1
|
Jalali P, Shahmoradi A, Samii A, Mazloomnejad R, Hatamnejad MR, Saeed A, Namdar A, Salehi Z. The role of autophagy in cancer: from molecular mechanism to therapeutic window. Front Immunol 2025; 16:1528230. [PMID: 40248706 PMCID: PMC12003146 DOI: 10.3389/fimmu.2025.1528230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Autophagy is a cellular degradation process that plays a crucial role in maintaining metabolic homeostasis under conditions of stress or nutrient deprivation. This process involves sequestering, breaking down, and recycling intracellular components such as proteins, organelles, and cytoplasmic materials. Autophagy also serves as a mechanism for eliminating pathogens and engulfing apoptotic cells. In the absence of stress, baseline autophagy activity is essential for degrading damaged cellular components and recycling nutrients to maintain cellular vitality. The relationship between autophagy and cancer is well-established; however, the biphasic nature of autophagy, acting as either a tumor growth inhibitor or promoter, has raised concerns regarding the regulation of tumorigenesis without inadvertently activating harmful aspects of autophagy. Consequently, elucidating the mechanisms by which autophagy contributes to cancer pathogenesis and the factors determining its pro- or anti-tumor effects is vital for devising effective therapeutic strategies. Furthermore, precision medicine approaches that tailor interventions to individual patients may enhance the efficacy of autophagy-related cancer treatments. To this end, interventions aimed at modulating the fate of tumor cells by controlling or inducing autophagy substrates necessitate meticulous monitoring of these mediators' functions within the tumor microenvironment to make informed decisions regarding their activation or inactivation. This review provides an updated perspective on the roles of autophagy in cancer, and discusses the potential challenges associated with autophagy-related cancer treatment. The article also highlights currently available strategies and identifies questions that require further investigation in the future.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Samii
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Radman Mazloomnejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hatamnejad
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Afshin Namdar
- Program in Cell Biology, The Hospital for Sick Children Peter Gilgan Centre for Research and Learning, Toronto, ON, United States
| | - Zahra Salehi
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Hameete BC, Plösch T, Hogenkamp A, Groenink L. A systematic review and risk of bias analysis of in vitro studies on trophoblast response to immunological triggers. Placenta 2024:S0143-4004(24)00682-9. [PMID: 39551667 DOI: 10.1016/j.placenta.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 11/19/2024]
Abstract
An increasing amount of evidence suggests that immune responses may affect trophoblast functioning, which in turn may play a role in gestational disorders and fetal development. This systematic review offers the first summary of in vitro studies on the trophoblast response to immunological triggers, in conjunction with a risk of bias analysis. A search in Pubmed and Embase yielded 110 relevant studies. Primary trophoblasts were the most commonly used cell type, but trophoblast subtypes were not always defined. Similarly, the exact natures of trophoblast cell lines were sometimes unclear. Cytokines and Toll-like receptor agonists were often used as interventions, but most studies focused on a select few substances such as tumor necrosis factor-α and lipopolysaccharide. In regard to the outcome parameters, some important trophoblast functions, such as hormone production and barrier formation were underrepresented. Whether or not risk of bias was high varied strongly between types of bias. Risk of selection bias, for example, was usually low. However, none of the included studies mentioned blinding or plate randomization. Only a select few studies mentioned passage numbers, use of vehicle control or conflict of interest. In conclusion, better characterization of trophoblast subtypes and a broader range of studied interventions and outcome parameters would contribute to a more complete understanding of trophoblast responses to immune stimuli. Additionally, researchers are encouraged to replicate experiments and pay close attention when setting up and writing down methodologies, in order to improve the reproducibility and translatability of their work.
