1
|
Schloesser L, Klose SM, Mauschitz MM, Abdullah Z, Finger RP. The role of immune modulators in age-related macular degeneration. Surv Ophthalmol 2024; 69:851-869. [PMID: 39097172 DOI: 10.1016/j.survophthal.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
We provide an overview of the expanding literature on the role of cytokines and immune mediators in pathophysiology of age-related macular degeneration (AMD). Although many immunological mediators have been linked to AMD pathophysiology, the broader mechanistic picture remains unclear with substantial variations in the levels of evidence supporting these mediators. Therefore, we reviewed the literature considering the varying levels of supporting evidence. A Medical Subject Headings (MeSH) term-based literature research was conducted in September, 2023, consisting of the MeSH terms "cytokine" and "Age-related macular degeneration" connected by the operator "AND". After screening the publications by title, abstract, and full text, a total of 146 publications were included. The proinflammatory cytokines IL-1β (especially in basic research studies), IL-6, IL-8, IL-18, TNF-α, and MCP-1 are the most extensively characterised cytokines/chemokines, highlighting the role of local inflammasome activation and altered macrophage function in the AMD pathophysiology. Among the antiinflammatory mediators IL-4, IL-10, and TGF-β were found to be the most extensively characterised, with IL-4 driving and IL-10 and TGF-β suppressing disease progression. Despite the extensive literature on this topic, a profound understanding of AMD pathophysiology has not yet been achieved. Therefore, further studies are needed to identify potential therapeutic targets, followed by clinical studies.
Collapse
Affiliation(s)
- Lukas Schloesser
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Sara M Klose
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Asia-Pacific Centre for Animal Health, Faculty of Science, University of Melbourne, Melbourne, Australia
| | | | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Robert P Finger
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
2
|
Anisetti B, Stewart MW, Eggenberger ER, Shourav MMI, Youssef H, Elkhair A, Ertekin-Taner N, Meschia JF, Lin MP. Age-related macular degeneration is associated with probable cerebral amyloid angiopathy: A case-control study. J Stroke Cerebrovasc Dis 2023; 32:107244. [PMID: 37422928 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a common retinal degenerative disorder among older individuals. Amyloid deposits, a hallmark of cerebral amyloid angiopathy (CAA), may be involved in the pathogenesis of AMD. Since amyloid deposits may contribute to the development of both AMD and CAA, we hypothesized that patients with AMD have a higher prevalence of CAA. OBJECTIVE To compare the prevalence of CAA in patients with or without AMD matched for age. METHODS We conducted a cross-sectional, 1:1 age-matched, case-control study of patients ≥40 years of age at the Mayo Clinic who had undergone both retinal optical coherence tomography and brain MRI from 2011 to 2015. Primary dependent variables were probable CAA, superficial siderosis, and lobar and deep cerebral microbleeds (CMBs). The relationship between AMD and CAA was assessed using multivariable logistic regression and was compared across AMD severity (none vs early vs late AMD). RESULTS Our analysis included 256 age-matched pairs (AMD 126, no AMD 130). Of those with AMD, 79 (30.9%) had early AMD and 47 (19.4%) had late AMD. The mean age was 75±9 years, and there was no significant difference in vascular risk factors between groups. Patients with AMD had a higher prevalence of CAA (16.7% vs 10.0%, p=0.116) and superficial siderosis (15.1% vs 6.2%, p=0.020), but not deep CMB (5.2% vs 6.2%, p=0.426), compared to those without AMD. After adjusting for covariates, having late AMD was associated with increased odds of CAA (OR 2.83, 95% CI 1.10-7.27, p=0.031) and superficial siderosis (OR 3.40, 95%CI 1.20-9.65, p=0.022), but not deep CMB (OR 0.7, 95%CI 0.14-3.51, p=0.669). CONCLUSIONS AMD was associated with CAA and superficial siderosis but not deep CMB, consistent with the hypothesis that amyloid deposits play a role in the development of AMD. Prospective studies are needed to determine if features of AMD may serve as biomarkers for the early diagnosis of CAA.
