1
|
Kellner S, Weinitz S, Farmand G, Kellner U. Near-Infrared Autofluorescence: Early Detection of Retinal Pigment Epithelial Alterations in Inherited Retinal Dystrophies. J Clin Med 2024; 13:6886. [PMID: 39598030 PMCID: PMC11594703 DOI: 10.3390/jcm13226886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Near-infrared autofluorescence (NIA) is a non-invasive retinal imaging technique used to examine the retinal pigment epithelium (RPE) based on the autofluorescence of melanin. Melanin has several functions within RPE cells. It serves as a protective antioxidative factor and is involved in the phagocytosis of photoreceptor outer segments. Disorders affecting the photoreceptor-RPE complex result in alterations of RPE cells which are detectable by alterations of NIA. NIA allows us to detect early alterations in various chorioretinal disorders, frequently before they are ophthalmoscopically visible and often prior to alterations in lipofuscin-associated fundus autofluorescence (FAF) or optical coherence tomography (OCT). Although NIA and FAF relate to disorders affecting the RPE, the findings for both imaging methods differ and the area involved has been demonstrated to be larger in NIA compared to FAF in several disorders, especially inherited retinal dystrophies (IRDs), indicating that NIA detects earlier alterations compared to FAF. Foveal alterations can be much more easily detected using NIA compared to FAF. A reduced subfoveal NIA intensity is the earliest sign of autosomal dominant Best disease, when FAF and OCT are still normal. In other IRDs, a preserved subfoveal NIA intensity is associated with good visual acuity. So far, the current knowledge on NIA in IRD has been presented in multiple separate publications but has not been summarized in an overview. This review presents the current knowledge on NIA in IRD and demonstrates NIA biomarkers.
Collapse
Affiliation(s)
- Simone Kellner
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
- RetinaScience, 53192 Bonn, Germany
| | - Silke Weinitz
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
- RetinaScience, 53192 Bonn, Germany
| | - Ghazaleh Farmand
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
| | - Ulrich Kellner
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
- RetinaScience, 53192 Bonn, Germany
| |
Collapse
|
2
|
Bianco L, Arrigo A, Antropoli A, Berni A, Saladino A, Vilela MAP, Mansour AM, Bandello F, Battaglia Parodi M. Multimodal imaging in Best Vitelliform Macular Dystrophy: Literature review and novel insights. Eur J Ophthalmol 2024; 34:39-51. [PMID: 36972471 PMCID: PMC10757402 DOI: 10.1177/11206721231166434] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Best Vitelliform Macular Dystrophy (BVMD) is a dominantly inherited retinal disease caused by dominant variants in the BEST1 gene. The original classification of BVMD is based on biomicroscopy and color fundus photography (CFP); however, advancements in retinal imaging provided unique structural, vascular, and functional data and novel insights on disease pathogenesis. Quantitative fundus autofluorescence studies informed us that lipofuscin accumulation, the hallmark of BVMD, is unlikely to be a primary effect of the genetic defect. It could be due to a lack of apposition between photoreceptors and retinal pigment epithelium in the macula with subsequent accumulation of shed outer segments over time. Optical Coherence Tomography (OCT) and adaptive optics imaging revealed that vitelliform lesions are characterized by progressive changes in the cone mosaic corresponding to a thinning of the outer nuclear layer and then disruption of the ellipsoid zone, which are associated with a decreased sensitivity and visual acuity. Therefore, an OCT staging system based on lesion composition, thus reflecting disease evolution, has been recently developed. Lastly, the emerging role of OCT Angiography proved a greater prevalence of macular neovascularization, the majority of which are non-exudative and develop in late disease stages. In conclusion, effective diagnosis, staging, and clinical management of BVMD will likely require a deep understanding of the multimodal imaging features of this disease.