Collapse
Affiliation(s)
- Bart Christiaan Hameete
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Astrid Hogenkamp
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Lucianne Groenink
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands.
| |
Collapse
|
3
|
Luo Y, Zhou Y, Jiang H, Zhu Q, Lv Q, Zhang X, Gu R, Yan B, Wei L, Zhu Y, Jiang Z. Identification of potential diagnostic genes for atherosclerosis in women with polycystic ovary syndrome. Sci Rep 2024; 14:18215. [PMID: 39107365 PMCID: PMC11303752 DOI: 10.1038/s41598-024-69065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), which is the most prevalent endocrine disorder among women in their reproductive years, is linked to a higher occurrence and severity of atherosclerosis (AS). Nevertheless, the precise manner in which PCOS impacts the cardiovascular well-being of women remains ambiguous. The Gene Expression Omnibus database provided four PCOS datasets and two AS datasets for this study. Through the examination of genes originating from differentially expressed (DEGs) and critical modules utilizing functional enrichment analyses, weighted gene co-expression network (WGCNA), and machine learning algorithm, the research attempted to discover potential diagnostic genes. Additionally, the study investigated immune infiltration and conducted gene set enrichment analysis (GSEA) to examine the potential mechanism of the simultaneous occurrence of PCOS and AS. Two verification datasets and cell experiments were performed to assess biomarkers' reliability. The PCOS group identified 53 genes and AS group identified 175 genes by intersecting DEGs and key modules of WGCNA. Then, 18 genes from two groups were analyzed by machine learning algorithm. Death Associated Protein Kinase 1 (DAPK1) was recognized as an essential gene. Immune infiltration and single-gene GSEA results suggest that DAPK1 is associated with T cell-mediated immune responses. The mRNA expression of DAPK1 was upregulated in ox-LDL stimulated RAW264.7 cells and in granulosa cells. Our research discovered the close association between AS and PCOS, and identified DAPK1 as a crucial diagnostic biomarker for AS in PCOS.
Collapse
Affiliation(s)
- Yujia Luo
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanyuan Zhou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Qiongjun Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingbo Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuandong Zhang
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Rui Gu
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingqian Yan
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Wei
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuhang Zhu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Zhou Jiang
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Luo QQ, Tian Y, Qu GJ, Huang K, Hu PP, Xue Y, Hu BF, Luo SS. The targeting of DAPK1 with miR-190a-3p promotes autophagy in trophoblast cells. Mol Reprod Dev 2024; 91:e23724. [PMID: 38282318 DOI: 10.1002/mrd.23724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 01/30/2024]
Abstract
Pre-eclampsia (PE) is a dangerous pathological status that occurs during pregnancy and is a leading reason for both maternal and fetal death. Autophagy is necessary for cellular survival in the face of environmental stress as well as cellular homeostasis and energy management. Aberrant microRNA (miRNA) expression is crucial in the pathophysiology of PE. Although studies have shown that miRNA (miR)-190a-3p function is tissue-specific, the precise involvement of miR-190a-3p in PE has yet to be determined. We discovered that miR-190a-3p was significantly lower and death-associated protein kinase 1 (DAPK1) was significantly higher in PE placental tissues compared to normal tissues, which is consistent with the results in cells. The luciferase analyses demonstrated the target-regulatory relationship between miR-190a-3p and DAPK1. The inhibitory effect of miR-190a-3p on autophagy was reversed by co-transfection of si-DAPK1 and miR-190a-3p inhibitors. Thus, our data indicate that the hypoxia-dependent miR-190a-3p/DAPK1 regulatory pathway is implicated in the development and progression of PE by promoting autophagy in trophoblast cells.
