immune system processes, lytic vacuoles, and lysosomes. These findings have several biologically relevant implications, particularly with respect to secondary forms of glaucoma, and represent a useful resource as a hypothesis-generating dataset.
Collapse
Affiliation(s)
- Colleen M Trantow
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
14
|
Heiduschka P, Julien S, Schuettauf F, Schnichels S. Loss of retinal function in aged DBA/2J mice - New insights into retinal neurodegeneration. Exp Eye Res 2010; 91:779-83. [PMID: 20832401 DOI: 10.1016/j.exer.2010.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/27/2010] [Accepted: 09/01/2010] [Indexed: 02/07/2023]
Abstract
The DBA/2J mouse is a common animal model of glaucoma. The intraocular pressure increases with age, and retinal ganglion cells (RGC) degenerate, usually starting at an age of approximately six months. In this study, we used two-year-old DBA/2J mice presuming an end-point of RGC degeneration. We investigated visual function in these animals using electroretinography (ERG) and visual evoked potentials (VEP), and we checked the number of remaining RGC by retrograde staining. Almost no RGC were left in the retina, and VEP were hardly recordable. Surprisingly, also ERG amplitudes of scotopic a-waves and b-waves, photopic b-waves and oscillatory potentials were decreased significantly by approximately 40% compared to amplitudes measured in age-matched C57BL/6J mice. The latencies were not changed in DBA/2J mice compared to C57BL/6J mice, and so were the ratios between amplitudes of a-waves, b-waves and oscillatory potentials. Our results indicate that, in addition to degeneration of RGC, also photoreceptors are affected by pathological processes in the eye caused by the mutations present in DBA/2J mice.
Collapse
|