1
|
Duray A, De Maesschalck T, Decaestecker C, Remmelink M, Chantrain G, Neiveyans J, Horoi M, Leroy X, Gabius HJ, Saussez S. Galectin fingerprinting in naso-sinusal diseases. Oncol Rep 2014; 32:23-32. [PMID: 24859692 PMCID: PMC4067427 DOI: 10.3892/or.2014.3213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/17/2014] [Indexed: 11/29/2022] Open
Abstract
Galectins, a family of endogenous lectins, are multifunctional effectors that act at various sites and can be used in immunohistochemical localization studies of diseased states. Since they form a potentially cooperative and antagonistic network, we tested the hypothesis that histopathological fingerprinting of galectins could refine the molecular understanding of naso-sinusal pathologies. Using non-cross-reactive antibodies against galectin-1, -3, -4, -7, -8 and -9, we characterized the galectin profiles in chronic rhinosinusitis, nasal polyposis, inverted papillomas and squamous cell carcinomas. The expression, signal location and quantitative parameters describing the percentage of positive cells and labeling intensity were assessed for various cases. We discovered that inverted papillomas showed a distinct galectin immunohistochemical profile. Indeed, epithelial overexpression of galectin-3 (P=0.0002), galectin-4 (P<10−6), galectin-7 (P<10−6) and galectin-9 (P<10−6) was observed in inverted papillomas compared to non-malignant diseases. Regarding carcinomas, we observed increased expression of galectin-9 (P<10−6) in epithelial cells compared to non-tumor pathologies. Our results suggest that galectin-3, -4, -7 and -9 could be involved in the biology of inverted papillomas. In addition, we observed that the expression of galectin in naso-sinusal diseases seems to be affected by tumor progression and not inflammatory or allergic phenomena.
Collapse
Affiliation(s)
- Anaëlle Duray
- Laboratory of Anatomy, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Thibault De Maesschalck
- Department of Oto-Rhino-Laryngology, CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Decaestecker
- Laboratory of Image, Signal Processing and Acoustics (LISA), Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Myriam Remmelink
- Department of Pathology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Gilbert Chantrain
- Department of Oto-Rhino-Laryngology, CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Jennifer Neiveyans
- Laboratory of Anatomy, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Mihaela Horoi
- Department of Oto-Rhino-Laryngology, CHU Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Xavier Leroy
- Department of Pathology, Faculty of Medicine, Hôpital Claude Huriez and Centre de Biologie-Pathologie, CHRU, Lille, France
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sven Saussez
- Laboratory of Anatomy, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| |
Collapse
|
2
|
Lohr M, Kaltner H, Schwartz-Albiez R, Sinowatz F, Gabius HJ. Towards functional glycomics by lectin histochemistry: strategic probe selection to monitor core and branch-end substitutions and detection of cell-type and regional selectivity in adult mouse testis and epididymis. Anat Histol Embryol 2011; 39:481-93. [PMID: 20624157 DOI: 10.1111/j.1439-0264.2010.01019.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The emerging insights into glycan functionality direct increasing attention to monitor core modifications of N-glycans and branch-end structures. To address this issue in histochemistry, a panel of lectins with respective specificities was devised. The selection of probes with overlapping specificities facilitated to relate staining profiles to likely target structures. The experiments on fixed sections of adult murine testis and epididymis were carried out at non-saturating lectin concentrations to visualize high-affinity sites with optimal signal-to-background ratio. They revealed selectivity in lectin reactivity for distinct cell types and segment-dependent staining in the epididymis. Leydig cells, for instance, were reactive with the Sambucus nigra agglutinin and human siglec-2 (CD22), two lectins also separating principal from basal and apical cells in the caput segments I-III of the epididymis. Apical cells were reactive with the Maackia amurensis agglutinin-I, and basal cells with the erythroagglutinin of Phaseolus vulgaris. The reported differences support the concept of lectin staining as cell marker. They thus intimate to study glycogene (genes for glycosyltransferases and lectins) expression and cellular reactivity with tissue lectins. These investigations will be instrumental to assign a role as biochemical signals to the detected staining properties.
