1
|
Khasanov R, Svoboda D, Tapia-Laliena MÁ, Kohl M, Maas-Omlor S, Hagl CI, Wessel LM, Schäfer KH. Muscle hypertrophy and neuroplasticity in the small bowel in short bowel syndrome. Histochem Cell Biol 2023; 160:391-405. [PMID: 37395792 PMCID: PMC10624713 DOI: 10.1007/s00418-023-02214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
Short bowel syndrome (SBS) is a severe, life-threatening condition and one of the leading causes of intestinal failure in children. Here we were interested in changes in muscle layers and especially in the myenteric plexus of the enteric nervous system (ENS) of the small bowel in the context of intestinal adaptation. Twelve rats underwent a massive resection of the small intestine to induce SBS. Sham laparotomy without small bowel transection was performed in 10 rats. Two weeks after surgery, the remaining jejunum and ileum were harvested and studied. Samples of human small bowel were obtained from patients who underwent resection of small bowel segments due to a medical indication. Morphological changes in the muscle layers and the expression of nestin, a marker for neuronal plasticity, were studied. Following SBS, muscle tissue increases significantly in both parts of the small bowel, i.e., jejunum and ileum. The leading pathophysiological mechanism of these changes is hypertrophy. Additionally, we observed an increased nestin expression in the myenteric plexus in the remaining bowel with SBS. Our human data also showed that in patients with SBS, the proportion of stem cells in the myenteric plexus had risen by more than twofold. Our findings suggest that the ENS is tightly connected to changes in intestinal muscle layers and is critically involved in the process of intestinal adaptation to SBS.
Collapse
Affiliation(s)
- Rasul Khasanov
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Daniel Svoboda
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - María Ángeles Tapia-Laliena
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Martina Kohl
- Department of Pediatric and Adolescent Medicine, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Silke Maas-Omlor
- Enteric Nervous System Group, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibrücken, Germany
| | - Cornelia Irene Hagl
- Carl Remigius Medical School, Charles de Gaulle Str. 2, 81737, Munich, Germany
| | - Lucas M Wessel
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Karl-Herbert Schäfer
- Enteric Nervous System Group, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibrücken, Germany
| |
Collapse
|
2
|
Xu G, Huang Z, Sheng J, Gao X, Wang X, Garcia JQ, Wei G, Liu D, Gong J. FGF binding protein 3 is required for spinal cord motor neuron development and regeneration in zebrafish. Exp Neurol 2021; 348:113944. [PMID: 34896115 DOI: 10.1016/j.expneurol.2021.113944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor binding protein 3 (Fgfbp3) have been known to be crucial for the process of neural proliferation, differentiation, migration, and adhesion. However, the specific role and the molecular mechanisms of fgfbp3 in regulating the development of motor neurons remain unclear. In this study, we have investigated the function of fgfbp3 in morphogenesis and regeneration of motor neuron in zebrafish. Firstly, we found that fgfbp3 was localized in the motor neurons and loss of fgfbp3 caused the significant decrease of the length and branching number of the motor neuron axons, which could be partially rescued by fgfbp3 mRNA injection. Moreover, the fgfbp3 knockdown (KD) embryos demonstrated similar defects of motor neurons as identified in fgfbp3 knockout (KO) embryos. Furthermore, we revealed that the locomotion and startle response of fgfbp3 KO embryos were significantly restricted, which were partially rescued by the fgfbp3 overexpression. In addition, fgfbp3 KO remarkably compromised axonal regeneration of motor neurons after injury. Lastly, the malformation of motor neurons in fgfbp3 KO embryos was rescued by overexpressing drd1b or neurod6a, respectively, which were screened by transcriptome sequencing. Taken together, our results provide strong cellular and molecular evidence that fgfbp3 is crucial for the axonal morphogenesis and regeneration of motor neurons in zebrafish.
