1
|
Current and Emerging Approaches for Hepatic Fibrosis Treatment. Gastroenterol Res Pract 2021; 2021:6612892. [PMID: 34326871 PMCID: PMC8310447 DOI: 10.1155/2021/6612892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis resulting from chronic liver injury is a key factor to develop liver cirrhosis and risk of hepatocellular carcinoma (HCC) which are major health burden worldwide. Therefore, it is necessary for antifibrotic therapies to prevent chronic liver disease progression and HCC development. There has been tremendous progress in understanding the mechanisms of liver fibrosis in the last decade, which has created new opportunities for the treatment of this condition. In this review, we aim to make an overview on information of different potential therapies (drug treatment, cell therapy, and liver transplantation) for the liver fibrosis and hope to provide the therapeutic options available for the treatment of liver fibrosis and discuss novel approaches.
Collapse
|
2
|
Pinheiro D, Dias I, Freire T, Thole AA, Stumbo AC, Cortez EAC, de Carvalho L, de Carvalho SN. Effects of mesenchymal stem cells conditioned medium treatment in mice with cholestatic liver fibrosis. Life Sci 2021; 281:119768. [PMID: 34186042 DOI: 10.1016/j.lfs.2021.119768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
AIMS The purpose of this work was to study the effects of mesenchymal stem cells conditioned medium (MSC CM) treatment in animals with cholestatic liver fibrosis. MATERIALS AND METHODS We induced cholestatic liver fibrosis by bile duct ligation in C57Bl/6 mice. In the 5th and 6th days after bile duct ligation proceeding, conditioned medium obtained of cultures of mesenchymal stem cells derived from adipose tissue was injected in the animals. Blood levels of hepatic transaminases, alkaline phosphatase and albumin were measured in each group. Analysis of collagen deposition was realized by Picro Sirius red staining and cytokine profiling was performed by cytometric bead array (CBA). KEY FINDINGS Our results showed that MSC CM treatment decreased levels of hepatic enzymes and collagen deposition in the liver. After MSC CM treatment, profibrotic IL-17A was decreased andIL-6 and IL-4 were increased. SIGNIFICANCE In summary, MSC CM treatment demonstrated therapeutic potential to cholestatic liver fibrosis, favoring matrix remodeling and cytokine profile towards liver regeneration.
Collapse
Affiliation(s)
- Daphne Pinheiro
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Isabelle Dias
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil. http://lattes.cnpq.br/5186306427154406
| | - Thiago Freire
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil. http://lattes.cnpq.br/3641433792304902
| | - Alessandra Alves Thole
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil. http://lattes.cnpq.br/1579417282254465
| | - Ana Carolina Stumbo
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil. http://lattes.cnpq.br/0705651820739519
| | - Erika Afonso Costa Cortez
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil. http://lattes.cnpq.br/3564525125398107
| | - Lais de Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil. http://lattes.cnpq.br/5375673766053793
| | - Simone Nunes de Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil. http://lattes.cnpq.br/2268672866323829
| |
Collapse
|
3
|
Pinheiro D, Dias I, Ribeiro Silva K, Stumbo AC, Thole A, Cortez E, de Carvalho L, Weiskirchen R, Carvalho S. Mechanisms Underlying Cell Therapy in Liver Fibrosis: An Overview. Cells 2019; 8:cells8111339. [PMID: 31671842 PMCID: PMC6912561 DOI: 10.3390/cells8111339] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Fibrosis is a common feature in most pathogenetic processes in the liver, and usually results from a chronic insult that depletes the regenerative capacity of hepatocytes and activates multiple inflammatory pathways, recruiting resident and circulating immune cells, endothelial cells, non-parenchymal hepatic stellate cells, and fibroblasts, which become activated and lead to excessive extracellular matrix accumulation. The ongoing development of liver fibrosis results in a clinically silent and progressive loss of hepatocyte function, demanding the constant need for liver transplantation in clinical practice, and motivating the search for other treatments as the chances of obtaining compatible viable livers become scarcer. Although initially cell therapy has emerged as a plausible alternative to organ transplantation, many factors still challenge the establishment of this technique as a main or even additional therapeutic tool. Herein, the authors discuss the most recent advances and point out the corners and some controversies over several protocols and models that have shown promising results as potential candidates for cell therapy for liver fibrosis, presenting the respective mechanisms proposed for liver regeneration in each case.