Collapse
Affiliation(s)
- Lorenzo Bianco
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Antropoli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Berni
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Manuel AP Vilela
- Clinical Surgery, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Ahmad M Mansour
- Department of Ophthalmology, American University of Beirut, Beirut, Lebanon
- Department of Ophthalmology, Rafic Hariri University Hospital, Beirut, Lebanon
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
3
|
Fujino R, Inoue T, Yanagi Y, Maruyama-Inoue M, Kadonosono K, Obata R, Asaoka R. Retinal sensitivity and fundus autofluorescence in adult-onset foveomacular vitelliform dystrophy. Sci Rep 2023; 13:21777. [PMID: 38066097 PMCID: PMC10709410 DOI: 10.1038/s41598-023-49256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
The present study aimed to compare retinal sensitivity (RS) at each stage and to evaluate the relationship between RS and fundus autofluorescence (FAF) pattern in adult-onset foveomacular vitelliform dystrophy (AOFVD). We retrospectively reviewed 17 eyes of 13 patients with AOFVD. In addition to best-corrected visual acuity (VA), RS within the affected lesion and optical coherence tomography (OCT) measurements were carried out in each participant. All the examined eyes were classified into 4 stages and 3 FAF patterns. RS was superimposed on OCT fundus image and RS within the affected lesion was calculated in each eye. The relationships between visual functions (VA and RS within the affected lesion) and stages and also FAF patterns were analyzed using the linear mixed model. As a result, RS within the affected lesion was significantly associated with FAF pattern, but not with stage. In contrast, VA was correlated with neither stages nor FAF patterns. Our current result suggested that RS within the affected lesion was related to FAF patterns but this was not the case with VA in eyes with AOFVD, demonstrating the usefulness of measuring RS, not only VA, to comprehend the disease status in AOFVD.
Collapse
Affiliation(s)
- Ryosuke Fujino
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Inoue
- Department of Ophthalmology and Micro-Technology, Yokohama City University, 4-57 Urafune, Minami-ku, Yokohama, 232-0024, Japan.
| | - Yasuo Yanagi
- Department of Ophthalmology and Micro-Technology, Yokohama City University, 4-57 Urafune, Minami-ku, Yokohama, 232-0024, Japan
| | - Maiko Maruyama-Inoue
- Department of Ophthalmology and Micro-Technology, Yokohama City University, 4-57 Urafune, Minami-ku, Yokohama, 232-0024, Japan
| | - Kazuaki Kadonosono
- Department of Ophthalmology and Micro-Technology, Yokohama City University, 4-57 Urafune, Minami-ku, Yokohama, 232-0024, Japan
| | - Ryo Obata
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | - Ryo Asaoka
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-ku, Hamamatsu, Shizuoka, 430-8558, Japan.
- Seirei Christopher University, Hamamatsu, Shizuoka, Japan.
| |
Collapse
|
4
|
Cideciyan AV, Jacobson SG, Swider M, Sumaroka A, Sheplock R, Krishnan AK, Garafalo AV, Guziewicz KE, Aguirre GD, Beltran WA, Heon E. Photoreceptor Function and Structure in Autosomal Dominant Vitelliform Macular Dystrophy Caused by BEST1 Mutations. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 36512348 DOI: 10.1167/iovs.63.13.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The purpose of this study was to evaluate rod and cone function and outer retinal structure within macular lesions, and surrounding extralesional areas of patients with autosomal dominant Best vitelliform macular dystrophy caused by BEST1 mutations. Methods Seventeen patients from seven families were examined with dark- and light-adapted chromatic perimetry and optical coherence tomography. Subsets of patients had long-term follow-up (14-22 years, n = 6) and dark-adaptation kinetics measured (n = 5). Results Within central lesions with large serous retinal detachments, rod sensitivity was severely reduced but visual acuity and cone sensitivity were relatively retained. In surrounding extralesional areas, there was a mild but detectable widening of the subretinal space in some patients and some retinal areas. Available evidence was consistent with subretinal widening causing slower dark-adaptation kinetics. Over long-term follow-up, some eyes showed formation of de novo satellite lesions at retinal locations that years previously demonstrated subretinal widening. A subclinical abnormality consisting of a retina-wide mild thickening of the outer nuclear layer was evident in many patients and thickening increased in the subset of patients with long-term follow-up. Conclusions Outcome measures for future clinical trials should include evaluations of rod sensitivity within central lesions and quantitative measures of outer retinal structure in normal-appearing regions surrounding the lesions.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca Sheplock