Collapse
Affiliation(s)
- Guangmin Xu
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zigang Huang
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiajing Sheng
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiang Gao
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Wang
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jason Q Garcia
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Guanyun Wei
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Jie Gong
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
3
|
Scoggin JL, Kemp BS, Rivera DA, Murray TA. PICS: a platform for planar imaging of curved surfaces of brain and other tissue. Brain Struct Funct 2019; 224:1947-1956. [PMID: 30903358 DOI: 10.1007/s00429-019-01861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
Optical imaging of wholemount tissue samples provides greater understanding of structure-function relationships as the architecture of these specimens is generally well preserved. However, difficulties arise when attempting to stitch together images of multiple regions of larger, oddly shaped specimens. These difficulties include (1) maintaining consistent signal-to-noise ratios when the overlying sample surface is uneven, (2) ensuring sample viability when live samples are required, and (3) stabilizing the specimen in a fixed position in a flowing medium without distorting the tissue sample. To address these problems, we designed a simple and cost-efficient device that can be 3D-printed and machined. The design for the device, named the Platform for Planar Imaging of Curved Surfaces (PICS), consists of a sample holder, or "cap" with gaps for fluid flow and a depression for securing the sample in a fixed position without glue or pins, a basket with two arms that move along an external radius to rotate the sample around a central axis, and a customizable platform designed to fit on a commercially available temperature control system for slice electrophysiology. We tested the system using wholemounts of the murine subventricular zone (SVZ), which has a high degree of curvature, to assess sample viability and image quality through cell movement for over an hour for each sample. Using the PICS system, tissues remained viable throughout the imaging sessions, there were no noticeable decreases in the image SNR across an imaging plane, and there was no noticeable displacement of the specimen due to fluid flow.
Collapse
Affiliation(s)
- Jessica L Scoggin
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, PO Box 10157, Ruston, LA, 71272-0046, USA
| | - Benjamin S Kemp
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, PO Box 10157, Ruston, LA, 71272-0046, USA
| | - Daniel A Rivera
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, PO Box 10157, Ruston, LA, 71272-0046, USA.,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Teresa A Murray
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, PO Box 10157, Ruston, LA, 71272-0046, USA.
| |
Collapse
|
4
|
Dos Santos-Júnior EF, Gonçalves-Pimentel C, de Araújo LCC, da Silva TG, de Melo-Júnior MR, Moura-Neto V, Andrade-da-Costa BLDS. Malnutrition increases NO production and induces changes in inflammatory and oxidative status in the distal colon of lactating rats. Neurogastroenterol Motil 2016; 28:1204-16. [PMID: 26951039 DOI: 10.1111/nmo.12820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Epidemiological studies have indicated the lack of breast feeding as a risk factor associated with later development of inflammatory bowel disease. Nevertheless, the repercussion of little feeding during suckling on large intestine inflammatory response and anti-oxidant resources has not yet been completely understood. This study hypothesized that unfavorable lactation is able to induce oxidative stress and release of inflammatory mediators modifying the integrity of the colon epithelium in weanling rats. METHODS Wistar rats were reared under different early nutritional conditions according to litter size in two groups: N6 (6 pups/dam) and N15 (15 pups/dam) until the 25th postnatal day. The distal colon was removed and processed for biochemical, morphometric, and immunohistochemical analyzes. Lipoperoxidation, nitric oxide (NO), reduced (GSH) and oxidized (GSSG) glutathione, tumor necrosis factor-alpha (TNF-α), interleukins-1β, 4 and 10 (IL-1β; IL-4; IL-10) levels, and total superoxide dismutase (tSOD), and catalase (CAT) activities were assessed. Morphometric analysis was carried out using paraffin sections and wholemount myenteric plexus preparations. KEY RESULTS Increased lipoperoxidation, NO, TNF-α and IL-1b levels, reduced tSOD and increased CAT activities were found in the N15 compared to N6 group. No intergroup difference was detected for IL-10, while lower levels of IL-4, GSH and GSSG and lower neuronal size and density were induced by undernutrition. CONCLUSIONS & INFERENCES Reduced feeding during suckling changed the inflammatory response and oxidative status in the colon of weanling rats. These data suggest potential mechanisms by which malnutrition early in life may increase the vulnerability of the large intestine to insults.