Collapse
Affiliation(s)
- Bhrugun Anisetti
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Michael W Stewart
- Department of Ophthalmology, Mayo Clinic, Jacksonville, FL, United States
| | - Eric R Eggenberger
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States; Department of Ophthalmology, Mayo Clinic, Jacksonville, FL, United States
| | - Md Manjurul I Shourav
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Hossam Youssef
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Ahamed Elkhair
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Nilufer Ertekin-Taner
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - James F Meschia
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Michelle P Lin
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States.
| |
Collapse
|
3
|
Lynn SA, Soubigou F, Dewing JM, Smith A, Ballingall J, Sass T, Nica I, Watkins C, Gupta B, Almuhtaseb H, Lash SC, Yuen HM, Cree A, Newman TA, Lotery AJ, Ratnayaka JA. An Exploratory Study Provides Insights into MMP9 and Aβ Levels in the Vitreous and Blood across Different Ages and in a Subset of AMD Patients. Int J Mol Sci 2022; 23:14603. [PMID: 36498929 PMCID: PMC9736887 DOI: 10.3390/ijms232314603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP9) and total amyloid-beta (Aβ) are prospective biomarkers of ocular ageing and retinopathy. These were quantified by ELISA in the vitreous and blood from controls (n = 55) and in a subset of age-related macular degeneration (AMD) patients (n = 12) for insights and possible additional links between the ocular and systemic compartments. Vitreous MMP9 levels in control and AMD groups were 932.5 ± 240.9 pg/mL and 813.7 ± 157.6 pg/mL, whilst serum levels were 2228 ± 193 pg/mL and 2386.8 ± 449.4 pg/mL, respectively. Vitreous Aβ in control and AMD groups were 1173.5 ± 117.1 pg/mL and 1275.6 ± 332.9 pg/mL, whilst plasma Aβ were 574.3 ± 104.8 pg/mL and 542.2 ± 139.9 pg/mL, respectively. MMP9 and Aβ showed variable levels across the lifecourse, indicating no correlation to each other or with age nor AMD status, though the smaller AMD cohort was a limiting factor. Aβ and MMP9 levels in the vitreous and blood were unrelated to mean arterial pressure. Smoking, another modifiable risk, showed no association with vitreous Aβ. However, smoking may be linked with vitreous (p = 0.004) and serum (p = 0.005) MMP9 levels in control and AMD groups, though this did not reach our elevated (p = 0.001) significance. A bioinformatics analysis revealed promising MMP9 and APP/Aβ partners for further scrutiny, many of which are already linked with retinopathy.
Collapse
Affiliation(s)
- Savannah A. Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK
| | - Flavie Soubigou
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK
| | - Jennifer M. Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK
| | - Amanda Smith
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Joanna Ballingall
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Thea Sass
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Isabela Nica
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Catrin Watkins
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Bhaskar Gupta
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Hussein Almuhtaseb
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Stephen C. Lash
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Ho Ming Yuen
- Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, MP 801, Tremona Road, Southampton SO16 6YD, UK
| | - Angela Cree
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK
| | - Tracey A. Newman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
4
|
Lorés-Motta L, van Beek AE, Willems E, Zandstra J, van Mierlo G, Einhaus A, Mary JL, Stucki C, Bakker B, Hoyng CB, Fauser S, Clark SJ, de Jonge MI, Nogoceke E, Koertvely E, Jongerius I, Kuijpers TW, den Hollander AI. Common haplotypes at the CFH locus and low-frequency variants in CFHR2 and CFHR5 associate with systemic FHR concentrations and age-related macular degeneration. Am J Hum Genet 2021; 108:1367-1384. [PMID: 34260947 PMCID: PMC8387287 DOI: 10.1016/j.ajhg.2021.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration (AMD) is the principal cause of blindness in the elderly population. A strong effect on AMD risk has been reported for genetic variants at the CFH locus, encompassing complement factor H (CFH) and the complement-factor-H-related (CFHR) genes, but the underlying mechanisms are not fully understood. We aimed to dissect the role of factor H (FH) and FH-related (FHR) proteins in AMD in a cohort of 202 controls and 216 individuals with AMD. We detected elevated systemic levels of FHR-1 (p = 1.84 × 10-6), FHR-2 (p = 1.47 × 10-4), FHR-3 (p = 1.05 × 10-5) and FHR-4A (p = 1.22 × 10-2) in AMD, whereas FH concentrations remained unchanged. Common AMD genetic variants and haplotypes at the CFH locus strongly associated with FHR protein concentrations (e.g., FH p.Tyr402His and FHR-2 concentrations, p = 3.68 × 10-17), whereas the association with FH concentrations was limited. Furthermore, in an International AMD Genomics Consortium cohort of 17,596 controls and 15,894 individuals with AMD, we found that low-frequency and rare protein-altering CFHR2 and CFHR5 variants associated with AMD independently of all previously reported genome-wide association study (GWAS) signals (p = 5.03 × 10-3 and p = 2.81 × 10-6, respectively). Low-frequency variants in CFHR2 and CFHR5 led to reduced or absent FHR-2 and FHR-5 concentrations (e.g., p.Cys72Tyr in CFHR2 and FHR-2, p = 2.46 × 10-16). Finally, we showed localization of FHR-2 and FHR-5 in the choriocapillaris and in drusen. Our study identifies FHR proteins as key proteins in the AMD disease mechanism. Consequently, therapies that modulate FHR proteins might be effective for treating or preventing progression of AMD. Such therapies could target specific individuals with AMD on the basis of their genotypes at the CFH locus.
