1
|
Wang X, Mei D, Lu Z, Zhang Y, Sun Y, Lu T, Yan H, Yue W. Genome-wide association study identified six loci associated with adverse drug reactions to aripiprazole in schizophrenia patients. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:44. [PMID: 37491364 PMCID: PMC10368716 DOI: 10.1038/s41537-023-00369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
Aripiprazole is recommended for routine use in schizophrenia patients. However, the biological mechanism for the adverse drug reactions (ADRs) among schizophrenia patients with the antipsychotic drug aripiprazole is far from clear. To explore the potential genetic factors that may cause movement-related adverse antipsychotic effects in patients, we conducted an association analysis between movement-related ADRs and SNPs in schizophrenia patients receiving aripiprazole monotherapy. In this study, multiple ADRs of 384 patients were quantified within 6-week treatment, and the scores of movement-related ADRs at baseline and follow-up time points during treatment were obtained. The highest score record was used as the quantitative index in analysis, and genetic analysis at the genome-wide level was conducted. The SNP rs4149181 in SLC22A8 [P = 2.28 × 10-8] showed genome-wide significance, and rs2284223 in ADCYAP1R1 [P = 9.76 × 10-8], rs73258503 in KCNIP4 [P = 1.39 × 10-7], rs678428 in SMAD9 [P = 4.70 × 10-7], rs6421034 in NAP1L4 [P = 6.80 × 10-7], and rs1394796 in ERBB4 [P = 8.60 × 10-7] were found to be significantly associated with movement-related ADRs. The combined prediction model of these six loci showed acceptable performance in predicting adverse events [area under the curve (AUC): 0.84]. Combined with the function and network of the above genes and other candidate loci (KCNA1, CACNG1, etc.), we hypothesize that SLC22A8 and KCNIP4-Kv channel perform their respective functions as transporter or channel and participate in the in vivo metabolism or effects of aripiprazole. The above results imply the important function of ion transporters and channels in movement-related adverse antipsychotic effects in aripiprazole monotherapy schizophrenia patients.
Collapse
Affiliation(s)
- Xueping Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Beijing, China
| | - Dongli Mei
- School of Nursing, Peking University, 10019, Beijing, China
| | - Zhe Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Beijing, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Beijing, China
| | - Yaoyao Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Beijing, China
| | - Tianlan Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Beijing, China
| | - Hao Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China.
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Beijing, China.
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China.
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
| |
Collapse
|
2
|
Qiao H, Li Y, Feng C, Duo S, Ji F, Jiao J. Nap1l1 Controls Embryonic Neural Progenitor Cell Proliferation and Differentiation in the Developing Brain. Cell Rep 2019; 22:2279-2293. [PMID: 29490266 DOI: 10.1016/j.celrep.2018.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/22/2017] [Accepted: 02/05/2018] [Indexed: 01/27/2023] Open
Abstract
The precise function and role of nucleosome assembly protein 1-like 1 (Nap1l1) in brain development are unclear. Here, we find that Nap1l1 knockdown decreases neural progenitor cell (NPC) proliferation and induces premature neuronal differentiation during cortical development. A similar deficiency in embryonic neurogenesis was observed in Nap1l1 knockout (KO) mice, which were generated using the CRISPR-Cas9 system. RNA sequencing (RNA-seq) analysis indicates that Ras-associated domain family member 10 (RassF10) may be the downstream target of Nap1l1. Furthermore, we found that Nap1l1 regulates RassF10 expression by promoting SETD1A-mediated H3K4 trimethylation at the RassF10 promoter. Nap1l1 KO defects may be rescued by RassF10 overexpression, suggesting that Nap1l1 controls NPC differentiation through RassF10. Our findings reveal an essential role for the Nap1l1 histone chaperone in cortical neurogenesis during early embryonic brain development.
Collapse
Affiliation(s)
- Huimin Qiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College at University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Duo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fen Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription. Biochem Biophys Res Commun 2015; 465:200-5. [PMID: 26241676 DOI: 10.1016/j.bbrc.2015.07.150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 11/22/2022]
Abstract
The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex.
Collapse
|
4
|
The Histochemistry and Cell Biology pandect: the year 2014 in review. Histochem Cell Biol 2015; 143:339-68. [PMID: 25744491 DOI: 10.1007/s00418-015-1313-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
This review encompasses a brief synopsis of the articles published in 2014 in Histochemistry and Cell Biology. Out of the total of 12 issues published in 2014, two special issues were devoted to "Single-Molecule Super-Resolution Microscopy." The present review is divided into 11 categories, providing an easy format for readers to quickly peruse topics of particular interest to them.
Collapse
|