Collapse
Affiliation(s)
- Qi-Qi Luo
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- Department of Cardiovascular Medicine, Army Characteristic Medical Center of PLA, Da ping Hospital, Chongqing, People's Republic of China
| | - Yu Tian
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Guang-Jin Qu
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Kun Huang
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- Department of Gerontology, The First Hospital of Jiaxing, Jiaxing, People's Republic of China
| | - Pan-Pan Hu
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Ying Xue
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Bi-Feng Hu
- Department of Neurology, Army Characteristic Medical Center of PLA, Da ping Hospital, Chongqing, People's Republic of China
| | - Shan-Shun Luo
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
5
|
Chen X, Sun L, Wang S, Wang Y, Zhou Y, Li Y, Cheng Z, Wang Y, Jiang Y, Zhao Z, Xv Y, Zhang C. Effects of Prunus Tomentosa Thumb Total Flavones on adjuvant arthritis in rats and regulation of autophagy. Technol Health Care 2023; 31:123-136. [PMID: 37038787 DOI: 10.3233/thc-236012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a slow in taking effect systemic autoimmune disease. Prunus Tomentosa Thumb Total Flavones (PTTTF) has anti-inflammatory and antioxidant properties. OBJECTIVE The purpose of this study is to the PTTTF on adjuvant arthritis (AA) in rats and to explore the mechanism of autophagy. METHODS Adjuvant arthritis model was established in rats. The cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-17 (IL-17), tumor necrosis factor (TNF-α) of rat synovial tissue were determined by RT-PCR. The histopathological varieties of knee joints in AA rats were observed by HE staining. The expressions of autophagy-related proteins ATG5, ATG7, ATG12, Beclin1, Lc3II and Bcl-2 in rat synovial tissue were determined by Western Blotting. RESULTS PTTTF (50, 100, 200 mg/kg) significantly inhibited inflammation in rats (P< 0.01). PTTTF significantly inhibited inflammatory factor COX in rat synovial tissue. COX-2, IL-1β, IL-6, IL-17, TNF-α expression (P< 0.05); PTTTF can significantly improve the pathological damage of rat knee joint PTTTF and can significantly inhibited the expression of autophagy-related proteins in rat synovium (P< 0.05 ). CONCLUSION PTTTF can inhibit adjuvant arthritis in rats and can inhibit the expression of autophagy-related proteins ATG5, ATG7, ATG12, Beclin1, Lc3II and Bcl-2.
Collapse
Affiliation(s)
- Xi Chen
- College of Basic Medicine, Beihua University, Jilin, China
| | - Lijuan Sun
- College of Basic Medicine, Beihua University, Jilin, China
| | - Shuang Wang
- College of Basic Medicine, Beihua University, Jilin, China
| | - Yilin Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macao University of Science and Technology, Macao, China
- Famous Doctor Studio of Zhuhai Integrated Traditional Chinese and Western Medicine Hospital, Zhuhai, Guangdong, China
| | - Yue Zhou
- Mingzheng Forensic Identification Centre of Jilin, Jilin, China
| | - Yan Li
- Food and Drug Inspection Institute of Jilin City, Jilin, China
| | - Zihao Cheng
- College of Pharmacy, Beihua University, Jilin, China
| | - Yingying Wang
- College of Basic Medicine, Beihua University, Jilin, China
| | - Yanan Jiang
- College of Basic Medicine, Beihua University, Jilin, China
| | - Zihan Zhao
- College of Pharmacy, Beihua University, Jilin, China
| | - Yawei Xv
- College of Pharmacy, Beihua University, Jilin, China
| | - Chengyi Zhang
- College of Pharmacy, Beihua University, Jilin, China
| |
Collapse
|
6
|
Wang SC, Hu XM, Xiong K. The regulatory role of Pin1 in neuronal death. Neural Regen Res 2023; 18:74-80. [PMID: 35799512 PMCID: PMC9241412 DOI: 10.4103/1673-5374.341043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Regulated cell death predominantly involves apoptosis, autophagy, and regulated necrosis. It is vital that we understand how key regulatory signals can control the process of cell death. Pin1 is a cis-trans isomerase that catalyzes the isomerization of phosphorylated serine or threonine-proline motifs of a protein, thereby acting as a crucial molecular switch and regulating the protein functionality and the signaling pathways