Collapse
Affiliation(s)
- Laura Lorés-Motta
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525EX, the Netherlands; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, 4070, Switzerland
| | - Anna E van Beek
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, 1066CX, the Netherlands; Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, 1105 AZ, the Netherlands; Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland; University of Basel, Basel, 4051, Switzerland
| | - Esther Willems
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525GA, the Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525GA, the Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525GA, the Netherlands
| | - Judith Zandstra
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, 1066CX, the Netherlands; Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, 1105 AZ, the Netherlands
| | - Gerard van Mierlo
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, 1066CX, the Netherlands
| | - Alfred Einhaus
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, 4070, Switzerland
| | - Jean-Luc Mary
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, 4070, Switzerland
| | - Corinne Stucki
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, 4070, Switzerland
| | - Bjorn Bakker
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525EX, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525EX, the Netherlands
| | - Sascha Fauser
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, 4070, Switzerland
| | - Simon J Clark
- University Eye Clinic, Department for Ophthalmology, University of Tübingen, 72076, Germany; Institue for Ophthalmic Research, Eberhard Karls University of Tübingen, 72076, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, M139PL, United Kingdom
| | - Marien I de Jonge
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525GA, the Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525GA, the Netherlands
| | - Everson Nogoceke
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, 4070, Switzerland
| | - Elod Koertvely
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, 4070, Switzerland
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, 1066CX, the Netherlands; Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, 1105 AZ, the Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, 1105 AZ, the Netherlands; Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, 1066CX, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525EX, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525GA, the Netherlands.
| |
Collapse
|
5
|
de Jong S, Gagliardi G, Garanto A, de Breuk A, Lechanteur YTE, Katti S, van den Heuvel LP, Volokhina EB, den Hollander AI. Implications of genetic variation in the complement system in age-related macular degeneration. Prog Retin Eye Res 2021; 84:100952. [PMID: 33610747 DOI: 10.1016/j.preteyeres.2021.100952] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/23/2022]
Abstract
Age-related macular degeneration (AMD) is the main cause of vision loss among the elderly in the Western world. While AMD is a multifactorial disease, the complement system was identified as one of the main pathways contributing to disease risk. The strong link between the complement system and AMD was demonstrated by genetic associations, and by elevated complement activation in local eye tissue and in the systemic circulation of AMD patients. Several complement inhibitors have been and are being explored in clinical trials, but thus far with limited success, leaving the majority of AMD patients without treatment options to date. This indicates that there is still a gap of knowledge regarding the functional implications of the complement system in AMD pathogenesis and how to bring these towards clinical translation. Many different experimental set-ups and disease models have been used to study complement activation in vivo and in vitro, and recently emerging patient-derived induced pluripotent stem cells and genome-editing techniques open new opportunities to study AMD disease mechanisms and test new therapeutic strategies in the future. In this review we provide an extensive overview of methods employed to understand the molecular processes of complement activation in AMD pathogenesis. We discuss the findings, advantages and challenges of each approach and conclude with an outlook on how recent, exciting developments can fill in current knowledge gaps and can aid in the development of effective complement-targeting therapeutic strategies in AMD.