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Arun K Krishnan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Karina E Guziewicz
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Battaglia Parodi M, Bianco L, Arrigo A, Saladino A, Antropoli A, Pina A, Marchese A, Aragona E, Rashid HF, Bandello F. Clinical Correlation Between Optical Coherence Tomography Biomarkers and Retinal Sensitivity in Best Vitelliform Macular Dystrophy. Transl Vis Sci Technol 2022; 11:24. [PMID: 36156730 PMCID: PMC9526372 DOI: 10.1167/tvst.11.9.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the clinical and imaging features associated with retinal sensitivity in Best vitelliform macular dystrophy (BVMD). Methods This was a cross-sectional, single-center, observational study. Each patient underwent optical coherence tomography (OCT), near-infrared fundus autofluorescence, and OCT angiography. Macular integrity assessment microperimetry under mesopic conditions was performed to obtain retinal sensitivity thresholds from 68 testing points in the central macula. Structural OCT was used to classify BVMD lesions into four types according to their composition: vitelliform, mixed, subretinal fluid, and atrophy. Multilevel, mixed-effects linear regression was used to determine the factors associated with retinal sensitivity. Results The study included 57 eyes of 30 patients with BVMD, 48 of which (84%) were in a clinical stage. Mean retinal sensitivity varied according to the composition of the lesion: the vitelliform type registering the highest (22 ± 4.1 dB), followed by mixed (18.73 ± 2.7 dB), subretinal fluid (15.68 ± 4.2 dB), and atrophy types (11.85 ± 4.6 dB). The factors most strongly associated with mean retinal sensitivity in BVMD proved to be the OCT lesion type and outer nuclear layer thickness. Conclusions Retinal sensitivity in BVMD is influenced by lesion composition and outer nuclear layer thickness. Further studies with long-term follow-up are warranted to examine retinal sensitivity over time and to validate retinal sensitivity changes as biomarkers for BVMD. Translational Relevance Assessing retinal sensitivity in BVMD provides a new instrument in the clinical characterization of the disease and offers the opportunity to identify imaging biomarkers for use as outcome measures in future clinical trials.
Collapse
Affiliation(s)
| | - Lorenzo Bianco
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Antropoli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adelaide Pina
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Marchese
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Hassan Farah Rashid
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Nowomiejska K, Nasser F, Stingl K, Schimpf‐Linzenbold S, Biskup S, Brzozowska A, Rejdak R, Kohl S, Zrenner E. Disease expression caused by different variants in the BEST1 gene: genotype and phenotype findings in bestrophinopathies. Acta Ophthalmol 2022; 100:e847-e858. [PMID: 34327816 PMCID: PMC9328113 DOI: 10.1111/aos.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
Purpose: To analyse the spectrum of clinical features and molecular genetic data in a series of patients carrying likely disease-associated variants in the BEST1 gene. Methods: Retrospective observational analysis of clinical data extracted from the medical records of visual function, multimodal imaging and electrophysiology of 62 eyes of 31 patients. Molecular genetic analysis was performed by means of panel-based NGS or Sanger sequencing. Results: The spectrum of variants in the BEST1 gene comprised 19 different variants and three of which are novel. Fundus photographs and OCT images allowed categorization of 52 eyes as Best vitelliform macular dystrophy (BVMD) with stages 1 to 5 and 10 eyes with autosomal recessive bestrophinopathy (ARB), with more severe phenotype. One patient was shown to be heterozygous for a variant, which has so far been described only in ARB, but this patient had the BVMD phenotype. There was no significant progression of the visual acuity during the follow-up period of 5 years both in BVMD and ARB. The most prevalent pattern of fundus autofluorescence (FAF) in BVMD was ‘patchy’. There were diverse visual field defects in static automated perimetry (SAP) depending on the stage. The Arden ratio was significantly lower in ARB patients and in eyes with stage 5 of BVMD. Conclusions: The genotype does not always predict the phenotype in patients with BVMD and ARB; however, having two mutations in the BEST1 gene causes a more severephenotype. FAFhelped to distinguish ARB from BVMD. Most of the observed eyesdidnotprogressfunctionallyduringthefollow-up.ARBandtheatrophicstageof BVMD as the disease end-stage had the worst visual functions and EOG results.