involved. However, we know very little about how Pin1-associated pathways might play a role in regulated cell death. In this paper, we review the role of Pin1 in regulated cell death and related research progress and summarize Pin1-related pathways in regulated cell death. Aside from the involvement of Pin1 in the apoptosis that accompanies neurodegenerative diseases, accumulating evidence suggests that Pin1 also plays a role in regulated necrosis and autophagy, thereby exhibiting distinct effects, including both neurotoxic and neuroprotective effects. Gaining an enhanced understanding of Pin1 in neuronal death may provide us with new options for the development of therapeutic target for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shu-Chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| |
Collapse
|
7
|
Yuan Y, Gong Y, Zhong L, Ding X, Yang Z, Su X, Chen M, Zhang F, Yang L. Circular RNA expression profile and competing endogenous RNA regulatory network in preeclampsia. Placenta 2022; 119:32-38. [DOI: 10.1016/j.placenta.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/20/2022]
|
8
|
Wang F, Liu M, Lin P, Wang J, Zhang L, Zhang H, Qu M, Chen S, Man D. Astragaloside IV protects human trophoblast HTR8/SVneo cells from H2O2-Induced oxidative stress via Nrf2-Keap1-p62 feedback loop. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Li W, Yu W, Xu W, Xiong J, Zhong X, Hu S, Yu J. Death-associated Protein Kinase 1 Regulates Oxidative Stress In Cardiac Ischemia Reperfusion Injury. Cells Tissues Organs 2021; 210:380-390. [PMID: 34348268 DOI: 10.1159/000518248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Wentong Li
- Cardiovascular and Thoracic Surgery Department 2, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| | - Wenjuan Yu
- Neurological Medical Department 1, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| | - Weichang Xu
- Cardiovascular and Thoracic Surgery Department 2, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| | - Jianxian Xiong
- Cardiovascular and Thoracic Surgery Department 2, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| | - Xuehong Zhong
- Cardiovascular and Thoracic Surgery Department 2, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| | - Shuo Hu
- Cardiovascular and Thoracic Surgery Department 2, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| | - Junjian Yu
- Cardiovascular and Thoracic Surgery Department 2, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| |
Collapse
|
10
|
Wei Y, Gao X, Zhao F, Baimanov D, Cong Y, Jiang Y, Hameed S, Ouyang Y, Gao X, Lin X, Wang L. Induced Autophagy of Macrophages and the Regulation of Inflammatory Effects by Perovskite Nanomaterial LaNiO 3. Front Immunol 2021; 12:676773. [PMID: 33968087 PMCID: PMC8100511 DOI: 10.3389/fimmu.2021.676773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
Perovskite nanomaterials (NMs) possess excellent physicochemical properties and have promising applications in light-emitting diodes (LEDs), lasers, photodetectors, and artificial synapse electronics. Potential exposure to these NMs happens in the manufacture and application of the perovskite-based products, however, the biological safety of these NMs is still unknown. Here, we used the LaNiO3 NM (LNO), a typical kind of perovskite nanostructures to study the interaction with macrophages (J774A.1) and to explore its biological effects at the cellular level. Firstly, we characterized the properties of LNO including the size, shape, and crystal structure using Transmission electronic microscope (TEM), Dynamic lighting scattering (DLS), and X-ray diffraction (XRD). Secondly, to gain a better understanding of the biological effect, we evaluated the effect of LNO on cell viability and found that LNO induced cell autophagy at a concentration of 5 μg/ml and influenced the inflammatory response based on RT-PCR result. Finally, we demonstrated the mechanism that LNO causes cell autophagy and immune response is probably due to the metal ions released from LNO in acidic lysosomes, which triggered ROS and increased lysosomal membrane permeation. This study indicates the safety aspect of perovskite NMs and may guide the rational design of perovskite NMs with more biocompatibility during their manufacture and application.
