1
|
Gabriel-Segard T, Rontard J, Miny L, Dubuisson L, Batut A, Debis D, Gleyzes M, François F, Larramendy F, Soriano A, Honegger T, Paul S. Proof-of-Concept Human Organ-on-Chip Study: First Step of Platform to Assess Neuro-Immunological Communication Involved in Inflammatory Bowel Diseases. Int J Mol Sci 2023; 24:10568. [PMID: 37445748 DOI: 10.3390/ijms241310568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are complex chronic inflammatory disorders of the gastrointestinal (GI) tract. Recent evidence suggests that the gut-brain axis may be pivotal in gastrointestinal and neurological diseases, especially IBD. Here, we present the first proof of concept for a microfluidic technology to model bilateral neuro-immunological communication. We designed a device composed of three compartments with an asymmetric channel that allows the isolation of soma and neurites thanks to microchannels and creates an in vitro synaptic compartment. Human-induced pluripotent stem cell-derived cortical glutamatergic neurons were maintained in soma compartments for up to 21 days. We performed a localized addition of dendritic cells (MoDCs) to either the soma or synaptic compartment. The microfluidic device was coupled with microelectrode arrays (MEAs) to assess the impact on the electrophysiological activity of neurons while adding dendritic cells. Our data highlight that an electrophysiologic signal is transmitted between two compartments of glutamatergic neurons linked by synapses in a bottom-up way when soma is exposed to primed dendritic cells. In conclusion, our study authenticates communication between dendritic cells and neurons in inflammatory conditions such as IBD. This platform opens the way to complexification with gut components to reach a device for pharmacological compound screening by blocking the gut-brain axis at a mucosal level and may help patients.
Collapse
Affiliation(s)
- Tristan Gabriel-Segard
- CIRI-Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France
- Service de Psychiatrie Transversale, Centre Hospitalo-Universitaire de Saint Etienne, Hôpital Nord, 42055 Saint-Etienne, France
| | | | | | | | | | | | | | - Fabien François
- CIRI-Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France
| | | | - Alessandra Soriano
- Internal Medicine Department, Gastroenterology Division and IBD Center, Azienda Unità Sanitaria Locale-IRCCS, 42122 Reggio Emilia, Italy
| | | | - Stéphane Paul
- CIRI-Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France
| |
Collapse
|
2
|
Valdinocci D, Simões RF, Kovarova J, Cunha-Oliveira T, Neuzil J, Pountney DL. Intracellular and Intercellular Mitochondrial Dynamics in Parkinson's Disease. Front Neurosci 2019; 13:930. [PMID: 31619944 PMCID: PMC6760022 DOI: 10.3389/fnins.2019.00930] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022] Open
Abstract
The appearance of alpha-synuclein-positive inclusion bodies (Lewy bodies) and the loss of catecholaminergic neurons are the primary pathological hallmarks of Parkinson's disease (PD). However, the dysfunction of mitochondria has long been recognized as a key component in the progression of the disease. Dysfunctional mitochondria can in turn lead to dysregulation of calcium homeostasis and, especially in dopaminergic neurons, raised mean intracellular calcium concentration. As calcium binding to alpha-synuclein is one of the important triggers of alpha-synuclein aggregation, mitochondrial dysfunction will promote inclusion body formation and disease progression. Increased reactive oxygen species (ROS) resulting from inefficiencies in the electron transport chain also contribute to the formation of alpha-synuclein aggregates and neuronal loss. Recent studies have also highlighted defects in mitochondrial clearance that lead to the accumulation of depolarized mitochondria. Transaxonal and intracytoplasmic translocation of mitochondria along the microtubule cytoskeleton may also be affected in diseased neurons. Furthermore, nanotube-mediated intercellular transfer of mitochondria has recently been reported between different cell types and may have relevance to the spread of PD pathology between adjacent brain regions. In the current review, the contributions of both intracellular and intercellular mitochondrial dynamics to the etiology of PD will be discussed.
Collapse
Affiliation(s)
- Dario Valdinocci
- School of Medical Science, Griffith University, Southport, QLD, Australia
| | - Rui F. Simões
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Jaromira Kovarova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czechia
| | - Teresa Cunha-Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Jiri Neuzil
- School of Medical Science, Griffith University, Southport, QLD, Australia
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czechia
| | - Dean L. Pountney
- School of Medical Science, Griffith University, Southport, QLD, Australia
| |
Collapse
|
3
|
Trovato A, Panelli S, Strozzi F, Cambulli C, Barbieri I, Martinelli N, Lombardi G, Capoferri R, Williams JL. Expression of genes involved in the T cell signalling pathway in circulating immune cells of cattle 24 months following oral challenge with Bovine Amyloidotic Spongiform Encephalopathy (BASE). BMC Vet Res 2015; 11:105. [PMID: 25956229 PMCID: PMC4424883 DOI: 10.1186/s12917-015-0412-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 04/16/2015] [Indexed: 11/19/2022] Open
Abstract
Background Bovine Amyloidotic Spongiform Encephalopathy (BASE) is a variant of classical BSE that affects cows and can be transmitted to primates and mice. BASE is biochemically different from BSE and shares some molecular and histo-pathological features with the MV2 sub-type of human sporadic Creutzfeld Jakob Disease (sCJD). Results The present work examined the effects of BASE on gene expression in circulating immune cells. Ontology analysis of genes differentially expressed between cattle orally challenged with brain homogenate from cattle following intracranial inoculation with BASE and control cattle identified three main pathways which were affected. Within the immune function pathway, the most affected genes were related to the T cell receptor-mediated T cell activation pathways. The differential expression of these genes in BASE challenged animals at 10,12 and 24 months following challenge, vs unchallenged controls, was investigated by real time PCR. Conclusions The results of this study show that the effects of prion diseases are not limited to the CNS, but involve the immune system and particularly T cell signalling during the early stage following challenge, before the appearance of clinical signs.