Collapse
Affiliation(s)
- Katarzyna Nowomiejska
- Chair and Department of General and Pediatric Ophthalmology Medical University of Lublin Lublin Poland
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
| | - Fadi Nasser
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
| | - Katarina Stingl
- University Eye Hospital Center for Ophthalmology University of Tübingen Tübingen Germany
- Center for Rare Eye Diseases University of Tübingen Tübingen Germany
| | | | | | - Agnieszka Brzozowska
- Department of Mathematics and Medical Biostatistics Medical University of Lublin Lublin Poland
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology Medical University of Lublin Lublin Poland
| | - Susanne Kohl
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
| | - Eberhart Zrenner
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
- Werner Reichardt Centre for Integrative Neuroscience University of Tübingen Tübingen Germany
| |
Collapse
|
7
|
Parodi MB, Arrigo A, Calamuneri A, Aragona E, Bandello F. Multimodal imaging in subclinical best vitelliform macular dystrophy. Br J Ophthalmol 2020; 106:564-567. [PMID: 33293267 DOI: 10.1136/bjophthalmol-2020-317635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND To analyse multimodal imaging alterations in the subclinical form of best vitelliform macular dystrophy (BVMD). METHODS The study was designed as an observational, cross-sectional case series. Eleven eyes of 7 subclinical patients with BVMD and 12 age-matched and sex-matched controls were included. Multimodal imaging included fundus blue-light autofluorescence, near-infrared autofluorescence (NIR-AF), structural optical coherence tomography (OCT) and OCT angiography (OCTA). The quantitative analysis included the calculation of the following parameters: vessel density (VD), vessel tortuosity (VT), vessel dispersion (Vdisp), vessel rarefaction (VR), foveal avascular zone (FAZ) area, reflectivity of the outer retinal bands and choriocapillaris porosity (CCP). RESULTS Mean best-corrected visual acuity was 0.0±0.0 LogMAR in both groups. The round central hypoautofluorescent alteration on NIR-AF corresponded to a significant reflectivity attenuation of the outer retinal bands on structural OCT (0.55±0.18 vs 0.75±0.08; p<0.001). VD, VT, VR and Vdisp were normal compared with controls (all p>0.05). The FAZ area turned out to be significantly restricted at the level of the deep capillary plexus in subclinical BVMD eyes (p<0.001). Furthermore, quantitative OCTA revealed a significant central increase of CCP, compared with controls (18.25±2.43 vs 4.58±1.36; p<0.001). CONCLUSIONS The subclinical stage of BVMD is characterised by significant alterations of the outer retinal bands and the choriocapillaris. Quantitative multimodal imaging assessment suggests that subclinical BVMD is affected by the functional impairment of the outer retinal structures, leading to an alteration in melanin and growth factor production.
Collapse
Affiliation(s)
| | - Alessandro Arrigo
- Department of Ophthalmology, San Raffaele Hospital, Milano, Lombardia, Italy
| | - Alessandro Calamuneri
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Sicilia, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, San Raffaele Hospital, Milano, Lombardia, Italy
| | - Francesco Bandello
- Department of Ophthalmology, San Raffaele Hospital, Milano, Lombardia, Italy
| |
Collapse
|
8
|
Reviewing the Role of Ultra-Widefield Imaging in Inherited Retinal Dystrophies. Ophthalmol Ther 2020; 9:249-263. [PMID: 32141037 PMCID: PMC7196101 DOI: 10.1007/s40123-020-00241-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Indexed: 11/28/2022] Open
Abstract
Inherited retinal dystrophies (IRD) are a heterogeneous group of rare chronic disorders caused by genetically determined degeneration of photoreceptors and retinal pigment epithelium cells. Ultra-widefield (UWF) imaging is a useful diagnostic tool for evaluating retinal integrity in IRD, including Stargardt disease, retinitis pigmentosa, cone dystrophies, and Best vitelliform dystrophy. Color or pseudocolor and fundus autofluorescence images obtained with UWF provide previously unavailable information on the retinal periphery, which correlates well with visual field measurement or electroretinogram. Despite unavoidable artifacts of the UWF device, the feasibility of investigations in infants and in patients with poor fixation makes UWF imaging a precious resource in the diagnostic armamentarium for IRD.