Collapse
Affiliation(s)
- E F Dos Santos-Júnior
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - C Gonçalves-Pimentel
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - L C C de Araújo
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - T G da Silva
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - M R de Melo-Júnior
- Departamento de Patologia e Laboratório de Imunopatologia Keizo Asami, LIKA, Universidade Federal de Pernambuco, Recife, Brazil
| | - V Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Centro de Estudo e Pesquisa, Rio de Janeiro, RJ, Brazil
| | - B L D S Andrade-da-Costa
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
5
|
Bondurand N, Southard-Smith EM. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: Old and new players. Dev Biol 2016; 417:139-57. [PMID: 27370713 DOI: 10.1016/j.ydbio.2016.06.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 12/18/2022]
Abstract
Hirschsprung disease (HSCR, intestinal aganglionosis) is a multigenic disorder with variable penetrance and severity that has a general population incidence of 1/5000 live births. Studies using animal models have contributed to our understanding of the developmental origins of HSCR and the genetic complexity of this disease. This review summarizes recent progress in understanding control of enteric nervous system (ENS) development through analyses in mouse models. An overview of signaling pathways that have long been known to control the migration, proliferation and differentiation of enteric neural progenitors into and along the developing gut is provided as a framework for the latest information on factors that influence enteric ganglia formation and maintenance. Newly identified genes and additional factors beyond discrete genes that contribute to ENS pathology including regulatory sequences, miRNAs and environmental factors are also introduced. Finally, because HSCR has become a paradigm for complex oligogenic diseases with non-Mendelian inheritance, the importance of gene interactions, modifier genes, and initial studies on genetic background effects are outlined.
Collapse
Affiliation(s)
- Nadege Bondurand
- INSERM, U955, Equipe 6, F-94000 Creteil, France; Universite Paris-Est, UPEC, F-94000 Creteil, France.
| | - E Michelle Southard-Smith
- Vanderbilt University Medical Center, Department of Medicine, 2215 Garland Ave, Nashville, TN 37232, USA.
| |
Collapse
|
6
|
Enteric nervous system abnormalities are present in human necrotizing enterocolitis: potential neurotransplantation therapy. Stem Cell Res Ther 2014; 4:157. [PMID: 24423414 PMCID: PMC4054965 DOI: 10.1186/scrt387] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/15/2013] [Accepted: 11/11/2013] [Indexed: 02/07/2023] Open
Abstract
Introduction Intestinal dysmotility following human necrotizing enterocolitis suggests that the enteric nervous system is injured during the disease. We examined human intestinal specimens to characterize the enteric nervous system injury that occurs in necrotizing enterocolitis, and then used an animal model of experimental necrotizing enterocolitis to determine whether transplantation of neural stem cells can protect the enteric nervous system from injury. Methods Human intestinal specimens resected from patients with necrotizing enterocolitis (n = 18), from control patients with bowel atresia (n = 8), and from necrotizing enterocolitis and control patients undergoing stoma closure several months later (n = 14 and n = 6 respectively) were subjected to histologic examination, immunohistochemistry, and real-time reverse-transcription polymerase chain reaction to examine the myenteric plexus structure and neurotransmitter expression. In addition, experimental necrotizing enterocolitis was induced in newborn rat pups and neurotransplantation was performed by administration of fluorescently labeled neural stem cells, with subsequent visualization of transplanted cells and determination of intestinal integrity and intestinal motility. Results There was significant enteric nervous system damage with increased enteric nervous system apoptosis, and decreased neuronal nitric oxide synthase expression in myenteric ganglia from human intestine resected for necrotizing enterocolitis compared with control intestine. Structural and functional abnormalities persisted months later at the time of stoma closure. Similar abnormalities were identified in rat pups exposed to experimental necrotizing enterocolitis. Pups receiving neural stem cell transplantation had improved enteric nervous system and intestinal integrity, differentiation of transplanted neural stem cells into functional neurons, significantly improved intestinal transit, and significantly decreased mortality compared with control pups. Conclusions Significant injury to the enteric nervous system occurs in both human and experimental necrotizing enterocolitis. Neural stem cell transplantation may represent a novel future therapy for patients with necrotizing enterocolitis.