Collapse
Affiliation(s)
- Daphne Pinheiro
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Isabelle Dias
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Karina Ribeiro Silva
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Ana Carolina Stumbo
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Alessandra Thole
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Erika Cortez
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Lais de Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074 Aachen, Germany.
| | - Simone Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| |
Collapse
|
4
|
Cytokines, hepatic cell profiling and cell interactions during bone marrow cell therapy for liver fibrosis in cholestatic mice. PLoS One 2017; 12:e0187970. [PMID: 29176797 PMCID: PMC5703547 DOI: 10.1371/journal.pone.0187970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
Bone marrow cells (BMC) migrate to the injured liver after transplantation, contributing to regeneration through multiple pathways, but mechanisms involved are unclear. This work aimed to study BMC migration, characterize cytokine profile, cell populations and proliferation in mice with liver fibrosis transplanted with GFP+ BMC. Confocal microscopy analysis showed GFP+ BMC near regions expressing HGF and SDF-1 in the fibrotic liver. Impaired liver cell proliferation in fibrotic groups was restored after BMC transplantation. Regarding total cell populations, there was a significant reduction in CD68+ cells and increased Ly6G+ cells in transplanted fibrotic group. BMC contributed to the total populations of CD144, CD11b and Ly6G cells in the fibrotic liver, related to an increment of anti-fibrotic cytokines (IL-10, IL-13, IFN-γ and HGF) and reduction of pro-inflammatory cytokines (IL-17A and IL-6). Therefore, HGF and SDF-1 may represent important chemoattractants for transplanted BMC in the injured liver, where these cells can give rise to populations of extrahepatic macrophages, neutrophils and endothelial progenitor cells that can interact synergistically with other liver cells towards the modulation of an anti-fibrotic cytokine profile promoting the onset of liver regeneration.
Collapse
|
5
|
Transplantation of bone marrow-derived MSCs improves renal function and Na++K+-ATPase activity in rats with renovascular hypertension. Cell Tissue Res 2017; 369:287-301. [DOI: 10.1007/s00441-017-2602-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 03/03/2017] [Indexed: 12/29/2022]
|
6
|
de Andrade DC, de Carvalho SN, Pinheiro D, Thole AA, Moura AS, de Carvalho L, Cortez EAC. Bone marrow mononuclear cell transplantation improves mitochondrial bioenergetics in the liver of cholestatic rats. Exp Cell Res 2015; 336:15-22. [PMID: 25978973 DOI: 10.1016/j.yexcr.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction has been associated with liver cholestatis. Toxic bile salt accumulation leads to chronic injury with mitochondrial damage, ROS increase and apoptosis, resulting in liver dysfunction. This study aimed to analyze mitochondrial bioenergetics in rats with hepatic fibrosis induced by bile duct ligation (BDL) after BMMNC transplantation. Livers were collected from normal rats, fibrotic rats after 14 and 21 days of BDL (F14d and F21d) and rats that received BMMNC at 14 days of BDL, analyzed after 7 days. F21d demonstrated increased collagen I content and consequently decrease after BMMNC transplantation. Both F14d and F21d had significantly reduced mitochondrial oxidation capacity and increased mitochondrial uncoupling, which were restored to levels similar to those of normal group after BMMNC transplantation. In addition, F21d had a significantly increase of UCP2, and reduced PGC-1α content. However, after BMMNC transplantation both proteins returned to levels similar to normal group. Moreover, F14d had a significantly increase in 4-HNE content compared to normal group, but after BMMNC transplantation 4-HNE content significantly reduced, suggesting oxidative stress reduction. Therefore, BMMNC transplantation has a positive effect on hepatic mitochondrial bioenergetics of cholestatic rats, increasing oxidative capacity and reducing oxidative stress, which, in turn, contribute to liver function recover.