Collapse
|
9
|
Battaglia Parodi M, Romano F, Arrigo A, Di Nunzio C, Buzzotta A, Alto G, Bandello F. Natural course of the vitelliform stage in best vitelliform macular dystrophy: a five-year follow-up study. Graefes Arch Clin Exp Ophthalmol 2019; 258:297-301. [PMID: 31848692 DOI: 10.1007/s00417-019-04454-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/05/2019] [Accepted: 08/27/2019] [Indexed: 11/28/2022] Open
Abstract
PURPOSE The vitelliform stage is the typical phenotypic manifestation of Best vitelliform macular dystrophy (BVMD). As yet, no study has focused specifically on the clinical changes occurring in the vitelliform stage over the follow-up. METHODS The survey takes the form of a prospective observational study with a 5-year follow-up. Twenty-one eyes of 11 patients in the vitelliform stage were examined annually. The primary outcome was the identification of the changes in the vitelliform lesion over a 5-year follow-up. Secondary outcomes included changes in structural optical coherence tomography (OCT) parameters and the correlation with the BCVA variation over the follow-up. RESULTS Spectral domain OCT at baseline showed one subform characterized by solid vitelliform deposition, in 81% of eyes, and another subform characterized by a combination of solid deposition and subretinal fluid, in 19% of eyes. Overall, 62% of eyes showed an increase in the area of vitelliform deposition. Once the maximal area was reached, a progressive flattening of the vitelliform deposition took place, with subsequent flattening of the vitelliform lesion and formation of subretinal fluid. Hyperreflective foci (HF) increased in number as long as the vitelliform area continued to expand, with no variation in HF when the vitelliform lesion flattened or the subretinal fluid formed. CONCLUSIONS The vitelliform stage reveals more subforms with clinical variations over the follow-up. Our data suggest that the substage before the flattening of the lesion, thus before the so-called subretinal fluid accumulates and when the visual acuity is still high, might offer the best opportunity for an optimal therapeutic approach.
Collapse
Affiliation(s)
- Maurizio Battaglia Parodi
- Department of Ophthalmology, Scientific Institute San Raffaele, Vita-Salute University, Milan, Italy
| | - Francesco Romano
- Eye Clinic, Department of Biomedical and Clinical Science, Luigi Sacco University Hospital, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele, Vita-Salute University, Milan, Italy. .,Department of Ophthalmology, IRCCS Ospedale San Raffaele, University Vita-Salute, via Olgettina 60, 20132, Milan, Italy.
