1
|
Gulcin İ. Antioxidants: a comprehensive review. Arch Toxicol 2025; 99:1893-1997. [PMID: 40232392 DOI: 10.1007/s00204-025-03997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 04/16/2025]
Abstract
Antioxidants had a growing interest owing to their protective roles in food and pharmaceutical products against oxidative deterioration and in the body and against oxidative stress-mediated pathological processes. Screening of antioxidant properties of plants and plant derived compounds requires appropriate methods, which address the mechanism of antioxidant activity and focus on the kinetics of the reactions including the antioxidants. Many studies have been conducted with evaluating antioxidant activity of various samples of research interest using by different methods in food and human health. These methods were classified methods described and discussed in this review. Methods based on inhibited autoxidation are the most suited for termination-enhancing antioxidants and, for chain-breaking antioxidants while different specific studies are needed for preventive antioxidants. For this purpose, the most commonly methods used in vitro determination of antioxidant capacity of food and pharmaceutical constituents are examined and also a selection of chemical testing methods is critically reviewed and highlighting. In addition, their advantages, disadvantages, limitations and usefulness were discussed and investigated for pure molecules and raw plant extracts. The effect and influence of the reaction medium on performance of antioxidants is also addressed. Hence, this overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceuticals, and dietary supplement industries. Also, the most important advantages and shortcomings of each method were detected and highlighted. The underlying chemical principles of these methods have been explained and thoroughly analyzed. The chemical principles of methods of 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, ferric ions (Fe3+) reducing assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), superoxide radical anion (O2·-), hydroxyl radical (OH·) scavenging, peroxyl radical (ROO·) removing, hydrogen peroxide (H2O2) decomposing, singlet oxygen (1O2) quenching assay, nitric oxide radical (NO·) scavenging assay and chemiluminescence assay are overviewed and critically discussed. Also, the general antioxidant aspects of the main food and pharmaceutical components were discussed through several methods currently used for detecting antioxidant properties of these components. This review consists of two main sections. The first section is devoted to the main components in food and their pharmaceutical applications. The second general section includes definitions of the main antioxidant methods commonly used for determining the antioxidant activity of components. In addition, some chemical, mechanistic, and kinetic properties, as well as technical details of the above mentioned methods, are provided. The general antioxidant aspects of main food components have been discussed through various methods currently used to detect the antioxidant properties of these components.
Collapse
Affiliation(s)
- İlhami Gulcin
- Faculty of Sciences, Department of Chemistry, Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
2
|
Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, Cowan C, Jaimon A, Obioru D, Al Makhoul T, Stuart JA. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biol Toxicol 2022; 39:111-143. [PMID: 36112262 PMCID: PMC9483325 DOI: 10.1007/s10565-022-09773-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
In clinical settings, oxygen therapy is administered to preterm neonates and to adults with acute and chronic conditions such as COVID-19, pulmonary fibrosis, sepsis, cardiac arrest, carbon monoxide poisoning, and acute heart failure. In non-clinical settings, divers and astronauts may also receive supplemental oxygen. In addition, under current standard cell culture practices, cells are maintained in atmospheric oxygen, which is several times higher than what most cells experience in vivo. In all the above scenarios, the elevated oxygen levels (hyperoxia) can lead to increased production of reactive oxygen species from mitochondria, NADPH oxidases, and other sources. This can cause cell dysfunction or death. Acute hyperoxia injury impairs various cellular functions, manifesting ultimately as physiological deficits. Chronic hyperoxia, particularly in the neonate, can disrupt development, leading to permanent deficiencies. In this review, we discuss the cellular activities and pathways affected by hyperoxia, as well as strategies that have been developed to ameliorate injury.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Maha Mirza
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Adam Baiton
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lucas Lazuran
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lyuda Samokysh
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ava Bobinski