Collapse
Affiliation(s)
- Sarah de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Giuliana Gagliardi
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Pediatrics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Anita de Breuk
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Yara T E Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Suresh Katti
- Gemini Therapeutics Inc., Cambridge, MA, 02139, USA
| | - Lambert P van den Heuvel
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Laboratory Medicine, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Elena B Volokhina
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Laboratory Medicine, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Lynn SA, Johnston DA, Scott JA, Munday R, Desai RS, Keeling E, Weaterton R, Simpson A, Davis D, Freeman T, Chatelet DS, Page A, Cree AJ, Lee H, Newman TA, Lotery AJ, Ratnayaka JA. Oligomeric Aβ 1-42 Induces an AMD-Like Phenotype and Accumulates in Lysosomes to Impair RPE Function. Cells 2021; 10:413. [PMID: 33671133 PMCID: PMC7922851 DOI: 10.3390/cells10020413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease-associated amyloid beta (Aβ) proteins accumulate in the outer retina with increasing age and in eyes of age-related macular degeneration (AMD) patients. To study Aβ-induced retinopathy, wild-type mice were injected with nanomolar human oligomeric Aβ1-42, which recapitulate the Aβ burden reported in human donor eyes. In vitro studies investigated the cellular effects of Aβ in endothelial and retinal pigment epithelial (RPE) cells. Results show subretinal Aβ-induced focal AMD-like pathology within 2 weeks. Aβ exposure caused endothelial cell migration, and morphological and barrier alterations to the RPE. Aβ co-localized to late-endocytic compartments of RPE cells, which persisted despite attempts to clear it through upregulation of lysosomal cathepsin B, revealing a novel mechanism of lysosomal impairment in retinal degeneration. The rapid upregulation of cathepsin B was out of step with the prolonged accumulation of Aβ within lysosomes, and contrasted with enzymatic responses to internalized photoreceptor outer segments (POS). Furthermore, RPE cells exposed to Aβ were identified as deficient in cargo-carrying lysosomes at time points that are critical to POS degradation. These findings imply that Aβ accumulation within late-endocytic compartments, as well as lysosomal deficiency, impairs RPE function over time, contributing to visual defects seen in aging and AMD eyes.
Collapse
Affiliation(s)
- Savannah A. Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - David A. Johnston
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.A.J.); (D.S.C.); (A.P.)
| | - Jenny A. Scott
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Rosie Munday
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Roshni S. Desai
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Ruaridh Weaterton
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Alexander Simpson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Dillon Davis
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Thomas Freeman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - David S. Chatelet
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.A.J.); (D.S.C.); (A.P.)
| | - Anton Page
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.A.J.); (D.S.C.); (A.P.)
| | - Angela J. Cree
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Helena Lee
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Tracey A. Newman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| |
Collapse
|
7
|
Feng C, Krogh Nielsen M, Sørensen TL, Subhi Y. Systemic levels of C-reactive protein in patients with age-related macular degeneration: A systematic review with meta-analyses. Mech Ageing Dev 2020; 191:111353. [PMID: 32937187 DOI: 10.1016/j.mad.2020.111353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/06/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
Ageing of the retina is associated with the gradual accumulation of basal deposits and the formation of drusen. However, in some individuals this process is exacerbated and causes development of age-related macular degeneration. Late features of age-related macular degeneration include geographic atrophy of the neuroretina or choroidal neovascularization. Such changes lead to blurred vision, metamorphopsia, and scotoma, and is the leading cause of vision loss in developed countries. Chronic low-grade inflammation has been investigated because of its relationship to ageing and its role in the gap between chronological and biological ageing. Here, we systematically reviewed studies investigating systemic C-reactive protein in patients with age-related macular degeneration. We identified 53 studies with 60,598 participants (10,392 patients and 38,901 controls). Our meta-analyses revealed that early age-related macular degeneration was not associated to systemic C-reactive protein (Cohen's d = 0.03 [-0.04 to 0.10]; OR = 1.06 [0.93-1.20]; P = 0.39) whereas late age-related macular degeneration (Cohen's d = 0.38 [0.24 to 0.51]; OR = 1.99 [1.55-2.52]; P < 0.0001), and neovascular age-related macular degeneration (Cohen's d = 0.40 [0.24 to 0.56]; OR = 2.07 [1.55-2.76]; P < 0.0001) was associated with a small-to-moderate increase in systemic C-reactive protein. Our review provides an overview of this extensively studied field, provide summary estimates that provide insight into when and to what extent systemic C-reactive protein is associated with age-related macular degeneration, and help in distinguishing the potentially reversible disease processes from that of irreversible retinal ageing.
