1
|
Xu J, He X, Zhang S, Li L, Li P. Expression of co-signaling molecules TIM-3/Galectin-9 at the maternal-fetal interface. Placenta 2025; 163:43-50. [PMID: 40068377 DOI: 10.1016/j.placenta.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/31/2025] [Accepted: 03/02/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION During early pregnancy, fetal placental tissue implants into maternal decidual tissue, forming a unique interface where maternal immune cells do not reject the invading fetal cells. Given the roles of Galectin-9 and Tim-3 in tumor immune regulation, studying their distribution and function at this interface may provide insights into recurrent pregnancy loss. METHODS This study uses single-cell transcriptomics, spatial transcriptomics, and multiplex immunohistochemistry to examine the expression and localization of Galectin-9 and TIM-3. Hormone-induced decidualization of immortalized human endometrial stromal cells was conducted to investigate Galectin-9 expression. RESULTS The major immune cells in the maternal decidua, such as T cells, NK cells, and macrophages, co-express Galectin-9 and TIM-3. Unlike TIM-3, Galectin-9 is also highly expressed in endothelial cells and decidualized stromal cells. Among placenta-derived cells, Hofbauer cells (HBs) and Placenta-associated maternal monocytes/macrophages (PAMMs) exhibit high expression of both Galectin-9 and TIM-3, while trophoblast cells show relatively low levels of expression. Additionally, hormone-induced decidualization significantly upregulates Galectin-9 expression in endometrial stromal cells. DISCUSSION The research results suggest that Galectin-9 and TIM-3, as important immune co-signaling molecules, may play a crucial role in maintaining the immune-tolerant microenvironment at the maternal-fetal interface. Additionally, the association between decidualization and Galectin-9 expression reveals its potential role in pregnancy maintenance, providing new insights for the study of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Jingliang Xu
- Sichuan Jinxin Xinan Women's and Children's Hospital, Chengdu, China
| | - Xuqing He
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Sujuan Zhang
- Sichuan Jinxin Xinan Women's and Children's Hospital, Chengdu, China
| | - Li Li
- Sichuan Jinxin Xinan Women's and Children's Hospital, Chengdu, China.
| | - Penghao Li
- Sichuan Jinxin Xinan Women's and Children's Hospital, Chengdu, China; Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China; Yunnan Jinxin Jiuzhou Hospital, Yunnan, China.
| |
Collapse
|
2
|
Li P, Zeng L, Yan X, Zhu Z, Gu Q, He X, Zhang S, Mao R, Xu J, Xie F, Wang H, Li Z, Shu J, Zhang W, Sha Y, Huang J, Su M, Zheng Q, Ma J, Zhou X, Li M, Pan H, Li Y, Yan M, Chen X, Li M, Long K, Kong F, Tang C, Huang J, Su C, Li J, Fang Z, Chen M, Tian E, Zhong Y, Gu J. Molecular and cellular morphology of placenta unveils new mechanisms of reproductive immunology. J Adv Res 2025:S2090-1232(25)00044-X. [PMID: 39842636 DOI: 10.1016/j.jare.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
INTRODUCTION Despite of numerous studies of the placenta, some molecular and cellular characteristics, particularly the relationship among different cell types, have not been well understood. We aim to investigate the basic and intricate details of cellular and molecular elements in early and late phase placentas to gain better understanding of the immune regulation of human reproductive process. METHODS A novel combination of techniques of spatial transcriptomics(ST), multiple immunohistochemistry, and a dual labeling combining immunohistochemistry and (fluorescence in situ hybridization) FISH on normal and ectopic pregnancy and animal models was employed to investigate the placenta at tissue, cell, protein and molecular levels and to trace the fetal and maternal origin of every cell in early and late placentas. RESULTS Original discoveries include early expression of immune checkpoint proteins in embryo trophoblasts even before implantation. The detailed distributional relationships among different cell types of fetal and maternal origins in placenta and decidua indicate an immune rejection of the mother towards the fetus and this was counterbalanced by immune inhibitory proteins and blocking antibody Immunoglobulin G4 (IgG4) at the junction between the fetus and the mother. In contrary to common believe, we found that vascular endothelial and glandular epithelial cells in the decidua remain maternal in origin and were not replaced by fetal cells. At term placenta, fetal immune cells infiltrated into the maternal side of the decidus and vice versa indicating a possible immune reaction between fetal and maternal immune systems and suggesting a possible immune mechanism for trigger of parturition. The ability of trophoblasts to create an immune suppressed environment was also supported by findings in ectopic pregnancy and the animal models. CONCLUSION The findings indicate a fetus-driven mechanism of immune balance involving both cellular and humoral immunity in human reproduction.