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Cale Cowan
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Alvin Jaimon
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Dede Obioru
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Tala Al Makhoul
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
3
|
Diomede F, Fonticoli L, Marconi GD, Della Rocca Y, Rajan TS, Trubiani O, Murmura G, Pizzicannella J. Decellularized Dental Pulp, Extracellular Vesicles, and 5-Azacytidine: A New Tool for Endodontic Regeneration. Biomedicines 2022; 10:biomedicines10020403. [PMID: 35203612 PMCID: PMC8962372 DOI: 10.3390/biomedicines10020403] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 12/29/2022] Open
Abstract
Dental pulp is a major component of the dental body that serves to maintain the tooth life and function. The aim of the present work was to develop a system that functions as a growth-permissive microenvironment for dental pulp regeneration using a decellularized dental pulp (DDP) matrix, 5-Aza-2′-deoxycytidine (5-Aza), and Extracellular Vesicles (EVs) derived from human Dental Pulp Stem Cells (hDPSCs). Human dental pulps extracted from healthy teeth, scheduled to be removed for orthodontic purpose, were decellularized and then recellularized with hDPSCs. The hDPSCs were seeded on DDP and maintained under different culture conditions: basal medium (CTRL), EVs, 5-Aza, and EVs+-5-Aza. Immunofluorescence staining and Western blot analyses were performed to evaluate the proteins’ expression related to dentinogenesis, such as ALP, RUNX2, COL1A1, Vinculin, DMP1, and DSPP. Protein contents found in the DDP recellularized with hDPSCs were highly expressed in samples co-treated with EVs and 5-Aza compared to other culture conditions. This study developed a DDP matrix loaded by hDPSCs in co-treatment with EVs, which might enhance the dentinogenic differentiation with a high potentiality for endodontic regeneration.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (L.F.); (Y.D.R.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (L.F.); (Y.D.R.)
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy;
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (L.F.); (Y.D.R.)
| | | | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (L.F.); (Y.D.R.)
- Correspondence: (O.T.); (G.M.)
| | - Giovanna Murmura
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (L.F.); (Y.D.R.)
- Correspondence: (O.T.); (G.M.)
| | | |
Collapse
|
4
|
Marconi GD, Fonticoli L, Della Rocca Y, Rajan TS, Piattelli A, Trubiani O, Pizzicannella J, Diomede F. Human Periodontal Ligament Stem Cells Response to Titanium Implant Surface: Extracellular Matrix Deposition. BIOLOGY 2021; 10:931. [PMID: 34571808 PMCID: PMC8470763 DOI: 10.3390/biology10090931] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
The major challenge for dentistry is to provide the patient an oral rehabilitation to maintain healthy bone conditions in order to reduce the time for loading protocols. Advancement in implant surface design is necessary to favour and promote the osseointegration process. The surface features of titanium dental implant can promote a relevant influence on the morphology and differentiation ability of mesenchymal stem cells, induction of the osteoblastic genes expression and the release of extracellular matrix (ECM) components. The present study aimed at evaluating the in vitro effects of two different dental implants with titanium surfaces, TEST and CTRL, to culture the human periodontal ligament stem cells (hPDLSCs). Expression of ECM components such as Vimentin, Fibronectin, N-cadherin, Laminin, Focal Adhesion Kinase (FAK) and Integrin beta-1 (ITGB1), and the osteogenic related markers, as runt related transcription factor 2 (RUNX2) and alkaline phosphatase (ALP), were investigated. Human PDLSCs cultured on the TEST implant surface demonstrated a better cell adhesion capability as observed by Scanning Electron Microscopy (SEM) and immunofluorescence analysis. Moreover, immunofluorescence and Western blot experiments showed an over expression of Fibronectin, Laminin, N-cadherin and RUNX2 in hPDLSCs seeded on TEST implant surface. The gene expression study by RT-PCR validated the results obtained in protein assays and exhibited the expression of RUNX2, ALP, Vimentin (VIM), Fibronectin (FN1), N-cadherin (CDH2), Laminin (LAMB1), FAK and ITGB1 in hPDLSCs seeded on TEST surface compared to the CTRL dental implant surface. Understanding the mechanisms of ECM components release and its regulation are essential for developing novel strategies in tissue engineering and regenerative medicine. Our results demonstrated that the impact of treated surfaces of titanium dental implants might increase and accelerate the ECM apposition and provide the starting point to initiate the osseointegration process.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (G.D.M.); (A.P.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| | | | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (G.D.M.); (A.P.)