Collapse
Affiliation(s)
- Daniela Caldas de Andrade
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, Brazil
| | - Simone Nunes de Carvalho
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, Brazil
| | - Daphne Pinheiro
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, Brazil
| | - Alessandra Alves Thole
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, Brazil
| | - Anibal Sanchez Moura
- Labotatory of Nutrition and Development Physiology, Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 5° andar, 20550-170 Rio de Janeiro, Brazil
| | - Lais de Carvalho
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, Brazil
| | - Erika Afonso Costa Cortez
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Felix AS, Monteiro N, Rocha VN, Oliveira G, Nascimento AL, de Carvalho L, Thole A, Carvalho J. Structural and ultrastructural evaluation of the aortic wall after transplantation of bone marrow-derived cells (BMCs) in a model for atherosclerosis. Biochem Cell Biol 2015; 93:367-75. [PMID: 26151357 DOI: 10.1139/bcb-2015-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stem cells are characterized by their ability to differentiate into multiple cell lineages and display the paracrine effect. The aim of this work was to evaluate the effect of therapy with bone marrow-derived cells (BMCs) on glucose, lipid metabolism, and aortic wall remodeling in mice through the administration of a high-fat diet and subsequent BMCs transplantation. C57BL/6 mice were fed a control diet (CO group) or an atherogenic diet (AT group). After 16 weeks, the AT group was divided into 4 subgroups: an AT 14 days group and AT 21 days group that were given an injection of vehicle and sacrificed after 14 and 21 days, respectively, and an AT-BMC 14 days group and AT-BMC 21 days group that were given an injection of BMCs and sacrificed after 14 and 21 days, respectively. The BMCs transplant had reduced blood glucose, triglycerides, and total cholesterol. There was no significant difference in relation to body mass between the transplanted groups and non-transplanted groups, and all were different than CO. There was no significant difference in the glycemic curve among AT 14 days, AT-BMC 14 days, and AT 21 days, and these were different than the CO and the AT-BMC 21 days groups. The increased thickness of the aortic wall was observed in all atherogenic groups, but was significantly smaller in group AT-BMC 21 days compared to AT 14 days and AT 21 days. Vacuoles in the media tunic, delamination and the thinning of the elastic lamellae were observed in AT 14 days and AT 21 days. The smallest number of these was displayed on the AT-BMC 14 days and AT-BMC 21 days. Marking to CD105, CD133, and CD68 were observed in AT 14 days and AT 21 days. These markings were not observed in AT-BMC 14 days or in AT-BMC 21 days. Electron micrographs show the beneficial remodeling in AT-BMC 14 days and AT-BMC 21 days, and the structural organization was similar to the CO group. Vesicles of pinocytosis, projection of smooth muscle cells, and delamination of the internal elastic lamina are seen in groups AT 14 days and AT 21 days. Endothelial cells were preserved, and regular and continuous contour in internal elastic lamelae were observed in the CO, the AT-BMC 14 days, and AT-BMC 21 days groups. In conclusion, in an atherosclerotic model using mice and atherogenic diet, the injection of BMCs improves glucose, lipid metabolism, and causes a beneficial remodeling of the aortic wall.
Collapse
Affiliation(s)
- Alyne Souza Felix
- a Laboratory of Ultrastructure and Tissue Biology, Histology and Embryology Department, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, (UERJ), Bouvelard 28 de Setembro Avn, 77, Vila Isabel, Cep 20.551-030 Rio de Janeiro, Brazil
| | - Nemesis Monteiro
- a Laboratory of Ultrastructure and Tissue Biology, Histology and Embryology Department, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, (UERJ), Bouvelard 28 de Setembro Avn, 77, Vila Isabel, Cep 20.551-030 Rio de Janeiro, Brazil
| | - Vinícius Novaes Rocha
- c Department of Veterinary medicine, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Genilza Oliveira
- b Research Laboratory of Stem Cells, Histology and Embryology Department, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Lucia Nascimento
- a Laboratory of Ultrastructure and Tissue Biology, Histology and Embryology Department, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, (UERJ), Bouvelard 28 de Setembro Avn, 77, Vila Isabel, Cep 20.551-030 Rio de Janeiro, Brazil
| | - Laís de Carvalho
- b Research Laboratory of Stem Cells, Histology and Embryology Department, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra Thole
- b Research Laboratory of Stem Cells, Histology and Embryology Department, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge Carvalho
- a Laboratory of Ultrastructure and Tissue Biology, Histology and Embryology Department, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, (UERJ), Bouvelard 28 de Setembro Avn, 77, Vila Isabel, Cep 20.551-030 Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Kim YJ, Lee ES, Kim SH, Lee HY, Noh SM, Kang DY, Lee BS. Inhibitory effects of rapamycin on the different stages of hepatic fibrosis. World J Gastroenterol 2014; 20:7452-7460. [PMID: 24966615 PMCID: PMC4064090 DOI: 10.3748/wjg.v20.i23.7452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/24/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate and compare the inhibitory effects of rapamycin in the different stages of liver fibrosis.
METHODS: We performed bile duct ligation (BDL) in male Wistar rats (n = 24). The experimental rats were classified into four groups: the BDL+/Rapa- group (un-treated control, n = 4), the BDL+/Rapa+ group (treated 14 d after BDL, n = 8), the BDL+/Rapa++ group (treated on the day after BDL, n = 8), and the BDL-/Rapa- group (un-treated, sham -operated control, n = 4). The BDL+/Rapa+ and BDL+/Rapa++ groups were administered rapamycin (2 mg/kg) for 28 d. The liver tissues were tested by immunohistochemical staining for α-smooth muscle actin (α-SMA) and cytokeratin.