Collapse
Affiliation(s)
- Penghao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China; Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Liting Zeng
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China; Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei 516600, China
| | - Xiaomiao Yan
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China; Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China; Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ziqi Zhu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Qiaoxiu Gu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Xuqing He
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Sujuan Zhang
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Rurong Mao
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Jingliang Xu
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China; Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Fengshan Xie
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Hui Wang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Ziteng Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Jing Shu
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Weifeng Zhang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Yulin Sha
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Jin Huang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Meng Su
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Qu Zheng
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Jian Ma
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Xiaolin Zhou
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Ming Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Haiying Pan
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Ya Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Meiling Yan
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Xueling Chen
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Fanli Kong
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chuang Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ju Huang
- First Affiliated Hospital of Shantou University, Shantou, China
| | - Chanjuan Su
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Jirui Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Zheng Fang
- Motic China Group CO., LTD., Xiamen, China
| | | | - Erpo Tian
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Ying Zhong
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China
| | - Jiang Gu
- Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China; Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China.
| |
Collapse
|
3
|
Zhang W, Li J, Xie F, Zeng L, Hong L, Li P, Yan X, Xu J, Du M, Hong J, Yi D, Xie J, Gu J. Mechanical Microvibration Device Enhancing Immunohistochemistry Efficiency. Eng Life Sci 2024; 24:e202400062. [PMID: 39502857 PMCID: PMC11532639 DOI: 10.1002/elsc.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 11/08/2024] Open
Abstract
Immunohistochemistry (IHC) is a widely used technique in diagnostic pathology and biomedical research, but there is still a need to shorten the operation process and reduce the cost of antibodies. This study aims to assess a novel IHC technique that incorporates mechanical microvibration (MMV) to expedite the process, reduce antibody consumption, and enhance staining quality. MMV was generated using coin vibration motors attached to glass slides mounted with consecutive tissue sections. Multiple antibodies targeting various antigens were used to stain cancerous and normal tissues, with and without microvibration. Various parameters were tested, including incubation durations, temperatures, and antibody dilutions. The novel method showed the potential to achieve comparable or superior outcomes in significantly less time, utilizing over 10 times less antibody than controls. MMV improved specific staining quality, yielding stronger, and better-defined positive reactions. This was validated through a multicenter double-blind assessment and quantitative image analysis. The possible mechanisms were also investigated. MMV shortens immunohistochemical staining duration, reduces antibody usage, and enhances staining specificity, likely by accelerating antibody movement and diffusion. These improvements translate to time and cost savings, offering clinical and financial value for diagnostic pathology and biomedical research.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
| | - Jirui Li
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
| | - Fengshan Xie
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
| | - Liting Zeng
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
| | - Liangli Hong
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
| | - Penghao Li
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
| | - Xiaomiao Yan
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
| | - Jingliang Xu
- Jinxin Research Institute for Reproductive Medicine and GeneticsXinan Hospital for Maternal and Child Health CareChengduChina
| | - Meina Du
- Xiamen Motic Clinical LaboratoryXiamenChina
| | | | - Dingrong Yi
- College of Mechanical Engineering and AutomationHuaqiao UniversityXiamenChina
| | - Jiahao Xie
- College of Mechanical Engineering and AutomationHuaqiao UniversityXiamenChina
| | - Jiang Gu
- Laboratory of Molecular PathologyDepartment of Pathology and PathophysiologyShantou University Medical CollegeShantouChina
- Jinxin Research Institute for Reproductive Medicine and GeneticsXinan Hospital for Maternal and Child Health CareChengduChina
| |
Collapse
|
4
|