Collapse
Affiliation(s)
- Andrea Trovato
- Parco Tecnologico Padano, via Einstein, Lodi, 26900, Italy.
| | - Simona Panelli
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027, Rivolta d'Adda, Italy.
| | | | - Caterina Cambulli
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027, Rivolta d'Adda, Italy.
| | - Ilaria Barbieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124, Brescia, Italy.
| | - Nicola Martinelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124, Brescia, Italy.
| | - Guerino Lombardi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124, Brescia, Italy.
| | - Rossana Capoferri
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027, Rivolta d'Adda, Italy.
| | - John L Williams
- Parco Tecnologico Padano, via Einstein, Lodi, 26900, Italy. .,Present address: School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia.
| |
Collapse
|
4
|
Toppets V, Piret J, Gabriel A, Grobet L, Simoens P, van den Broeck W, Cornillie P, Antoine N. Three-dimensional reconstruction of the pharyngeal tonsil innervation pattern in sheep. J Neuroimmunol 2013; 262:79-84. [PMID: 23932773 DOI: 10.1016/j.jneuroim.2013.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
The pharyngeal tonsil has recently been identified as a new participant in airborne contamination by the ovine scrapie agent. In the context of scrapie pathogenesis, we conducted a three-dimensional reconstruction of the innervation pattern in the lymphoid compartments of this tonsil. This model confirmed that very few nerve fibres penetrated the lymphoid follicles and suggested that the nerve fibre distribution in the interfollicular and subepithelial areas is more suitable with neuro-invasion through direct contact between these nerve fibres and prion-transporting cells prior to or after prion amplification in the germinal centre of the pharyngeal tonsil lymphoid follicles.
Collapse
Affiliation(s)
- Vinciane Toppets
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liege, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Roettger Y, Du Y, Bacher M, Zerr I, Dodel R, Bach JP. Immunotherapy in prion disease. Nat Rev Neurol 2012; 9:98-105. [DOI: 10.1038/nrneurol.2012.258] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Elhelaly AE, Inoshima Y, Ishiguro N. Alteration of cell responses to PrPSc in prolonged cell culture and its effect on transmission of PrPSc to neural cells. Arch Virol 2012; 158:651-8. [DOI: 10.1007/s00705-012-1540-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
|
7
|
Natale G, Ferrucci M, Lazzeri G, Paparelli A, Fornai F. Transmission of prions within the gut and towards the central nervous system. Prion 2011; 5:142-9. [PMID: 21814041 DOI: 10.4161/pri.5.3.16328] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The prion protein is a glycoprotein characterized by a folded α-helical structure that, under pathological conditions, misfolds and aggregates into its infectious isoform as β-sheet rich amyloidic deposits. The accumulation of the abnormal protein is responsible for a group of progressive and fatal disorders characterized by vacuolation, gliosis, and spongiform degeneration. Prion disorders are characterized by a triple aetiology: familial, sporadic or acquired, although most cases are sporadic. The mechanisms underlying prion neurotoxicity remain controversial, while novel findings lead to hypothesize intriguing pathways responsible for prion spreading. The present review aims to examine the involvement of the gastrointestinal tract and hypothesizes the potential mechanisms underlying cell-to-cell transmission of the prion protein. In particular, a special emphasis is posed on the mechanisms of prion transmission within the gut and towards the central nervous system. The glycation of prion protein to form advanced glycation end-products (AGE) interacting with specific receptors placed on neighboring cells (RAGE) represents the key hypothesis to be discussed.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | | | | | | | | |
Collapse
|
8
|
Moreno-Gonzalez I, Soto C. Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin Cell Dev Biol 2011; 22:482-7. [PMID: 21571086 DOI: 10.1016/j.semcdb.2011.04.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/15/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Some of the most prevalent human degenerative diseases appear as a result of the misfolding and aggregation of proteins. Compelling evidence suggest that misfolded protein aggregates play an important role in cell dysfunction and tissue damage, leading to the disease. Prion protein (Prion diseases), amyloid-beta (Alzheimer's disease), alpha-synuclein (Parkinson's disease), Huntingtin (Huntington's disease), serum amyloid A (AA amyloidosis) and islet amyloid polypeptide (type 2 diabetes) are some of the proteins that trigger disease when they get misfolded. The recent understanding of the crucial role of misfolded proteins as well as the structural requirements and mechanism of protein misfolding have raised the possibility that these diseases may be transmissible by self-propagation of the protein misfolding process in a similar way as the infamous prions transmit prion diseases. Future research in this field should aim to clarify this possibility and translate the knowledge of the basic disease mechanisms into development of novel strategies for early diagnosis and efficient treatment.
Collapse
Affiliation(s)
- Ines Moreno-Gonzalez
- Mitchell Center Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, 6431 Fannin St, Houston, TX 77030, USA
| | | |
Collapse
|
9
|
Hübner S, Efthymiadis A. Histochemistry and cell biology: the annual review 2010. Histochem Cell Biol 2011; 135:111-40. [PMID: 21279376 DOI: 10.1007/s00418-011-0781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
This review summarizes recent advances in histochemistry and cell biology which complement and extend our knowledge regarding various aspects of protein functions, cell and tissue biology, employing appropriate in vivo model systems in conjunction with established and novel approaches. In this context several non-expected results and discoveries were obtained which paved the way of research into new directions. Once the reader embarks on reading this review, it quickly becomes quite obvious that the studies contribute not only to a better understanding of fundamental biological processes but also provide use-oriented aspects that can be derived therefrom.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany.
| | | |
Collapse
|