RESULTS: The liver mRNA levels of transforming growth factor (TGF)-β1 and platelet-derived growth factor (PDGF) were measured using the polymerase chain reaction. The protein levels of liver p70s6K and p-p70s6k were determined using Western blotting. α-SMA expression was lowest in the BDL+/Rapa++group. TGF-β1 and PDGF expression levels in the rapamycin-treated group were lower than those in the un-treated group and higher than those in the control groups (TGF-β1: 0.23 ± 0.00 vs 0.34 ± 0.01, 0.23 ± 0.0 vs 0.09 ± 0.00, P < 0.0001; PDGF: 0.21 ± 0.00 vs 0.34 ± 0.01, 0.21 ± 0.0 vs 0.09 ± 0.00, P < 0.0001). The p70s6k and p-p70s6k levels decreased in the treated groups and were lowest in the BDL+/Rapa++group (p70s6k: 1.05 ± 0.17 vs 1.30 ± 0.56, 0.40 ± 0.01 vs 1.30 ± 0.56, P < 0.0001; p-p70s6k: 1.40 ± 0.5 vs 1.67 ± 0.12, 0.70 ± 0.01 vs 1.67 ± 0.12, P < 0.0001).
CONCLUSION: The results of our study indicate that rapamycin has inhibitory effects on liver fibrosis, and the treatment is most effective in the early stages of fibrosis.
Collapse
|
9
|
Impaired mitochondrial function and reduced viability in bone marrow cells of obese mice. Cell Tissue Res 2014; 357:185-94. [DOI: 10.1007/s00441-014-1857-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
|
10
|
Nunes de Carvalho S, Helal-Neto E, de Andrade DC, Costa Cortez EA, Thole AA, Barja-Fidalgo C, de Carvalho L. Bone marrow mononuclear cell transplantation increases metalloproteinase-9 and 13 and decreases tissue inhibitors of metalloproteinase-1 and 2 expression in the liver of cholestatic rats. Cells Tissues Organs 2013; 198:139-48. [PMID: 23886643 DOI: 10.1159/000353215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2013] [Indexed: 11/19/2022] Open
Abstract
Liver fibrosis results from chronic injury followed by activation of macrophages and fibrogenic cells like myofibroblasts and activated hepatic stellate cells. These fibrogenic cells express α-smooth muscle actin (α-SMA) and produce excessive extracellular matrix (ECM), with disorganization and loss of function of hepatic parenchyma. It is known that increased levels of metalloproteinases (MMPs) in liver fibrosis are associated with reduction of the pathologic ECM and fibrosis resolution. Recently, it has been shown that bone marrow mononuclear cells (BMMNCs) may reduce collagen and α-SMA expression, and ameliorate liver function in cholestatic rats. Therefore, this study aimed to analyze MMP-2, MMP-9 and MMP-13, and tissue inhibitors of MMPs (TIMPs)-1 and TIMP-2 in the liver of cholestatic rats transplanted with BMMNC. Animals were divided into normal rats, cholestatic rats obtained after 14 and 21 days of bile duct ligation (BDL), and rats obtained after 14 days of BDL that received BMMNCs and were killed after 7 days. MMP and TIMP expression was assessed by Western blotting, along with α-SMA, CD68 and CD11b expression by confocal microscopy. Western blotting analysis showed that 14-day BDL animals had significantly reduced amounts of MMP-2 and MMP-13, but increased amounts of MMP-9 compared to normal rats. After 21 days of BDL, overall MMP amounts were decreased and TIMPs were increased. BMMNC transplantation significantly increased MMP-9 and MMP-13, and decreased TIMP expression. Increased MMP activity was confirmed by zymography. MMP-9 and MMP-13 were expressed by macrophages near fibrotic septa, suggesting BMMNC may stimulate MMP production in fibrotic livers, contributing to ECM degradation and hepatic regeneration.