Wang H, Xu Q, Zhao C, Zhu Z, Zhu X, Zhou J, Zhang S, Yang T, Zhang B, Li J, Yan M, Liu R, Ma C, Quan Y, Zhang Y, Zhang W, Geng Y, Chen C, Chen S, Liu D, Chen Y, Tian D, Su M, Chen X, Gu J. An immune evasion mechanism with IgG4 playing an essential role in cancer and implication for immunotherapy. J Immunother Cancer 2020; 8:jitc-2020-000661. [PMID: 32819973 PMCID: PMC7443307 DOI: 10.1136/jitc-2020-000661] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Recent impressive advances in cancer immunotherapy have been largely derived from cellular immunity. The role of humoral immunity in carcinogenesis has been less understood. Based on our previous observations we hypothesize that an immunoglobulin subtype IgG4 plays an essential role in cancer immune evasion. METHODS The distribution, abundance, actions, properties and possible mechanisms of IgG4 were investigated with human cancer samples and animal tumor models with an extensive array of techniques both in vitro and in vivo. RESULTS In a cohort of patients with esophageal cancer we found that IgG4-containing B lymphocytes and IgG4 concentration were significantly increased in cancer tissue and IgG4 concentrations increased in serum of patients with cancer. Both were positively related to increased cancer malignancy and poor prognoses, that is, more IgG4 appeared to associate with more aggressive cancer growth. We further found that IgG4, regardless of its antigen specificity, inhibited the classic immune reactions of antibody-dependent cell-mediated cytotoxicity, antibody-dependent cellular phagocytosis and complement-dependent cytotoxicity against cancer cells in vitro, and these effects were obtained through its Fc fragment reacting to the Fc fragments of cancer-specific IgG1 that has been bound to cancer antigens. We also found that IgG4 competed with IgG1 in reacting to Fc receptors of immune effector cells. Therefore, locally increased IgG4 in cancer microenvironment should inhibit antibody-mediated anticancer responses and help cancer to evade local immune attack and indirectly promote cancer growth. This hypothesis was verified in three different immune potent mouse models. We found that local application of IgG4 significantly accelerated growth of inoculated breast and colorectal cancers and carcinogen-induced skin papilloma. We also tested the antibody drug for cancer immunotherapy nivolumab, which was IgG4 in nature with a stabilizing S228P mutation, and found that it significantly promoted cancer growth in mice. This may provide an explanation to the newly appeared hyperprogressive disease sometimes associated with cancer immunotherapy. CONCLUSION There appears to be a previously unrecognized immune evasion mechanism with IgG4 playing an essential role in cancer microenvironment with implications in cancer diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Qian Xu
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Chanyuan Zhao
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Ziqi Zhu
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Xiaoqing Zhu
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Junjie Zhou
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Shuming Zhang
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Tiqun Yang
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Biying Zhang
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Jun Li
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Meiling Yan
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Renming Liu
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Changchun Ma
- Department of Radiation Oncology, Affiliated Cancer Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yan Quan
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Yongqu Zhang
- Department of Breast Center, Affiliated Cancer Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Weifeng Zhang
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Yiqun Geng
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Chuangzhen Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Shaobin Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Ditian Liu
- Department of Thoracic Surgery, Affiliated Cancer Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yuping Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Dongping Tian
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Min Su
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Xueling Chen
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
| | - Jiang Gu
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Shantou University Medical College, Shantou, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Jinjiang Hospital for Maternal and Child Health Care, Chengdu, China
| |
Collapse
|
5
|
Wang D, Qi H, Li A, Deng F, Xu Y, Hu Z, Liu Q, Wang Y. Coexisting overexpression of STOML1 and STOML2 proteins may be associated with pathology of oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129:591-599.e3. [PMID: 32402568 DOI: 10.1016/j.oooo.2020.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/17/2019] [Accepted: 01/26/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The present study aimed to investigate the expression and co-localization of stomatin-like protein-1 (STOML1) and stomatin-like protein-2 (STOML2) in oral squamous cell carcinoma (OSCC) tissues in situ and evaluate their pathologic roles in OSCC. STUDY DESIGN STOML1 and STOML2 in human OSCC tissues (n = 109) and normal oral/paracancerous tissues (n = 19) were detected by using multiple immunohistochemistry (IHC) staining. Positive staining scores and clinicopathologic features during the OSCC process were analyzed. RESULTS STOML1 and STOML2 were significantly overexpressed in OSCC tissues compared with normal oral tissue/paracancerous tissues (P < .0001 and P < .0001, respectively). Furthermore, both STOML1 and STOML2 were positively associated with pathologic tumor (T) stages. Positive signals of both STOML1 and STOML2 were mainly localized to the cell membrane and the cytoplasm, whereas those of STOML1 were also expressed in the cell nucleus. CONCLUSIONS Our results indicated that overexpression of STOML1 and STOML2 was significantly associated with T1 and T2 stages of OSCC. STOML1 and STOML2 were mainly co-localized at the cell membrane and the cytoplasm. These findings suggested that either STOML1 or STOML2 may play critical roles in OSCC development and may serve as potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Daiwei Wang