Collapse
Affiliation(s)
- Yang Wei
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China.,CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Xuejiao Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Feng Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Didar Baimanov
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yalin Cong
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | - Yingying Jiang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,School of Public Health, Qingdao University, Qingdao, China
| | - Saima Hameed
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yixin Ouyang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,School of Public Health, Capital Medical University, Beijing, China
| | - Xingfa Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Xiaoying Lin
- College of Pharmacy, Jilin Medical University, Jilin, China
| | - Liming Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Carvajal L, Gutiérrez J, Morselli E, Leiva A. Autophagy Process in Trophoblast Cells Invasion and Differentiation: Similitude and Differences With Cancer Cells. Front Oncol 2021; 11:637594. [PMID: 33937039 PMCID: PMC8082112 DOI: 10.3389/fonc.2021.637594] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Early human placental development begins with blastocyst implantation, then the trophoblast differentiates and originates the cells required for a proper fetal nutrition and placental implantation. Among them, extravillous trophoblast corresponds to a non-proliferating trophoblast highly invasive that allows the vascular remodeling which is essential for appropriate placental perfusion and to maintain the adequate fetal growth. This process involves different placental cell types as well as molecules that allow cell growth, cellular adhesion, tissular remodeling, and immune tolerance. Remarkably, some of the cellular processes required for proper placentation are common between placental and cancer cells to finally support tumor growth. Indeed, as in placentation trophoblasts invade and migrate, cancer cells invade and migrate to promote tumor metastasis. However, while these processes respond to a controlled program in trophoblasts, in cancer cells this regulation is lost. Interestingly, it has been shown that autophagy, a process responsible for the degradation of damaged proteins and organelles to maintain cellular homeostasis, is required for invasion of trophoblast cells and for vascular remodeling during placentation. In cancer cells, autophagy has a dual role, as it has been shown both as tumor promoter and inhibitor, depending on the stage and tumor considered. In this review, we summarized the similarities and differences between trophoblast cell invasion and cancer cell metastasis specifically evaluating the role of autophagy in both processes.
Collapse
Affiliation(s)
- Lorena Carvajal
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Gutiérrez
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Autophagy Research Center, Santiago, Chile
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| |
Collapse
|
12
|
Wang P, Huang CX, Gao JJ, Shi Y, Li H, Yan H, Yan SJ, Zhang Z. Resveratrol induces SIRT1-Dependent autophagy to prevent H 2O 2-Induced oxidative stress and apoptosis in HTR8/SVneo cells. Placenta 2020; 91:11-18. [PMID: 31941613 DOI: 10.1016/j.placenta.2020.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Pre-eclampsia (PE) is a serious complication of pregnancy, and the likely pathogenic basis of early onset PE are placental dysfunction and increased oxidative stress. Resveratrol (RES) is a potent antioxidant which has shown beneficial effects in many diseases. The aim of this study was to investigate the protective effects of RES against oxidative stress-induced damage in trophoblasts, and elucidate the potential mechanisms. METHODS We established an in vitro model of oxidative stress by exposing the human first-trimester extravillous trophoblast cell line HTR8/SVneo to H2O2. The level of oxidative stress was reflected by ROS, MDA and SOD. The viability of cells was determined by the MTS assay. Apoptosis was detected using Annexin V-FITC staining and flow cytometry. Levels of SIRT1(sirtuin 1) and autophagy-related proteins (LC3, Beclin-1, p62) were detected by western blot. Autophagosomes were observed by transmission electron microscopy (TEM). RESULTS Pre-treatment with RES significantly ameliorated H2O2-induced cytotoxicity, morphological damage, oxidative stress and apoptosis. Mechanistically, RES restored the levels of SIRT1 and autophagy-related proteins including LC3-II, Beclin-1 and p62 that were dysregulated by H2O2. Blocking autophagy by 3-methyladenine (3-MA) completely abolished the protective effects of RES, as did knocking down SIRT1. CONCLUSION RES may protect human trophoblasts against H2O2-induced oxidative stress by activating SIRT1-dependent autophagy, and therefore has therapeutic potential in PE.