Collapse
Affiliation(s)
- Simone Nunes de Carvalho
- Laboratório Cultura de Células, Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, UERJ, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Nunes de Carvalho S, da Cunha Lira D, Costa Cortez EA, de Andrade DC, Thole AA, Stumbo AC, de Carvalho L. Bone marrow cell transplantation is associated with fibrogenic cells apoptosis during hepatic regeneration in cholestatic rats. Biochem Cell Biol 2013; 91:88-94. [DOI: 10.1139/bcb-2012-0045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Liver fibrosis is accompanied by hepatocyte death and proliferation of α-SMA+ fibrogenic cells (activated hepatic stellate cells and myofibroblasts), which synthesize extracellular matrix components that contribute to disorganization of the hepatic parenchyma and loss of liver function. Therefore, apoptosis of these fibrogenic cells is important to hepatic regeneration. This study aimed to analyze the effect of cell therapy using bone marrow mononuclear cell (BMMNC) transplantation on α-SMA expression and on apoptosis of hepatic cells during liver fibrosis induced by bile duct ligation (BDL). Livers were collected from normal rats, fibrotic rats after 14 and 21 days of BDL, and rats that received BMMNC at 14 days of BDL and were analyzed after 7 days. Apoptosis in fibrogenic cells was analyzed by immunoperoxidase, confocal microscopy, and Western blotting, and liver regeneration was assessed by proliferating cell nuclear antigen staining. Results showed that caspase-3 and proliferating cell nuclear antigen expression were significantly increased in the BMMNC-treated group. Additionally, confocal microscopy analysis showed cells coexpressing α-SMA and caspase-3 in these animals, suggesting fibrogenic cell death. These results suggest a novel role for BMMNC in liver regeneration during fibrotic disease by stimulating fibrogenic cells apoptosis and hepatocyte proliferation, probably through secretion of specific cytokines that modulate the hepatic microenvironment toward an antifibrogenic balance.
Collapse
Affiliation(s)
- Simone Nunes de Carvalho
- Laboratório Cultura de Células, Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Dalvaci da Cunha Lira
- Laboratório Cultura de Células, Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Erika Afonso Costa Cortez
- Laboratório Cultura de Células, Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Daniela Caldas de Andrade
- Laboratório Cultura de Células, Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Alessandra Alves Thole
- Laboratório Cultura de Células, Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Ana Carolina Stumbo
- Laboratório Cultura de Células, Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Lais de Carvalho
- Laboratório Cultura de Células, Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, UERJ, Av. Prof. Manoel de Abreu 444, 3° andar, 20550-170 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Andrade CMB, Lopez PLC, Noronha BT, Wink MR, Borojevic R, Margis R, Lenz G, Battastini AMO, Guma FCR. Ecto-5'-nucleotidase/CD73 knockdown increases cell migration and mRNA level of collagen I in a hepatic stellate cell line. Cell Tissue Res 2011; 344:279-86. [PMID: 21424267 DOI: 10.1007/s00441-011-1140-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/26/2011] [Indexed: 01/10/2023]
Abstract
Ecto-5'-nucleotidase (eNT/CD73, E.C.3.1.3.5) is a glycosyl phosphatidylinositol (GPI)-linked cell-surface protein with several functions, including the local generation of adenosine from AMP, with the consequent activation of adenosine receptors and the salvaging of extracellular nucleotides. It also apparently functions independently of this activity, e.g., in the mediation of cell-cell adhesion. Liver fibrosis can be considered as a dynamic and integrated cellular response to chronic liver injury and the activation of hepatic stellate cells (HSCs) plays a role in the fibrogenic process. eNT/CD73 and adenosine are reported to play an important role in hepatic fibrosis in murine models. Knockdown of eNT/CD73 leads to an increase in mRNA expression of tissue non-specific alkaline phosphatase (TNALP), another AMP-degrading enzyme and thus no alteration is seen in the total ecto-AMPase activity of the cell. eNT/CD73 knockdown also leads to changes in the expression of collagen I and a clear alteration of cell migration. We suggest that eNT/CD73 protein expression controls cell migration and collagen expression in a mechanism independent of changes in nucleotide metabolism.
Collapse
Affiliation(s)
- Cláudia M B Andrade
- Departamento de Bioquímica, UFRGS, Rua Ramiro Barcelos, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hübner S, Efthymiadis A. Histochemistry and cell biology: the annual review 2010. Histochem Cell Biol 2011; 135:111-40. [PMID: 21279376 DOI: 10.1007/s00418-011-0781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
This review summarizes recent advances in histochemistry and cell biology which complement and extend our knowledge regarding various aspects of protein functions, cell and tissue biology, employing appropriate in vivo model systems in conjunction with established and novel approaches. In this context several non-expected results and discoveries were obtained which paved the way of research into new directions. Once the reader embarks on reading this review, it quickly becomes quite obvious that the studies contribute not only to a better understanding of fundamental biological processes but also provide use-oriented aspects that can be derived therefrom.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany.
| | | |
Collapse
|