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| | | | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| |
Collapse
|
5
|
Marconi GD, Diomede F, Pizzicannella J, Fonticoli L, Merciaro I, Pierdomenico SD, Mazzon E, Piattelli A, Trubiani O. Enhanced VEGF/VEGF-R and RUNX2 Expression in Human Periodontal Ligament Stem Cells Cultured on Sandblasted/Etched Titanium Disk. Front Cell Dev Biol 2020; 8:315. [PMID: 32478069 PMCID: PMC7240029 DOI: 10.3389/fcell.2020.00315] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Bone formation, in skeletal development or in osseointegration processes, is the result of interaction between angiogenesis and osteogenesis. To establish osseointegration, cells must attach to the implant in a direct way without any deposition of soft tissue. Structural design and surface topography of dental implants enhance the cell attachment and can affect the biological response. The aim of the study was to evaluate the cytocompatibility, osteogenic and angiogenic markers involved in bone differentiation of human periodontal ligament stem cells (hPDLSCs) on different titanium disks surfaces. The hPDLSCs were cultured on pure titanium surfaces modified with two different procedures, sandblasted (Control—CTRL) and sandblasted/etched (Test—TEST) as experimental titanium surfaces. After 1 and 8 weeks of culture VEGF, VEGF-R, and RUNX2 expression was evaluated under confocal laser scanning microscopy. To confirm the obtained data, RT-PCR and WB analyses were performed in order to evaluate the best implant surface performance. TEST surfaces compared to CTRL titanium surfaces enhanced cell adhesion and increased VEGF and RUNX2 expression. Moreover, titanium TEST surfaces showed a different topographic morphology that promoted cell adhesion, proliferation, and osteogenic/angiogenic commitment. To conclude, TEST surfaces performed more efficiently than CTRL surfaces; furthermore, TEST surface results showed them to be more biocompatible, better tolerated, and appropriate for allowing hPDLSC growth and proliferation. This fact could also lead to more rapid bone–titanium integration.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Luigia Fonticoli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sante D Pierdomenico
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
6
|
Lin B, Gao Y, Li Z, Zhang Z, Lin X, Gao J. Cannabidiol alleviates hemorrhagic shock-induced neural apoptosis in rats by inducing autophagy through activation of the PI3K/AKT pathway. Fundam Clin Pharmacol 2020; 34:640-649. [PMID: 32215966 DOI: 10.1111/fcp.12557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
Recently, several studies have reported that the pharmacological effects exerted by cannabidiol (CBD) are partially related to the regulation of autophagy. Increasing evidence indicates that autophagy provides protection against ischemia-induced brain injury. However, the protective effect of CBD against mitochondrial-dependent apoptosis in hemorrhagic shock (HS)-induced brain injury has not been studied. In the present study, we observed the protective effects of CBD against neural mitochondrial-dependent apoptosis in a rat model of HS. In addition, CBD increased Beclin-1 and LC3II expression and reduced P62 expression, which were indicative of autophagy. CBD treatment attenuated the neural apoptosis induced by HS, as reflected by restoring mitochondrial dysfunction, downregulation of BAX, neuro-apoptosis ratio and NF-κB signaling activation, and upregulation of BCL2 in the cerebral cortex. Such protective effects were reversed by 3-Methyladenine, a specific autophagy inhibitor, indicating that the protective effects of CBD treatment involved autophagy. LY294002, a PI3K inhibitor, significantly inhibited CBD-induced autophagy, demonstrating that PI3K/AKT signaling is involved in the CBD's regulation of autophagy. Furthermore, we found that CBD treatment upregulated PI3K/AKT signaling via cannabinoid receptor 1. Therefore, these findings suggested that CBD treatment protects against cerebral injury induced by HS-mediated mitochondrial-dependent apoptosis by activating the PI3K/AKT signaling pathway to reinforce autophagy.
