1
|
Kitada M, Wakao S, Dezawa M. Intracellular signaling similarity reveals neural stem cell-like properties of ependymal cells in the adult rat spinal cord. Dev Growth Differ 2018; 60:326-340. [DOI: 10.1111/dgd.12546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Masaaki Kitada
- Department of Stem Cell Biology and Histology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology; Tohoku University Graduate School of Medicine; Sendai Japan
| |
Collapse
|
2
|
Yang Y, Kimura-Ohba S, Thompson JF, Salayandia VM, Cossé M, Raz L, Jalal FY, Rosenberg GA. Vascular tight junction disruption and angiogenesis in spontaneously hypertensive rat with neuroinflammatory white matter injury. Neurobiol Dis 2018; 114:95-110. [PMID: 29486300 DOI: 10.1016/j.nbd.2018.02.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/29/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Vascular cognitive impairment is a major cause of dementia caused by chronic hypoxia, producing progressive damage to white matter (WM) secondary to blood-brain barrier (BBB) opening and vascular dysfunction. Tight junction proteins (TJPs), which maintain BBB integrity, are lost in acute ischemia. Although angiogenesis is critical for neurovascular remodeling, less is known about its role in chronic hypoxia. To study the impact of TJP degradation and angiogenesis during pathological progression of WM damage, we used the spontaneously hypertensive/stroke prone rats with unilateral carotid artery occlusion and Japanese permissive diet to model WM damage. MRI and IgG immunostaining showed regions with BBB damage, which corresponded with decreased endothelial TJPs, claudin-5, occludin, and ZO-1. Affected WM had increased expression of angiogenic factors, Ki67, NG2, VEGF-A, and MMP-3 in vascular endothelial cells and pericytes. To facilitate the study of angiogenesis, we treated rats with minocycline to block BBB disruption, reduce WM lesion size, and extend survival. Minocycline-treated rats showed increased VEGF-A protein, TJP formation, and oligodendrocyte proliferation. We propose that chronic hypoxia disrupts TJPs, increasing vascular permeability, and initiating angiogenesis in WM. Minocycline facilitated WM repair by reducing BBB damage and enhancing expression of TJPs and angiogenesis, ultimately preserving oligodendrocytes.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Memory and Aging Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Shihoko Kimura-Ohba
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jeffrey F Thompson
- Memory and Aging Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Victor M Salayandia
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Melissa Cossé
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Limor Raz
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Fakhreya Y Jalal
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gary A Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Memory and Aging Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
3
|
Suzuki JI, Dezawa M, Kitada M. Prolonged but non-permanent expression of a transgene in ependymal cells of adult rats using an adenovirus-mediated transposon gene transfer system. Brain Res 2017; 1675:20-27. [DOI: 10.1016/j.brainres.2017.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/08/2023]
|