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Hong Qi
- Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ang Li
- Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fang Deng
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Ying Xu
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhangli Hu
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Qiong Liu
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yun Wang
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Lei Y, Hu Q, Gu J. Expressions of Carbohydrate Response Element Binding Protein and Glucose Transporters in Liver Cancer and Clinical Significance. Pathol Oncol Res 2020; 26:1331-1340. [PMID: 31407220 PMCID: PMC7242283 DOI: 10.1007/s12253-019-00708-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Carbohydrate response element binding protein (ChREBP) is a glucose-sensing transcription factor that mediates the induction of glycolytic and lipogenic genes in response to glucose. We investigated the expression patterns of ChREBP and glucose transporters (GLUTs) in human hepatocellular carcinoma (HCC) and their association with HCC progression. ChREBP, GLUT2 and GLUT1 immunohistochemistry were performed on liver tissue array containing normal liver tissue, HCC adjacent tissue and cancer tissue of different HCC stages. The effect of HCC malignancy on protein expression was analyzed with one-way ANOVA. The correlations between protein expressions were analyzed with Pearson Correlation test. We found that ChREBP protein expression tended to be positively correlated to liver malignancy. GLUT2 protein expression was significantly reduced in human HCC as compared to normal liver tissue and its expression in HCC was inversely associated to malignancy (p < 0.001). In contrast, GLUT1 was significantly increased in cancer cells and its expression was positively correlated to malignancy (p < 0.001). Furthermore, GLUT1 expression was positively associated to ChREBP expression (r = 0.481, p < 0.0001, n = 70) but negatively correlated to GLUT2 expression (r = -0.320, p = 0.007, n = 70). Notably, ChREBP-expressing hepatocytes did not express GLUT2 but GLUT1. This is the first report unveiling expressions of ChREBP and GLUT2/GLUT1 and their relations in HCC. The expression patterns are related to malignancy and this information would facilitate evaluation of clinical behavior and treatment of HCC.
Collapse
Affiliation(s)
- Yu Lei
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713, GZ, Groningen, The Netherlands
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Qiaoling Hu
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jiang Gu
- Department of Pathology and Pathophysiology, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China.
- Department of Pathology, Beijing University Health Science Center, Beijing, 100083, China.
| |
Collapse
|
7
|
Cui X, Han W, Li J, Feng R, Zhou Z, Han J, Li M, Wang S, Zhang W, Lei Q, Zhang J, Liu Y, Hu Y. Heat shock factor 4 regulates the expression of HSP25 and alpha B-crystallin by associating with DEXD/H-box RNA helicase UAP56. Cell Stress Chaperones 2018; 23:571-579. [PMID: 29164525 PMCID: PMC6045540 DOI: 10.1007/s12192-017-0865-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 11/24/2022] Open
Abstract
Heat shock factor 4 controls the transcription of small heat shock proteins (e.g., HSP25, alpha B-cyrstallin, and r-crystallin), that play important roles in modulating lens proteostasis. However, the molecular mechanism underlying HSF4-mediated transcription is still unclear. Using yeast two hybrid, we found that HSF4 interacts with the ATP-dependent DEXD/H-box RNA helicase UAP56, and their interaction in lens epithelial cell line was further confirmed by GST-pull down assay. UAP56 is a vital regulator of pre-mRNA splicing and mature mRNA nuclear export. The immunofluorescence assay showed that HSF4 and UBA56 co-localize with each other in the nucleus of lens epithelial cells. Ectopic UAP56 upregulated HSF4-controlled HSP25 and alpha B-crystallin proteins expression, while knocking down UAP56 by shRNA reversed it. Moreover, UAP56 interacts with and facilitates the nuclear exportation of HSP25 and alpha B-crystallin mRNA without impacting their total mRNA expression level. In lens tissues, both UAP56 and HSF4 are expressed in the same nucleus of lens fiber cells, and their expression levels are simultaneously reduced with fiber cell maturation. Taken together, these data suggested that UAP56 is a novel regulator of HSF4 and might upregulate HSF4's downstream mRNA maturation and nuclear exportation.
Collapse
Affiliation(s)
- Xiukun Cui
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Wenxiu Han
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Jing Li
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Riping Feng
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Zheng Zhou
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - JiuLi Han
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Mengyuan Li
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Shuangfeng Wang
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Wanting Zhang
- Kaifeng Key Laboratory of Cataract and Myopia, Institute of Eye disease, Kaifeng Central Hospital, Kaifeng, China
| | - Qin Lei
- Kaifeng Key Laboratory of Cataract and Myopia, Institute of Eye disease, Kaifeng Central Hospital, Kaifeng, China
| | - Jun Zhang
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China
| | - Yutiao Liu
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Yanzhong Hu
- National Joint Laboratory For Antibody Drug Enginerring, Henan-international Union Laboratory of Antibody Medicine, Department of Cell Biology and Genetics, School of Basic Medical Science, Henan University, Kaifeng, Henan, 475014, China.