Collapse
|
7
|
Platonova N, Miquel G, Chiu LY, Taouji S, Moroni E, Colombo G, Chevet E, Sue SC, Bikfalvi A. Dimerization capacities of FGF2 purified with or without heparin-affinity chromatography. PLoS One 2014; 9:e110055. [PMID: 25299071 PMCID: PMC4192534 DOI: 10.1371/journal.pone.0110055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/08/2014] [Indexed: 11/19/2022] Open
Abstract
Fibroblast growth factor-2 (FGF2) is a pleiotropic growth factor exhibiting a variety of biological activities. In this article, we studied the capacity of FGF2 purified with or without heparin affinity chromatography to self-associate. Analyzing the NMR HSQC spectra for different FGF2 concentrations, heparin-affinity purified FGF2 showed perturbations that indicate dimerization and are a higher-order oligomerization state. HSQC perturbation observed with different FGF2 concentrations revealed a heparin-binding site and two dimer interfaces. Thus, with increasing protein concentrations, FGF2 monomers make contacts with each other and form dimers or higher order oligomers. On the contrary, FGF2 purified with ion-exchange chromatography did not show similar perturbation indicating that self-association of FGF2 is eliminated if purification is done without heparin-affinity chromatography. The HSQC spectra of heparin-affinity purified FGF2 can be reproduced to some extent by adding heparin tetra-saccharide to ion exchange chromatography purified FGF2. Heparin-affinity purified FGF2 bound to acceptor and donor beads in a tagged form using His-tagged or GST-tagged proteins, also dimerized in the AlphaScreen™ assay. This assay was further validated using different experimental conditions and competitors. The assay constitutes an interesting tool to study dimerization of other FGF forms as well.
Collapse
Affiliation(s)
- Natalia Platonova
- INSERM U1029, Allée Geoffroy St. Hilaire, Pessac, France
- Université Bordeaux I, Allée Geoffroy St. Hilaire, Pessac, France
| | - Géraldine Miquel
- INSERM U1029, Allée Geoffroy St. Hilaire, Pessac, France
- Université Bordeaux I, Allée Geoffroy St. Hilaire, Pessac, France
| | - Liang-Yuan Chiu
- Institute of Bioinformatics and Structure Biology, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Elisabetta Moroni
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milano, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milano, Italy
| | | | - Shih-Che Sue
- Institute of Bioinformatics and Structure Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Andreas Bikfalvi
- INSERM U1029, Allée Geoffroy St. Hilaire, Pessac, France
- Université Bordeaux I, Allée Geoffroy St. Hilaire, Pessac, France
| |
Collapse
|
8
|
Origins and neurochemical complexity of preganglionic neurons supplying the superior cervical ganglion in the domestic pig. J Mol Neurosci 2014; 55:297-304. [PMID: 24854048 PMCID: PMC4303702 DOI: 10.1007/s12031-014-0321-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/29/2014] [Indexed: 12/30/2022]
Abstract
The superior cervical ganglion (SCG) is a center of sympathetic innervation of all head and neck organs. SCG sympathetic preganglionic neurons (SPN) were found in the nucleus intermediolateralis pars principalis (IMLpp), the nucleus intermediolateralis pars funicularis (IMLpf), the nucleus intercalatus spinalis (IC), and the nucleus intercalatus spinalis pars paraependymalis (ICpe). Despite its importance, little is known of SCG innervation and chemical coding in the laboratory pig, a model that is physiologically and anatomically representative of humans. Here in our study, we established the distribution and chemical coding of Fast Blue (FB) retrogradely labelled SPN innervating porcine SCG. After unilateral injection of FB retrograde tracer into the left SCG, labeled neurons were found solely on the ipsilateral side with approximately 98 % located in Th1–Th3 segments and predominantly distributed in the IMLpp and IMLpf. Neurochemical analysis revealed that approximately 80 % of SPN were positive both to choline acetyltransferase (ChAT) and nitric oxide synthase (NOS) and were surrounded by a plethora of opioidergic and peptiergic nerve terminals. The results of our study provide a detailed description of the porcine preganglionic neuroarchitecture of neurons controlling the SCG, setting the stage for further studies concerning SPN plasticity under experimental/pathological conditions.