Collapse
Affiliation(s)
- Bo Lin
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Youguang Gao
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Zhiwang Li
- Department of Anesthesiology, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, 423000, China
| | - Zhiming Zhang
- Department of Anesthesiology, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, 423000, China
| | - Xianzhong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Jinpeng Gao
- Department of Neurosurgery, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Medical University, Chenzhou, 423000, China
| |
Collapse
|
7
|
VEGF/VEGF-R/RUNX2 Upregulation in Human Periodontal Ligament Stem Cells Seeded on Dual Acid Etched Titanium Disk. MATERIALS 2020; 13:ma13030706. [PMID: 32033260 PMCID: PMC7040902 DOI: 10.3390/ma13030706] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
In restorative dentistry, the main implants characteristic is the ability to promote the osseointegration process as the result of interaction between angiogenesis and osteogenesis events. On the other hand, implants cytocompatibility remains a necessary feature for the success of surgery. The purpose of the current study was to investigate the interaction between human periodontal stem cells and two different types of titanium surfaces, to verify their cytocompatibility and cell adhesion ability, and to detect osteogenic and angiogenic markers, trough cell viability assay (MTT), Confocal Laser Scanning Microscopy (CLSM), scanning electron microscopy (SEM), and gene expression (RT-PCR). The titanium surfaces, machined (CTRL) and dual acid etched (TEST), tested in culture with human periodontal ligament stem cells (hPDLSCs), were previously treated in two different ways, in order to evaluate the effects of CTRL and TEST and define the best implant surface. Furthermore, the average surface roughness (Ra) of both titanium surfaces, CTRL and TEST, has been assessed through atomic force microscopy (AFM). The vascular endothelial growth factor (VEGF) and Runt-related transcription factor 2 (RUNX2) expressions have been analyzed by RT-PCR, WB analysis, and confocal laser scanning microscopy. Data evidenced that the different morphology and topography of the TEST disk increased cell growth, cell adhesion, improved osteogenic and angiogenic events, as well osseointegration process. For this reason, the TEST surface was more biocompatible than the CTRL disk surface.
Collapse
|
8
|
A Novel Role of Ascorbic Acid in Anti-Inflammatory Pathway and ROS Generation in HEMA Treated Dental Pulp Stem Cells. MATERIALS 2019; 13:ma13010130. [PMID: 31892218 PMCID: PMC6981406 DOI: 10.3390/ma13010130] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
Resin (co)monomers issued from restorative dental materials are able to distribute in the dental pulp or the gingiva, to get to the saliva and to the flowing blood. Many authors have recently shown that methacrylate-based resins, in particular 2-hydroxyethylmethacrylate (HEMA), are responsible of inflammatory and autophagic processes in human dental pulp stem cells (hDPSCs) while ascorbic acid (AS), an antioxidant molecule, can assume a protective role in cell homeostasis. The purpose of the current work was to study if 50 µg/mL AS can affect the inflammatory status induced by 2 mM HEMA in hDPSCs, a tissue–specific cell population. Cell proliferation, cytokine release, morphological arrangement and reactive oxygen species (ROS) formation were determined respectively by MTT, ELISA, morphological analysis and dichlorofluorescein assay. The hDPSCs exposed to HEMA let to an increment of ROS formation and in the expression of high levels of inflammatory mediators such as nuclear factor-κB (NFkB), inflammatory cytokines such as interleukin IL6, IL8, interferon (IFN)ɣ and monocyte chemoattractant protein (MCP)1. Moreover, HEMA induced the up-regulation of pospho-extracellular signal–regulated kinases (pERK)/ERK signaling pathway associated to the nuclear translocation. AS treatment significantly down-regulated the levels of pro-inflammatory mediators. Then, the natural product AS reduced the detrimental result promoted by methacrylates in clinical dentistry, in fact restore cell proliferation, reduce the pro-inflammatory cytokine, downregulate ROS production and of NFkB/pERK/ERK signaling path. In synthesis, AS, could improve the quality of dental care and play a strategic role as innovative endodontic compound easy to use and with reasonable cost.