Collapse
Affiliation(s)
- Chen Feng
- Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Marie Krogh Nielsen
- Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark; Department of Ophthalmology, Rigshospitalet, Copenhagen, Denmark
| | - Torben Lykke Sørensen
- Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Yousif Subhi
- Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark; Department of Ophthalmology, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
8
|
Cipriani V, Lorés-Motta L, He F, Fathalla D, Tilakaratna V, McHarg S, Bayatti N, Acar İE, Hoyng CB, Fauser S, Moore AT, Yates JRW, de Jong EK, Morgan BP, den Hollander AI, Bishop PN, Clark SJ. Increased circulating levels of Factor H-Related Protein 4 are strongly associated with age-related macular degeneration. Nat Commun 2020; 11:778. [PMID: 32034129 PMCID: PMC7005798 DOI: 10.1038/s41467-020-14499-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness. Genetic variants at the chromosome 1q31.3 encompassing the complement factor H (CFH, FH) and CFH related genes (CFHR1-5) are major determinants of AMD susceptibility, but their molecular consequences remain unclear. Here we demonstrate that FHR-4 plays a prominent role in AMD pathogenesis. We show that systemic FHR-4 levels are elevated in AMD (P-value = 7.1 × 10-6), whereas no difference is seen for FH. Furthermore, FHR-4 accumulates in the choriocapillaris, Bruch's membrane and drusen, and can compete with FH/FHL-1 for C3b binding, preventing FI-mediated C3b cleavage. Critically, the protective allele of the strongest AMD-associated CFH locus variant rs10922109 has the highest association with reduced FHR-4 levels (P-value = 2.2 × 10-56), independently of the AMD-protective CFHR1-3 deletion, and even in those individuals that carry the high-risk allele of rs1061170 (Y402H). Our findings identify FHR-4 as a key molecular player contributing to complement dysregulation in AMD.
Collapse
Affiliation(s)
- Valentina Cipriani
- William Harvey Research Institute, Clinical Pharmacology, Queen Mary University of London, London, EC1M 6BQ, UK.
- UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
- UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| | - Laura Lorés-Motta
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Fan He
- Division of Evolution and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Dina Fathalla
- Systems Immunity URI, Division of Infection and Immunity, and UK DRI Cardiff, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Viranga Tilakaratna
- Division of Evolution and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Selina McHarg
- Division of Evolution and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Nadhim Bayatti
- Division of Evolution and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - İlhan E Acar
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Sascha Fauser
- Department of Ophthalmology, University Hospital of Cologne, Cologne, 50924, Germany
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, 4070, Switzerland
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
- Ophthalmology Department, University of California San Francisco, San Francisco, CA, USA
| | - John R W Yates
- UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Eiko K de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - B Paul Morgan
- Systems Immunity URI, Division of Infection and Immunity, and UK DRI Cardiff, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, 6525 HR, The Netherlands
| | - Paul N Bishop
- Division of Evolution and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Simon J Clark
- Division of Evolution and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Department of Ophthalmology, Research Institute of Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
9
|
Subhi Y, Krogh Nielsen M, Molbech CR, Oishi A, Singh A, Nissen MH, Sørensen TL. Plasma markers of chronic low-grade inflammation in polypoidal choroidal vasculopathy and neovascular age-related macular degeneration. Acta Ophthalmol 2019; 97:99-106. [PMID: 30288946 DOI: 10.1111/aos.13886] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Ageing is the strongest predictor of neovascular age-related macular degeneration (AMD), where neuroinflammation is known to play a major role. Less is known about polypoidal choroidal vasculopathy (PCV), which is an important differential diagnosis to neovascular AMD. Here, we report plasma markers of inflammation with age (inflammaging) in patients with PCV, patients with neovascular AMD and a healthy age-matched control group. METHODS We isolated plasma from fresh venous blood obtained from participants (n = 90) with either PCV, neovascular AMD, or healthy maculae. Interleukin(IL)-1β, IL-6, IL-8, IL-10 and tumour necrosis factor receptor 2 (TNF-R2) were measured using U-PLEX Human Assays. Routine plasma C-reactive protein (CRP) was measured using Dimension Vista 1500. RESULTS Patients with PCV had plasma levels of IL-1β, IL-6, IL-8, IL-10 and TNF-R2 similar to that in healthy controls. Patients with neovascular AMD had significantly higher plasma IL-1β, IL-6 and IL-10 than healthy controls, whereas no significant differences were observed for plasma IL-8 and TNF-R2. Differences between plasma IL-1β, IL-6 and IL-10 possessed a positive but weak ability in discriminating neovascular AMD from PCV. Both patients with PCV and patients with neovascular AMD had significantly higher levels of routine plasma CRP. CONCLUSION Patients with PCV differ from patients with neovascular AMD in terms of plasma inflammaging profile. Apart from increased CRP, no signs of inflammaging were observed in patients with PCV. In patients with neovascular AMD, we find a specific angiogenesis-twisted inflammaging profile.