- Kaifeng Key Laboratory of Cataract and Myopia, Institute of Eye disease, Kaifeng Central Hospital, Kaifeng, China.
| |
Collapse
|
8
|
The Histochemistry and Cell Biology pandect: the year 2014 in review. Histochem Cell Biol 2015; 143:339-68. [PMID: 25744491 DOI: 10.1007/s00418-015-1313-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
This review encompasses a brief synopsis of the articles published in 2014 in Histochemistry and Cell Biology. Out of the total of 12 issues published in 2014, two special issues were devoted to "Single-Molecule Super-Resolution Microscopy." The present review is divided into 11 categories, providing an easy format for readers to quickly peruse topics of particular interest to them.
Collapse
|
9
|
Gu J, Lei Y, Huang Y, Zhao Y, Li J, Huang T, Zhang J, Wang J, Deng X, Chen Z, Korteweg C, Deng R, Yan M, Xu Q, Dong S, Cai M, Luo L, Huang G, Wang Y, Li Q, Lin C, Su M, Yang C, Zhuang Z. Fab fragment glycosylated IgG may play a central role in placental immune evasion. Hum Reprod 2015; 30:380-391. [PMID: 25505012 PMCID: PMC4303772 DOI: 10.1093/humrep/deu323] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/10/2014] [Accepted: 10/30/2014] [Indexed: 02/05/2023] Open
Abstract
STUDY QUESTION How does the placenta protect the fetus from immune rejection by the mother? SUMMARY ANSWER The placenta can produce IgG that is glycosylated at one of its Fab arms (asymmetric IgG; aIgG) which can interact with other antibodies and certain leukocytes to affect local immune reactions at the junction between the two genetically distinct entities. WHAT IS KNOWN ALREADY The placenta can protect the semi-allogenic fetus from immune rejection by the immune potent mother. aIgG in serum is increased during pregnancy and returns to the normal range after giving birth. aIgG can react to antigens to form immune complexes which do not cause a subsequent immune effector reaction, including fixing complements, inducing cytotoxicity and phagocytosis, and therefore has been called 'blocking antibody'. STUDY DESIGN, SIZE, DURATION Eighty-eight human placentas, four trophoblast cell lines (TEV-1, JAR, JEG and BeWo), primary culture of human placental trophoblasts and a gene knock-out mouse model were investigated in this study. PARTICIPANTS/MATERIALS, SETTING, METHODS The general approach included the techniques of cell culture, immunohistochemistry, in situ hybridization, immuno-electron microscopy, western blot, quantitative PCR, protein isolation, glycosylation analysis, enzyme digestion, gene sequencing, mass spectrophotometry, laser-guided microdissection, enzyme-linked immunosorbent assay, pulse chase assay, double and multiple staining to analyze protein and DNA and RNA analysis at the cellular and molecular levels. MAIN RESULTS AND THE ROLE OF CHANCE Three major discoveries were made: (i) placental trophoblasts and endothelial cells are capable of producing IgG, a significant portion of which is aberrantly glycosylated at one of its Fab arms to form aIgG; (ii) the asymmetrically glycosylated IgG produced by trophoblasts and endothelial cells can react to immunoglobulin molecules of human, rat, mouse, goat and rabbit at the Fc portion; (iii) asymmetrically glycosylated IgG can react to certain leukocytes in the membrane and cytoplasm, while symmetric IgG from the placenta does not have this property. LIMITATIONS, REASONS FOR CAUTION Most of the experiments were performed in vitro. The proposed mechanism calls for verification in normal and abnormal pregnancy. WIDER IMPLICATIONS OF THE FINDINGS This study identified a number of new phenomena suggesting that aIgG produced by the placenta would be able to react to detrimental antibodies and leukocytes and interfere with their immune reactions against the placenta and the fetus. This opens a new dimension for further studies on pregnancy physiology and immunology. Should the mechanism proposed here be confirmed, it will have a direct impact on our understanding of the physiology and pathology of human reproduction and offer new possibilities for the treatment of many diseases including spontaneous abortion, infertility and pre-eclampsia. It also sheds light on the mechanism of immune evasion in general including that of cancer.