Collapse
|
9
|
Diomede F, Tripodi D, Trubiani O, Pizzicannella J. HEMA Effects on Autophagy Mechanism in Human Dental Pulp Stem Cells. MATERIALS 2019; 12:ma12142285. [PMID: 31315300 PMCID: PMC6678148 DOI: 10.3390/ma12142285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Autophagy is a complex mechanism that permits the degradation of cellular components in order to enhance cell homeostasis, recycling the damaged, dysfunctional, or unnecessary components. In restorative dentistry practice, free resin monomers of 2-hydroxyethyl methacrylate (HEMA) can be released. The aim of this study was to investigate the effect of HEMA on proliferation and autophagy in human dental pulp stem cells (hDPSCs). Human DPSCs were treated with different concentrations of HEMA (3 and 5 mmol L−1). To evaluate the proliferation rate, MTT and trypan blue assays were used. Autophagic markers such as microtubule-associated protein 1 light chain 3 (LC3-I/II) and ubiquitin-binding protein (p62) were analyzed through immunofluorescence observations. Beclin1, LC3-I/II, and p62 were evaluated by means of Western blotting detection. Considering that activity of extracellular signal–regulated kinase (ERK) and its phosphorylated form (pERK) mediates several cellular processes, such as apoptosis, autophagy, and senescence, the involvement of ERK/pERK signaling was also evaluated. Obtained results showed a decreased cell proliferation associated with morphological changes in HEMA-treated cells. The Western blot results showed that the expression levels of Beclin1, LC3-I/II, and ERK were significantly elevated in HEMA-treated cells and in cells co-treated with rapamycin, an autophagic promoter. The expression levels of p62 were significantly reduced compared to the untreated samples. Protein levels to the autophagic process, observed at confocal microscopy confirmed the data obtained from the Western blot. The up-regulation of ERK and pERK levels, associated with nuclear translocation, revealed that ERK pathway signaling could act as a promoter of autophagy in dental pulp stem cells treated with HEMA.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico Tripodi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy.
| | | |
Collapse
|
10
|
Zhao M, Tang S, Xin J, Wei Y, Liu D. Reactive oxygen species induce injury of the intestinal epithelium during hyperoxia. Int J Mol Med 2017; 41:322-330. [PMID: 29138796 PMCID: PMC5746288 DOI: 10.3892/ijmm.2017.3247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/27/2017] [Indexed: 12/31/2022] Open
Abstract
Long-term therapeutic hyperoxia may exert serious toxic effects on intestinal epithelial cells in vitro and in vivo. The aim of the present study was to investigate the cause of this intestinal injury under conditions of hyperoxia. Caco-2 cells were treated with different concentrations of hydrogen peroxide (H2O2) and 85% hyperoxia for 24 h. higher rates of injury of Caco-2 cells were observed in the hyperoxia and H2O2 groups compared with the control group. The reactive oxygen species (ROS) level of the hyperoxia group was significantly higher compared with that of the 400 µM H2O2 group. The protein and gene levels of RelA, RelB, hypoxia‑inducible factor-1α, tumor necrosis factor-α and apoptosis signal‑regulating kinase 1 were significantly higher in the hyperoxia and H2O2 groups compared with those in the control group. In conclusion, during hyperoxia, intestinal epithelial cells were destroyed and the levels of ROS were increased. Therefore, ROS may play an important role in intestinal injury in a hyperoxic environment.
Collapse
Affiliation(s)
- Min Zhao
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Shimiao Tang
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Junchi Xin
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yingliang Wei
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Dongyan Liu
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
11
|
Porzionato A, Sfriso MM, Mazzatenta A, Macchi V, De Caro R, Di Giulio C. Effects of hyperoxic exposure on signal transduction pathways in the lung. Respir Physiol Neurobiol 2015; 209:106-14. [DOI: 10.1016/j.resp.2014.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 12/18/2022]
|
12
|
Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 2014; 224:164-75. [PMID: 25452175 DOI: 10.1016/j.cbi.2014.10.016] [Citation(s) in RCA: 994] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine.
| |
Collapse
|
13
|
Postnatal hyperoxia exposure differentially affects hepatocytes and liver haemopoietic cells in newborn rats. PLoS One 2014; 9:e105005. [PMID: 25115881 PMCID: PMC4130630 DOI: 10.1371/journal.pone.0105005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/17/2014] [Indexed: 11/29/2022] Open
Abstract
Premature newborns are frequently exposed to hyperoxic conditions and experimental data indicate modulation of liver metabolism by hyperoxia in the first postnatal period. Conversely, nothing is known about possible modulation of growth factors and signaling molecules involved in other hyperoxic responses and no data are available about the effects of hyperoxia in postnatal liver haematopoiesis. The aim of the study was to analyse the effects of hyperoxia in the liver tissue (hepatocytes and haemopoietic cells) and to investigate possible changes in the expression of Vascular Endothelial Growth Factor (VEGF), Matrix Metalloproteinase 9 (MMP-9), Hypoxia-Inducible Factor-1α (HIF-1α), endothelial Nitric Oxide Synthase (eNOS), and Nuclear Factor-kB (NF-kB). Experimental design of the study involved exposure of newborn rats to room air (controls), 60% O2 (moderate hyperoxia), or 95% O2 (severe hyperoxia) for the first two postnatal weeks. Immunohistochemical and Western blot analyses were performed. Severe hyperoxia increased hepatocyte apoptosis and MMP-9 expression and decreased VEGF expression. Reduced content in reticular fibers was found in moderate and severe hyperoxia. Some other changes were specifically produced in hepatocytes by moderate hyperoxia, i.e., upregulation of HIF-1α and downregulation of eNOS and NF-kB. Postnatal severe hyperoxia exposure increased liver haemopoiesis and upregulated the expression of VEGF (both moderate and severe hyperoxia) and eNOS (severe hyperoxia) in haemopoietic cells. In conclusion, our study showed different effects of hyperoxia on hepatocytes and haemopoietic cells and differential involvement of the above factors. The involvement of VEGF and eNOS in the liver haemopoietic response to hyperoxia may be hypothesized.