Collapse
Affiliation(s)
- Ping Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China
| | - Chen-Xi Huang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China
| | - Jun-Jun Gao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China
| | - Ying Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China
| | - Hong Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China
| | - Huan Yan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China
| | - Shu-Jun Yan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China
| | - Zhan Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfu Front Street, Zhengzhou, Henan Province, China.
| |
Collapse
|
13
|
|
14
|
Yung C, MacDonald TM, Walker SP, Cannon P, Harper A, Pritchard N, Hannan NJ, Kaitu'u-Lino TJ, Tong S. Death associated protein kinase 1 (DAPK-1) is increased in preeclampsia. Placenta 2019; 88:1-7. [PMID: 31563554 DOI: 10.1016/j.placenta.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/27/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Death associated protein kinase-1 (DAPK-1) is highly expressed in the placenta relative to all other human tissues. We examine whether it is differentially expressed with preeclampsia. METHODS We examined samples from a large prospective collection of plasma from 2002 women. We split the samples into two cohorts: Cohort 1 (n = 1000) and Cohort 2 (n = 1002). We first measured circulating DAPK-1 at 36 weeks' gestation in a nested case-control group (from Cohort 1) of 39 women who developed preeclampsia and 98 controls. We then validated our findings by measuring circulating levels in all samples from both cohorts. We also measured DAPK-1 in the circulation and placentas of women who were diagnosed with preterm preeclampsia or delivered a growth restricted infant at <34 weeks' gestation. RESULTS In the case-control study, circulating DAPK-1 was significantly increased in women destined to develop preeclampsia (p < 0.01). We validated this by measuring circulating levels in Cohorts 1 and 2. Again, circulating DAPK-1 was significantly higher (p < 0.001) among women destined to develop preeclampsia (Cohort 1, Area under the receiver operator characteristic curve (AUC) = 0.66; Cohort 2 AUC = 0.67). Circulating DAPK-1 was also significantly elevated in women with established preterm preeclampsia. Placental DAPK-1 mRNA and protein expression were elevated in women with established preeclampsia. DISCUSSION DAPK-1 is a novel placenta-enriched molecule that is elevated in the circulation of women preceding the diagnosis of preeclampsia and is likely to be secreted from the placenta.
Collapse
Affiliation(s)
- Cameron Yung
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia
| | - Teresa M MacDonald
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Susan P Walker
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Ping Cannon
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Alesia Harper
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Natasha Pritchard
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Natalie J Hannan
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia.
| | - Stephen Tong
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| |
Collapse
|
15
|
Luteolin suppresses lipopolysaccharide‑induced cardiomyocyte hypertrophy and autophagy in vitro. Mol Med Rep 2019; 19:1551-1560. [PMID: 30628693 PMCID: PMC6390050 DOI: 10.3892/mmr.2019.9803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Luteolin (LTL) serves essential roles in a wide variety of biological processes. Lipopolysaccharide (LPS) can lead to myocardial hypertrophy and autophagy. However, the roles of LTL on LPS-induced cardiomyocyte hypertrophy and autophagy in rat cardiomyocytes have not yet been fully elucidated. In the present study, the morphology of cultured rat cardiomyocytes was observed under an inverted microscope. Cell viability was detected by MTT assay. α-Actinin and microtubule-associated protein 1 light chain 3 (LC3) expression levels were measured by immunofluorescence assay. In addition, the expression levels of atrial natriuretic peptide/brain natriuretic peptide (ANP/BNP), LC3, and autophagy- and Wnt signaling pathway-associated genes were analyzed by reverse transcription-quantitative polymerase chain reaction or western blot assays. The results indicated that LTL increased the cell viability of cardiomyocytes treated with LPS. LTL decreased the expression of cardiac hypertrophy associated markers (ANP and BNP). LTL decreased α-actinin and LC3 expression levels in LPS-treated cardiomyocytes. It was also demonstrated that LTL suppressed the mRNA and protein expression levels of LPS-mediated autophagy and Wnt signaling pathway-associated genes. In addition, it was demonstrated that silencing of β-catenin inhibited LPS-induced cardiomyocyte hypertrophy and the formation of autophagosomes. Thus, the present study suggested that LTL protected against LPS-induced cardiomyocyte hypertrophy and autophagy in rat cardiomyocytes.