Collapse
Affiliation(s)
- Yousif Subhi
- Clinical Eye Research Division; Department of Ophthalmology; Zealand University Hospital; Roskilde Denmark
- Faculty of Health and Medical Science; University of Copenhagen; Copenhagen Denmark
| | - Marie Krogh Nielsen
- Clinical Eye Research Division; Department of Ophthalmology; Zealand University Hospital; Roskilde Denmark
- Faculty of Health and Medical Science; University of Copenhagen; Copenhagen Denmark
| | - Christopher Rue Molbech
- Clinical Eye Research Division; Department of Ophthalmology; Zealand University Hospital; Roskilde Denmark
- Faculty of Health and Medical Science; University of Copenhagen; Copenhagen Denmark
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Amardeep Singh
- Clinical Eye Research Division; Department of Ophthalmology; Zealand University Hospital; Roskilde Denmark
- Department of Clinical Sciences Lund; Ophthalmology; Skane University Hospital; Lund University; Lund Sweden
| | - Mogens Holst Nissen
- Faculty of Health and Medical Science; University of Copenhagen; Copenhagen Denmark
- Eye Research Unit; Department of Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Torben Lykke Sørensen
- Clinical Eye Research Division; Department of Ophthalmology; Zealand University Hospital; Roskilde Denmark
- Faculty of Health and Medical Science; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
10
|
Lorés-Motta L, de Jong EK, den Hollander AI. Exploring the Use of Molecular Biomarkers for Precision Medicine in Age-Related Macular Degeneration. Mol Diagn Ther 2018; 22:315-343. [PMID: 29700787 PMCID: PMC5954014 DOI: 10.1007/s40291-018-0332-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Precision medicine aims to improve patient care by adjusting medication to each patient's individual needs. Age-related macular degeneration (AMD) is a heterogeneous eye disease in which several pathways are involved, and the risk factors driving the disease differ per patient. As a consequence, precision medicine holds promise for improved management of this disease, which is nowadays a main cause of vision loss in the elderly. In this review, we provide an overview of the studies that have evaluated the use of molecular biomarkers to predict response to treatment in AMD. We predominantly focus on genetic biomarkers, but also include studies that examined circulating or eye fluid biomarkers in treatment response. This involves studies on treatment response to dietary supplements, response to anti-vascular endothelial growth factor, and response to complement inhibitors. In addition, we highlight promising new therapies that have been or are currently being tested in clinical trials and discuss the molecular studies that can help identify the most suitable patients for these upcoming therapeutic approaches.
Collapse
Affiliation(s)
- Laura Lorés-Motta
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands
| | - Eiko K de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands.