Collapse
Affiliation(s)
- Jiang Gu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China Department of Pathology, Beijing University Health Science Center, Beijing 100083, China Translational Medicine Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yu Lei
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yuanping Huang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yingying Zhao
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China Department of Pathology, Beijing University Health Science Center, Beijing 100083, China
| | - Jing Li
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Tao Huang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Junjun Zhang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Juping Wang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiaodong Deng
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Zhengshan Chen
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Christine Korteweg
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Ruishu Deng
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China Department of Pathology, Beijing University Health Science Center, Beijing 100083, China
| | - Meiling Yan
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Qian Xu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shengnan Dong
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Monghong Cai
- Translational Medicine Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Lili Luo
- Department of Gynecology and Obstetrician, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Guowei Huang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yun Wang
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Qian Li
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Changmei Lin
- Department of Fertility, Haidian Maternal and Child Health Hospital, Beijing 100080, China
| | - Meng Su
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China Department of Pathology, Beijing University Health Science Center, Beijing 100083, China
| | - Chunzhang Yang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Building 10, Room 5D 37, 10 Center Drive, Bethesda, MD 20892, USA
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Building 10, Room 5D 37, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Lei Y, Huang T, Su M, Luo J, Korteweg C, Li J, Chen Z, Qiu Y, Liu X, Yan M, Wang Y, Gu J. Expression and distribution of immunoglobulin G in the normal liver, hepatocarcinoma and postpartial hepatectomy liver. J Transl Med 2014; 94:1283-1295. [PMID: 25264708 DOI: 10.1038/labinvest.2014.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/12/2014] [Accepted: 07/22/2014] [Indexed: 02/05/2023] Open
Abstract
The liver has the extraordinary properties of regeneration and immune tolerance; however, the mechanisms governing these abilities are poorly understood. To address these questions, we examined the possible expression of immunoglobulins in the human and rat liver and the relationship of IgG expression to hepatocyte proliferation, metastasis, apoptosis and immune tolerance. Immunohistochemistry, in situ hybridization, laser-guided microdissection and reverse transcription-PCR were performed to examine the expression of IgG in normal human and rat liver, severe combined immunodeficient mouse (SCID) liver and human liver cancers and corresponding cell lines. Small interfering RNA (siRNA) was transfected into cultured hepatocarcinoma cells to downregulate the expression of IgG heavy chain genes. Cell proliferation and apoptosis were assayed with flow cytometry. Cell metastasis was assayed with a Transwell cell assay. Partial hepatectomy (70%) was performed in rats to examine the relationship between hepatocyte IgG and hepatocyte proliferation. IgG, together with essential enzymes for its synthesis, were expressed in the cytoplasm of hepatocytes of normal adult human and hepatoma patients and rat livers, SCID mouse liver and BRL-3A, L-02 and HepG-2 cell lines. Downregulation of IgG inhibited cell proliferation and metastasis and promoted apoptosis. Postsurgery livers expressed significantly more IgG than the livers before surgery and decreased to the original levels when hepatocytes stopped regeneration. IgA and IgM but not IgD and IgE were also positive in hepatocytes. Our findings demonstrate that normal and malignant hepatocytes are capable of synthesizing immunoglobulin, which has important roles in hepatocyte proliferation, apoptosis and cancer growth with profound clinical implications.
Collapse
Affiliation(s)
- Yu Lei
- Provincial Key Laboratory of Infectious Disease and Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
| | - Tao Huang
- Provincial Key Laboratory of Infectious Disease and Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
| | - Meng Su
- 1] Provincial Key Laboratory of Infectious Disease and Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China [2] Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jin Luo
- Provincial Key Laboratory of Infectious Disease and Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
| | - Christine Korteweg
- Provincial Key Laboratory of Infectious Disease and Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jing Li
- Provincial Key Laboratory of Infectious Disease and Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
| | - Zhengshan Chen
- Provincial Key Laboratory of Infectious Disease and Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
| | - Yamei Qiu
- Provincial Key Laboratory of Infectious Disease and Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
| | - Xingmu Liu
- Provincial Key Laboratory of Infectious Disease and Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
| | - Meiling Yan
- Provincial Key Laboratory of Infectious Disease and Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
| | - Yun Wang
- Provincial Key Laboratory of Infectious Disease and Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jiang Gu
- 1] Provincial Key Laboratory of Infectious Disease and Immunopathology, Department of Pathology, Shantou University Medical College, Shantou, China [2] Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|