Collapse
|
16
|
Yuan Y, Ding D, Zhang N, Xia Z, Wang J, Yang H, Guo F, Li B. TNF-α induces autophagy through ERK1/2 pathway to regulate apoptosis in neonatal necrotizing enterocolitis model cells IEC-6. Cell Cycle 2018; 17:1390-1402. [PMID: 29950141 DOI: 10.1080/15384101.2018.1482150] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a potentially fatal illness in premature neonates. Tumor necrosis factor-α (TNF-α) and autophagy are associated with the pathogenesis of NEC. This study aimed to explore whether TNF-α might regulate apoptosis in neonatal NEC model cells IEC-6 via regulation of autophagy. NEC rat model was induced by hand feeding and exposure to asphyxia/cold-stress for histologic examination. The NEC in vitro model (IEC-6/NEC cells) was established by stimulating the intestinal epithelial cell line IEC-6 with lipopolysaccharide (LPS, 100 μg/mL) for 3 h to investigate the effects of TNF-α on IEC-6 proliferation and apoptosis. In this study, NEC rats showed decreased proliferating cell nuclear antigen (PCNA) expression, increased TUNEL-positive cells, higher expression of TNF-α, p-ERK1/2, and autophagy-related proteins in rat small intestine compared with their controls. Additionally, the LPS-stimulated IEC-6/NEC cells showed a significantly decreased proliferation and increased apoptosis compared with the control cells. Furthermore, the LPS-stimulated IEC-6/NEC cells exhibited enhanced autophagy level, as evidenced by a dose-dependent increase in Beclin-1 protein expression, LC3II/LC3I ratio and accumulation of MDC-positive autophagic vacuoles. Moreover, inhibition of autophagy by wortmannin or LY294002 significantly abolished the LPS-mediated decreased proliferation and increased apoptosis of IEC-6/NEC cells. Results also showed that inhibition of ERK1/2 pathway using U0126 significantly inhibited TNF-α-induced autophagy. Furthermore, the TNF-α-mediated inhibition of IEC-6 proliferation and promotion of IEC-6 apoptosis was abolished by U0126. Our findings demonstrated that TNF-α might induce autophagy through ERK1/2 pathway to regulate apoptosis in neonatal NEC cells IEC-6. Our study enhances our understanding of neonatal NEC pathogenesis.
Collapse
Affiliation(s)
- Yuhang Yuan
- a Department of Pediatric Surgery , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Daokui Ding
- a Department of Pediatric Surgery , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Ning Zhang
- a Department of Pediatric Surgery , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Ziqiang Xia
- a Department of Pediatric Surgery , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Jiaxiang Wang
- a Department of Pediatric Surgery , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Heying Yang
- a Department of Pediatric Surgery , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Fei Guo
- a Department of Pediatric Surgery , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Bing Li
- a Department of Pediatric Surgery , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
17
|
Ge Y, Huang M, Yao YM. Autophagy and proinflammatory cytokines: Interactions and clinical implications. Cytokine Growth Factor Rev 2018; 43:38-46. [PMID: 30031632 DOI: 10.1016/j.cytogfr.2018.07.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
Abstract
Autophagy is a ubiquitous cellular process that regulates cell growth, survival, development and death. Its process is closely associated with diverse conditions, such as liver diseases, neurodegenerative diseases, myopathy, heart diseases, cancer, immunization, and inflammatory diseases. Thus, understanding the modulation of autophagy may provide novel insight into potential therapeutic targets. Autophagy is closely intertwined with inflammatory and immune responses, and cytokines may help mediate this interaction. Autophagy has been shown to regulate, and be regulated by, a wide range of proinflammatory cytokines. This review aims to summarize recent progress in elucidating the interplay between autophagy and proinflammatory cytokines, including IFN-γ, TNF-α, IL-17, and cytokines of the IL-1 family (e.g., IL-1α, IL-1β, IL-33, and IL-36).