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Qiu C, Ding J, Sigurdsson S, Fisher DE, Zhang Q, Eiriksdottir G, Klein R, van Buchem MA, Gudnason V, Cotch MF, Launer LJ. Differential associations between retinal signs and CMBs by location: The AGES-Reykjavik Study. Neurology 2017; 90:e142-e148. [PMID: 29237799 PMCID: PMC5772152 DOI: 10.1212/wnl.0000000000004792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To test the hypothesis that age-related macular degeneration (AMD) and retinal microvascular signs are differentially associated with lobar and deep cerebral microbleeds (CMBs). METHODS CMBs in lobar regions indicate cerebral amyloid angiopathy (CAA). β-Amyloid deposits are implicated in both CAA and AMD. Deep CMBs are associated with hypertension, a major risk factor for retinal microvascular damage. This population-based cohort study included 2,502 participants in the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study who undertook binocular digital retinal photographs at baseline (2002-2006) to assess retinal microvascular signs and AMD and brain MRI scan at both baseline and follow-up (2007-2011) to assess CMBs. We assessed retinal microvascular lesion burden by counting the 3 retinal microvascular signs (focal arteriolar narrowing, arteriovenous nicking, and retinopathy) concurrently present in the participant. We used multiple logistic models to examine the association of baseline retinal pathology to incident CMBs detected at follow-up. RESULTS During an average 5.2 years of follow-up, 461 people (18.3%) developed new CMBs, including 293 in exclusively lobar regions and 168 in deep regions. Pure geographic atrophy was significantly associated with strictly lobar CMBs (multivariable-adjusted odds ratio 2.59, 95% confidence interval [CI] 1.01-6.65) but not with deep CMBs. Concurrently having ≥2 retinal microvascular signs was associated with a 3-fold (95% CI 1.73-5.20) increased likelihood for deep CMBs but not exclusively lobar CMBs. CONCLUSIONS Retinal microvascular signs and pure geographic atrophy may be associated with deep and exclusively lobar CMBs, respectively, in older people. These results have implications for further research to define the role of small vessel disease in cognitive impairment.
Collapse
Affiliation(s)
- Chengxuan Qiu
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik.
| | - Jie Ding
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Sigurdur Sigurdsson
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Diana E Fisher
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Qian Zhang
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Gudny Eiriksdottir
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Ronald Klein
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Mark A van Buchem
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Vilmundur Gudnason
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Mary Frances Cotch
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik
| | - Lenore J Launer
- From the Intramural Research Program (C.Q., J.D., Q.Z., L.J.L.), Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD; Aging Research Center (C.Q.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Sweden; Icelandic Heart Association (S.S., G.E., V.G.), Kopavogur; Division of Epidemiology and Clinical Research (D.E.F., M.F.C.), National Eye Institute, NIH, Bethesda, MD; Ophthalmology and Visual Sciences (R.K.), University of Wisconsin Madison; Department of Radiology (M.A.v.B.), Leiden University Medical Centre, the Netherlands; and Faculty of Medicine (V.G.), University of Iceland, Reykjavik.
| |
Collapse
|
12
|
Soderstrom C, Berstein G, Zhang W, Valdez H, Fitz L, Kuhn M, Fraser S. Ultra-Sensitive Measurement of IL-17A and IL-17F in Psoriasis Patient Serum and Skin. AAPS JOURNAL 2017; 19:1218-1222. [PMID: 28534291 DOI: 10.1208/s12248-017-0094-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023]
Abstract
Interleukin 17 is a family of cytokines that play a central role in many autoimmune and inflammatory diseases. IL-17A has been implicated as a key driver of psoriasis, mediating a chronic cycle of T-cell activation, keratinocyte proliferation and angiogenesis. It has been hypothesized that expression of IL-17A and the related cytokine IL-17F could be used as predictive biomarkers for therapeutic response, though they have been difficult to measure locally or in circulation because of their low abundance. We developed ultrasensitive methods for measuring IL-17A and IL-17F in human serum samples and found that serum from psoriasis patients had higher and a broader range of concentrations of both IL-17 proteins compared to healthy volunteers. We also adapted these methods for tissue biopsies and saw higher concentrations of both IL-17 proteins in psoriatic lesions, but they were undetectable in non-lesional skin from the same patients.