Collapse
|
14
|
Improvement of ventilation-induced lung injury in a rodent model by inhibition of inhibitory κB kinase. J Trauma Acute Care Surg 2014; 76:1417-24. [DOI: 10.1097/ta.0000000000000229] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
The Histochem Cell Biol conspectus: the year 2013 in review. Histochem Cell Biol 2014; 141:337-63. [PMID: 24610091 PMCID: PMC7087837 DOI: 10.1007/s00418-014-1207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 11/29/2022]
Abstract
Herein, we provide a brief synopsis of all manuscripts published in Histochem Cell Biol in the year 2013. For ease of reference, we have divided the manuscripts into the following categories: Advances in Methodologies; Molecules in Health and Disease; Organelles, Subcellular Structures and Compartments; Golgi Apparatus; Intermediate Filaments and Cytoskeleton; Connective Tissue and Extracellular Matrix; Autophagy; Stem Cells; Musculoskeletal System; Respiratory and Cardiovascular Systems; Gastrointestinal Tract; Central Nervous System; Peripheral Nervous System; Excretory Glands; Kidney and Urinary Bladder; and Male and Female Reproductive Systems. We hope that the readership will find this annual journal synopsis of value and serve as a quick, categorized reference guide for “state-of-the-art” manuscripts in the areas of histochemistry, immunohistochemistry, and cell biology.
Collapse
|
16
|
Porzionato A, Macchi V, Zaramella P, Sarasin G, Grisafi D, Dedja A, Chiandetti L, De Caro R. Effects of postnatal hyperoxia exposure on the rat dentate gyrus and subventricular zone. Brain Struct Funct 2013; 220:229-47. [PMID: 24135771 DOI: 10.1007/s00429-013-0650-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 10/04/2013] [Indexed: 12/27/2022]
Abstract
Premature newborns may be exposed to hyperoxia in the first postnatal period, but clinical and experimental works have raised the question of oxygen toxicity for the developing brain. However, specific analysis of hyperoxia exposure on neurogenesis is still lacking. Thus, the aim of the present study was to evaluate possible changes in the morphometric parameters of the main neurogenic sites in newborn rats exposed to 60 or 95 % oxygen for the first 14 postnatal days. The optical disector, a morphometric method based upon unbiased sampling principles of stereology, was applied to analyse cell densities, total volumes, and total cell numbers of the dentate gyrus (DG) and subventricular zone (SVZ). Apoptosis and proliferation were also studied by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling method and anti-ki67 immunohistochemistry, respectively. Severe hyperoxia increased the percentage of apoptotic cells in the DG. Moderate and severe hyperoxia induced a proliferative response both in the DG and SVZ, but the two neurogenic sites showed different changes in their morphometric parameters. The DG of both the hyperoxic groups showed lower volume and total cell number than that of the normoxic one. Conversely, the SVZ of newborn rats exposed to 95 % hyperoxia showed statistically significant higher volume and total cell number than SVZ of rats raised in normoxia. Our findings indicate that hyperoxia exposure in the first postnatal period affects both the neurogenic areas, although in different ways, i.e. reduction of DG and expansion of SVZ.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Anatomy, Department of Molecular Medicine, University of Padova, Via A Gabelli 65, 35127, Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|