Collapse
|
9
|
The mesenterially perfused rat small intestine: A versatile approach for pharmacological testings. Ann Anat 2014; 196:158-66. [DOI: 10.1016/j.aanat.2014.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 12/22/2022]
|
10
|
The Histochem Cell Biol conspectus: the year 2013 in review. Histochem Cell Biol 2014; 141:337-63. [PMID: 24610091 PMCID: PMC7087837 DOI: 10.1007/s00418-014-1207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 11/29/2022]
Abstract
Herein, we provide a brief synopsis of all manuscripts published in Histochem Cell Biol in the year 2013. For ease of reference, we have divided the manuscripts into the following categories: Advances in Methodologies; Molecules in Health and Disease; Organelles, Subcellular Structures and Compartments; Golgi Apparatus; Intermediate Filaments and Cytoskeleton; Connective Tissue and Extracellular Matrix; Autophagy; Stem Cells; Musculoskeletal System; Respiratory and Cardiovascular Systems; Gastrointestinal Tract; Central Nervous System; Peripheral Nervous System; Excretory Glands; Kidney and Urinary Bladder; and Male and Female Reproductive Systems. We hope that the readership will find this annual journal synopsis of value and serve as a quick, categorized reference guide for “state-of-the-art” manuscripts in the areas of histochemistry, immunohistochemistry, and cell biology.
Collapse
|
11
|
Musser MA, Michelle Southard-Smith E. Balancing on the crest - Evidence for disruption of the enteric ganglia via inappropriate lineage segregation and consequences for gastrointestinal function. Dev Biol 2013; 382:356-64. [PMID: 23376538 DOI: 10.1016/j.ydbio.2013.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 01/28/2023]
Abstract
Normal enteric nervous system (ENS) development relies on numerous factors, including appropriate migration, proliferation, differentiation, and maturation of neural crest (NC) derivatives. Incomplete rostral to caudal migration of enteric neural crest-derived progenitors (ENPs) down the gut is at least partially responsible for the absence of enteric ganglia that is a hallmark feature of Hirschsprung disease (HSCR). The thought that ganglia proximal to aganglionosis are normal has guided surgical procedures for HSCR patients. However, chronic gastrointestinal dysfunction suffered by a subset of patients after surgery as well as studies in HSCR mouse models suggest that aberrant NC segregation and differentiation may be occurring in ganglionated regions of the intestine. Studies in mouse models that possess enteric ganglia throughout the length of the intestine (non-HSCR) have also found that certain genetic alterations affect neural crest lineage balance and interestingly many of these mutants also have functional gastrointestinal (GI) defects. It is possible that many GI disorders can be explained in part by imbalances in NC-derived lineages. Here we review studies evaluating ENS defects in HSCR and non-HSCR mouse models, concluding with clinical implications while highlighting areas requiring further study.
Collapse
Affiliation(s)
- Melissa A Musser
- Division of Genetic Medicine, Department of Medicine and the PhD Program in Human Genetics, Center for Human Genetic Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|