Collapse
Affiliation(s)
| | - Gabriel Berstein
- Pfizer Inflammation and Immunology Research Unit, Cambridge, Massachusetts, USA
| | - Weidong Zhang
- Pfizer Inflammation and Immunology Research Unit, Cambridge, Massachusetts, USA
| | - Hernan Valdez
- Pfizer Global Innovative Pharmaceuticals, New York, New York, USA
| | - Lori Fitz
- Pfizer Precision Medicine Bioanalytical, Cambridge, Massachusetts, USA
| | - Max Kuhn
- Research Statistics, Groton, Connecticut, USA
| | | |
Collapse
|
13
|
Kersten E, Paun CC, Schellevis RL, Hoyng CB, Delcourt C, Lengyel I, Peto T, Ueffing M, Klaver CCW, Dammeier S, den Hollander AI, de Jong EK. Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration. Surv Ophthalmol 2017; 63:9-39. [PMID: 28522341 DOI: 10.1016/j.survophthal.2017.05.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022]
Abstract
Biomarkers can help unravel mechanisms of disease and identify new targets for therapy. They can also be useful in clinical practice for monitoring disease progression, evaluation of treatment efficacy, and risk assessment in multifactorial diseases, such as age-related macular degeneration (AMD). AMD is a highly prevalent progressive retinal disorder for which multiple genetic and environmental risk factors have been described, but the exact etiology is not yet fully understood. Many compounds have been evaluated for their association with AMD. We performed an extensive literature review of all compounds measured in serum, plasma, vitreous, aqueous humor, and urine of AMD patients. Over 3600 articles were screened, resulting in more than 100 different compounds analyzed in AMD studies, involved in neovascularization, immunity, lipid metabolism, extracellular matrix, oxidative stress, diet, hormones, and comorbidities (such as kidney disease). For each compound, we provide a short description of its function and discuss the results of the studies in relation to its usefulness as AMD biomarker. In addition, biomarkers identified by hypothesis-free techniques, including metabolomics, proteomics, and epigenomics, are covered. In summary, compounds belonging to the oxidative stress pathway, the complement system, and lipid metabolism are the most promising biomarker candidates for AMD. We hope that this comprehensive survey of the literature on systemic and ocular fluid compounds as potential biomarkers in AMD will provide a stepping stone for future research and possible implementation in clinical practice.
Collapse
Affiliation(s)
- Eveline Kersten
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Constantin C Paun
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rosa L Schellevis
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cécile Delcourt
- Université de Bordeaux, ISPED, Bordeaux, France; INSERM, U1219-Bordeaux Population Health Research Center, Bordeaux, France
| | - Imre Lengyel
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Tunde Peto
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Marius Ueffing
- Department for Ophthalmology and Medical Bioanalytics Centre Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sascha Dammeier
- Department for Ophthalmology and Medical Bioanalytics Centre Tübingen, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eiko K de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Lynn SA, Keeling E, Munday R, Gabha G, Griffiths H, Lotery AJ, Ratnayaka JA. The complexities underlying age-related macular degeneration: could amyloid beta play an important role? Neural Regen Res 2017; 12:538-548. [PMID: 28553324 PMCID: PMC5436342 DOI: 10.4103/1673-5374.205083] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) causes irreversible loss of central vision for which there is no effective treatment. Incipient pathology is thought to occur in the retina for many years before AMD manifests from midlife onwards to affect a large proportion of the elderly. Although genetic as well as non-genetic/environmental risks are recognized, its complex aetiology makes it difficult to identify susceptibility, or indeed what type of AMD develops or how quickly it progresses in different individuals. Here we summarize the literature describing how the Alzheimer's-linked amyloid beta (Aβ) group of misfolding proteins accumulate in the retina. The discovery of this key driver of Alzheimer's disease in the senescent retina was unexpected and surprising, enabling an altogether different perspective of AMD. We argue that Aβ fundamentally differs from other substances which accumulate in the ageing retina, and discuss our latest findings from a mouse model in which physiological amounts of Aβ were subretinally-injected to recapitulate salient features of early AMD within a short period. Our discoveries as well as those of others suggest the pattern of Aβ accumulation and pathology in donor aged/AMD tissues are closely reproduced in mice, including late-stage AMD phenotypes, which makes them highly attractive to study dynamic aspects of Aβ-mediated retinopathy. Furthermore, we discuss our findings revealing how Aβ behaves at single-cell resolution, and consider the long-term implications for neuroretinal function. We propose Aβ as a key element in switching to a diseased retinal phenotype, which is now being used as a biomarker for late-stage AMD.
Collapse
Affiliation(s)
- Savannah A Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Rosie Munday
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Gagandeep Gabha
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Helen Griffiths
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Eye Unit, University Southampton NHS Trust, Southampton, United Kingdom
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|