Collapse
Affiliation(s)
- M Lohr
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University, 80539 Munich, Germany
| | | | | | | | | |
Collapse
|
3
|
Liu YH, D'Ambrosio M, Liao TD, Peng H, Rhaleb NE, Sharma U, André S, Gabius HJ, Carretero OA. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol 2008; 296:H404-12. [PMID: 19098114 DOI: 10.1152/ajpheart.00747.2008] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Galectin-3 (Gal-3) is secreted by activated macrophages. In hypertension, Gal-3 is a marker for hypertrophic hearts prone to develop heart failure. Gal-3 infused in pericardial sac leads to cardiac inflammation, remodeling, and dysfunction. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), a naturally occurring tetrapeptide, prevents and reverses inflammation and collagen deposition in the heart in hypertension and heart failure postmyocardial infarction. In the present study, we hypothesize that Ac-SDKP prevents Gal-3-induced cardiac inflammation, remodeling, and dysfunction, and these effects are mediated by the transforming growth factor (TGF)-beta/Smad3 signaling pathway. Adult male rats were divided into four groups and received the following intrapericardial infusion for 4 wk: 1) vehicle (saline, n = 8); 2) Ac-SDKP (800 microg x kg(-1) x day(-1), n = 8); 3) Gal-3 (12 microg/day, n = 7); and 4) Ac-SDKP + Gal-3 (n = 7). Left ventricular ejection fraction, cardiac output, and transmitral velocity were measured by echocardiography; inflammatory cell infiltration, cardiomyocyte hypertrophy, and collagen deposition in the heart by histological and immunohistochemical staining; and TGF-beta expression and Smad3 phosphorylation by Western blot. We found that, in the left ventricle, Gal-3 1) enhanced macrophage and mast cell infiltration, increased cardiac interstitial and perivascular fibrosis, and causes cardiac hypertrophy; 2) increased TGF-beta expression and Smad3 phosphorylation; and 3) decreased negative change in pressure over time response to isoproterenol challenge, ratio of early left ventricular filling phase to atrial contraction phase, and left ventricular ejection fraction. Ac-SDKP partially or completely prevented these effects. We conclude that Ac-SDKP prevents Gal-3-induced cardiac inflammation, fibrosis, hypertrophy, and dysfunction, possibly via inhibition of the TGF-beta/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Yun-He Liu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Szabo P, Dam TK, Smetana K, Dvoránková B, Kübler D, Brewer CF, Gabius HJ. Phosphorylated human lectin galectin-3: analysis of ligand binding by histochemical monitoring of normal/malignant squamous epithelia and by isothermal titration calorimetry. Anat Histol Embryol 2008; 38:68-75. [PMID: 18983621 DOI: 10.1111/j.1439-0264.2008.00899.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The human lectin galectin-3 is a multifunctional effector with special functions in regulation of adhesion and apoptosis. Its unique trimodular organization includes the 12-residue N-terminal sequence, a substrate for protein kinase CK1-dependent phosphorylation. As a step towards elucidating its significance, we prepared phosphorylated galectin-3, labelled it and used it as a tool in histochemistry. We monitored normal and malignant squamous epithelia. Binding was suprabasal with obvious positive correlation to the degree of differentiation and negative correlation to proliferation. The staining pattern resembled that obtained with the unmodified lectin. Basal cell carcinomas were invariably negative. The epidermal positivity profile was akin to distribution of the desmosomal protein desmoglein, as also seen with keratinocytes in vitro. In all cases, binding was inhibitable by the presence of lactose, prompting further investigation of the activity of the lectin site by a sensitive biochemical method, i.e. isothermal titration calorimetry. The overall affinity and the individual enthalpic and entropic contributions were determined. No effect of phosphorylation was revealed. This strategic combination of histo- and biochemical techniques applied to an endogenous effector after its processing by a protein kinase thus enabled a detailed monitoring of the binding properties of the post-translationally modified lectin. It underscores the value of using endogenous lectins as a histochemical tool. The documented approach has merit for applications beyond lectinology.
Collapse
Affiliation(s)
- P Szabo
- 1st Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The progress in discerning the structure and function of cells and tissues in health and disease has been achieved to a large extent by the continued development of new reagents for histochemistry, the improvement of existing techniques and new imaging techniques. This review will highlight some advancements made in these fields.
Collapse
|
6
|
Taatjes DJ, Zuber C, Roth J. The histochemistry and cell biology vade mecum: a review of 2005–2006. Histochem Cell Biol 2006; 126:743-88. [PMID: 17149649 DOI: 10.1007/s00418-006-0253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2006] [Indexed: 02/07/2023]
Abstract
The procurement of new knowledge and understanding in the ever expanding discipline of cell biology continues to advance at a breakneck pace. The progress in discerning the physiology of cells and tissues in health and disease has been driven to a large extent by the continued development of new probes and imaging techniques. The recent introduction of semi-conductor quantum dots as stable, specific markers for both fluorescence light microscopy and electron microscopy, as well as a virtual treasure-trove of new fluorescent proteins, has in conjunction with newly introduced spectral imaging systems, opened vistas into the seemingly unlimited possibilities for experimental design. Although it oftentimes proves difficult to predict what the future will hold with respect to advances in disciplines such as cell biology and histochemistry, it is facile to look back on what has already occurred. In this spirit, this review will highlight some advancements made in these areas in the past 2 years.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology, Microscopy Imaging Center, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|