1
|
Keller T, Wengenroth L, Smorra D, Probst K, Kurian L, Kribs A, Brachvogel B. Novel DRAQ5™/SYTOX® Blue Based Flow Cytometric Strategy to Identify and Characterize Stem Cells in Human Breast Milk. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 96:480-489. [PMID: 30479054 DOI: 10.1002/cyto.b.21748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/29/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Human breast milk could be an important stem cell source for the development of newborn and preterm infants, but quantitative data on the stem cell content in breast milk at various gestational stages are needed to determine the clinical value of breast milk as a source of stem cells. Breast milk also contains milk fat globules, lipid droplets of different sizes, debris and dead cells and these components hamper flow cytometry analysis of human breast milk samples. METHODS Here, we originally used standard protocols for flow cytometry to characterize cell populations in human breast milk but failed to discriminate between cells and noncellular components. We then applied a centrifugation protocol to separate cream and skim milk from the cell-containing pellet and used a novel staining protocol with DRAQ5™ and SYTOX® blue dye as well as antibodies to characterize cells within the pellet fraction. RESULTS Flow cytometry analysis identified viable DRAQ5™+ /SYTOX® Blue- cells and determined the content of CD11b+ monocytes and TRA-1-81+ putative stem cells in human breast milk samples. CONCLUSIONS Hence, we developed a novel and reliable flow cytometry based-approach to quantify subpopulation of cells in human breast milk with a high content of milk fat globules, lipid droplets, and particles. This approach will improve the identification and quantification of breast milk cells and allow standardizing the flow cytometry-based evaluation of the stem cell content. © 2018 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Titus Keller
- Department of Pediatrics and Adolescent Medicine, Neonatology, University of Cologne, Cologne, Germany
| | - Leonie Wengenroth
- Department of Pediatrics and Adolescent Medicine, Neonatology, University of Cologne, Cologne, Germany
| | - Denise Smorra
- Department of Pediatrics and Adolescent Medicine, Neonatology, University of Cologne, Cologne, Germany
| | - Kristina Probst
- Medical Faculty, Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, University of Cologne, Cologne, Germany.,Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Leo Kurian
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Angela Kribs
- Department of Pediatrics and Adolescent Medicine, Neonatology, University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Medical Faculty, Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, University of Cologne, Cologne, Germany.,Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Ward HH, Romero E, Welford A, Pickett G, Bacallao R, Gattone VH, Ness SA, Wandinger-Ness A, Roitbak T. Adult human CD133/1(+) kidney cells isolated from papilla integrate into developing kidney tubules. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1344-57. [PMID: 21255643 DOI: 10.1016/j.bbadis.2011.01.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/09/2010] [Accepted: 01/11/2011] [Indexed: 01/19/2023]
Abstract
Approximately 60,000 patients in the United States are waiting for a kidney transplant due to genetic, immunologic and environmentally caused kidney failure. Adult human renal stem cells could offer opportunities for autologous transplant and repair of damaged organs. Current data suggest that there are multiple progenitor types in the kidney with distinct localizations. In the present study, we characterize cells derived from human kidney papilla and show their capacity for tubulogenesis. In situ, nestin(+) and CD133/1(+) cells were found extensively intercalated between tubular epithelia in the loops of Henle of renal papilla, but not of the cortex. Populations of primary cells from the renal cortex and renal papilla were isolated by enzymatic digestion from human kidneys unsuited for transplant and immuno-enriched for CD133/1(+) cells. Isolated CD133/1(+) papillary cells were positive for nestin, as well as several human embryonic stem cell markers (SSEA4, Nanog, SOX2, and OCT4/POU5F1) and could be triggered to adopt tubular epithelial and neuronal-like phenotypes. Isolated papillary cells exhibited morphologic plasticity upon modulation of culture conditions and inhibition of asymmetric cell division. Labeled papillary cells readily associated with cortical tubular epithelia in co-culture and 3-dimensional collagen gel cultures. Heterologous organ culture demonstrated that CD133/1(+) progenitors from the papilla and cortex became integrated into developing kidney tubules. Tubular epithelia did not participate in tubulogenesis. Human renal papilla harbor cells with the hallmarks of adult kidney stem/progenitor cells that can be amplified and phenotypically modulated in culture while retaining the capacity to form new kidney tubules. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Heather H Ward
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Fesenko I, Franklin D, Garnett P, Bass P, Campbell S, Hardyman M, Wilson D, Hanley N, Collins J. Stem cell marker TRA-1-60 is expressed in foetal and adult kidney and upregulated in tubulo-interstitial disease. Histochem Cell Biol 2010; 134:355-69. [PMID: 20853169 DOI: 10.1007/s00418-010-0741-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
The kidney has an intrinsic ability to repair itself when injured. Epithelial cells of distal tubules may participate in regeneration. Stem cell marker, TRA-1-60 is linked to pluripotency in human embryonic stem cells and is lost upon differentiation. TRA-1-60 expression was mapped and quantified in serial sections of human foetal, adult and diseased kidneys. In 8- to 10-week human foetal kidney, the epitope was abundantly expressed on ureteric bud and structures derived therefrom including collecting duct epithelium. In adult kidney inner medulla/papilla, comparisons with reactivity to epithelial membrane antigen, aquaporin-2 and Tamm-Horsfall protein, confirmed extensive expression of TRA-1-60 in cells lining collecting ducts and thin limb of the loop of Henle, which may be significant since the papillae were proposed to harbour slow cycling cells involved in kidney homeostasis and repair. In the outer medulla and cortex there was rare, sporadic expression in tubular cells of the collecting ducts and nephron, with positive cells confined to the thin limb and thick ascending limb and distal convoluted tubules. Remarkably, in cortex displaying tubulo-interstitial injury, there was a dramatic increase in number of TRA-1-60 expressing individual cells and in small groups of cells in distal tubules. Dual staining showed that TRA-1-60 positive cells co-expressed Pax-2 and Ki-67, markers of tubular regeneration. Given the localization in foetal kidney and the distribution patterns in adults, it is tempting to speculate that TRA-1-60 may identify a population of cells contributing to repair of distal tubules in adult kidney.
Collapse
Affiliation(s)
- Irina Fesenko
- Infection, Inflammation and Immunity Division, School of Medicine, University of Southampton, Southampton, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|
5
|
State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology. Histochem Cell Biol 2008; 130:1205-51. [PMID: 18985372 DOI: 10.1007/s00418-008-0535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 10/25/2022]
Abstract
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.
Collapse
|