| | - Carlo Di Nunzio
- Department of Ophthalmology, Scientific Institute San Raffaele, Vita-Salute University, Milan, Italy
| | - Alessio Buzzotta
- Department of Ophthalmology, Scientific Institute San Raffaele, Vita-Salute University, Milan, Italy
| | - Giorgio Alto
- Department of Ophthalmology, Scientific Institute San Raffaele, Vita-Salute University, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele, Vita-Salute University, Milan, Italy
| |
Collapse
|
10
|
SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY FEATURES IN DIFFERENT STAGES OF BEST VITELLIFORM MACULAR DYSTROPHY. Retina 2018; 38:1041-1046. [PMID: 28376040 DOI: 10.1097/iae.0000000000001634] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE To provide a systematic classification of findings regarding the different stages of vitelliform macular dystrophy on spectral domain optical coherence tomography (SD-OCT). METHODS Ninety-four eyes of 47 patients were recruited in a prospective cross-sectional study. All patients underwent a complete ophthalmologic examination, including best-corrected visual acuity using Early Treatment Diabetic Retinopathy Study (ETDRS) charts, biomicroscopy, and SD-OCT. The findings assessed included vitelliform material, neurosensory detachment, status of external limiting membrane, ellipsoid zone and retinal pigment epithelium, choroidal excavation, foveal cavitation, choroidal neovascularization, vitreomacular traction, and macular hole. The primary outcome measure was the identification of SD-OCT findings in each vitelliform macular dystrophy stage. Secondary outcomes included the correlations between SD-OCT features and visual acuity changes. RESULTS The outer retinal layers (external limiting membrane, ellipsoid zone, and retinal pigment epithelium) were found to be more commonly disrupted in Stages 2 to 4 (range: 86%-100%), whereas their absence was more typical of Stage 5 (71%-86%). Vitelliform material was found in 100% of Stages 2 and 3, 93% of Stage 4, and interestingly in 43% of Stage 5. Eyes characterized by vitelliform material showed a greater correlation with higher best-corrected visual acuity than eyes without it (0.35 logarithm of the minimum angle of resolution vs. 0.80 ± 0.36 logarithm of the minimum angle of resolution, approximately 20/45 and 20/125 Snellen equivalent, respectively) (t = 3.726, P < 0.05). Moreover, its absence was associated with a best-corrected visual acuity of 0.5 logarithm of the minimum angle of resolution or worse (approximately 20/63 Snellen equivalent; P < 0.05). Subretinal fluid was more common in Stages 3 and 4 (72.7% and 75%, respectively) than Stages 2 and 5 (P = 0.004). Eyes with subretinal fluid were significantly associated with a visual acuity of 0.2 logarithm of the minimum angle of resolution or worse (approximately 20/32 Snellen equivalent; P = 0.04). CONCLUSION Spectral domain optical coherence tomography assessment primarily indicates an outer retinal layer disruption in Stages 2 to 4, along with the presence of vitelliform material extending into the more advanced clinical stages too. Eyes characterized by the persistence of vitelliform material show better best-corrected visual acuity. Future investigations based on a longitudinal follow-up are warranted to correlate SD-OCT modifications with functional responses to identify SD-OCT indicators for prognostic and therapeutic purposes.
Collapse
|
11
|
|
12
|
Optical coherence tomography in Best vitelliform macular dystrophy. Eur J Ophthalmol 2017; 27:201-204. [PMID: 28233888 DOI: 10.5301/ejo.5000878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2016] [Indexed: 11/20/2022]
Abstract
PURPOSE To analyze spectral-domain optical coherence tomography (SD-OCT)-specific findings in the different stages of vitelliform macular dystrophy (VMD). METHODS Thirty-seven patients were prospectively recruited. All the patients underwent a complete ophthalmologic examination, including best-corrected visual acuity (BCVA), biomicroscopy, and SD-OCT. The examined findings were vitelliform material, neurosensory detachment, intraretinal hyperreflective foci, and the status of external limiting membrane, ellipsoid zone, and retinal pigment epithelium. The primary outcome was the stratification of SD-OCT findings in each VMD stage. Secondary outcomes included the description of different characteristics related to intraretinal hyperreflective foci. RESULTS Outer retinal layers were preserved almost exclusively in stage 1 (range 70%-100%), whereas their disruption and absence were typical of stages 2 to 4 (83%-100%) and stage 5 (67%-83%), respectively. Vitelliform material was found always in stages 2 and 3, 89% of stage 4, and rarely in stage 5 (33%). Neurosensory detachment was to some extent representative of stages 3 and 4 (80% and 72%, respectively) when compared with the other stages (p<0.001). Hyperreflective foci (16% of all eyes) demonstrated a progressive increase across stages 2 to 4, with slightly reduced figure in stage 5. These foci were located in the outer nuclear and plexiform layers, showed different sizes, and were not associated with a visual acuity reduction (p = 0.64). CONCLUSIONS A progressive deterioration of the outer retinal layers was noticeable in more advanced stages of VMD. The reduction of vitelliform material from stage 3 to 4 was paralleled by an increased evidence of neurosensory detachment. Although showing different size and location, hyperreflective foci did not correlate with worse BCVA.
Collapse
|