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Ming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, No.51 Fu-Cheng Road, Beijing 100048, China.
| |
Collapse
|
18
|
Altered expression of p97/Valosin containing protein and impaired autophagy in preeclamptic human placenta. Placenta 2018; 67:45-53. [PMID: 29941173 DOI: 10.1016/j.placenta.2018.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Autophagy increases in placenta-related obstetrical diseases such as preeclampsia and intrauterine growth retardation but the regulation of autophagy by ubiquitin proteasome pathway (UPP) proteins, p97/Valosin containing protein (VCP) and ubiquitin (Ub) have not been previuosly studied in preeclampsia. The objective of this study is to investigate the expression of UPP (p97/VCP and Ub), autophagosomal (p62 and LC3) and autolysosomal proteins (Lamp1 and Lamp2) in the normal and preeclamptic human placentas and to explore the regulatory mechanism of these proteins in autophagic pathway. MATERIAL AND METHODS Different portions of normal term placentas (n = 20) and preeclamptic placentas (n = 10) were snap-frozen in liquid nitrogen for Western blotting and coimmunoprecipitation and others were fixed-embedded in paraffin for immunohistochemistry. Colocalization and coimmunoprecipitation experiments were done for the detection of interaction between p97/VCP and autophagic proteins. RESULTS Compared with normal placentas, expression of p97/VCP was significantly reduced; however accumulation of ubiquitinlated proteins were significantly increased in preeclamptic placentas. The expression of autophagosomal proteins (LC3-II and p62) were significantly increased and no significant alterations of the expression of autolysosomal proteins were observed in preeclamptic placentas. Additionally, p97/VCP was found to colocalized and interact with autophagosomal and autolysosomal markers in normal and preeclamptic placentas. Autophagosome maturation diminished and autophagosomes had decreased localization with lysosomal markers in preeclamptic human placentas. CONCLUSION Decreased expression of p97/VCP and increased expression of Ub in preeclampsia might be related to impaired autophagy and pathophysiology of preeclampsia. Therefore, our study highlights an important potential relationship between p97/VCP and autophagic proteins in preeclampsia.
Collapse
|
19
|
Gauster M, Maninger S, Siwetz M, Deutsch A, El-Heliebi A, Kolb-Lenz D, Hiden U, Desoye G, Herse F, Prokesch A. Downregulation of p53 drives autophagy during human trophoblast differentiation. Cell Mol Life Sci 2018; 75:1839-1855. [PMID: 29080089 PMCID: PMC5910494 DOI: 10.1007/s00018-017-2695-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 01/21/2023]
Abstract
The placental barrier is crucial for the supply of nutrients and oxygen to the developing fetus and is maintained by differentiation and fusion of mononucleated cytotrophoblasts into the syncytiotrophoblast, a process only partially understood. Here transcriptome and pathway analyses during differentiation and fusion of cultured trophoblasts yielded p53 signaling as negative upstream regulator and indicated an upregulation of autophagy-related genes. We further showed p53 mRNA and protein levels decreased during trophoblast differentiation. Reciprocally, autophagic flux increased and cytoplasmic LC3B-GFP puncta became more abundant, indicating enhanced autophagic activity. In line, in human first trimester placenta p53 protein mainly localized to the cytotrophoblast, while autophagy marker LC3B as well as late autophagic compartments were predominantly detectable in the syncytiotrophoblast. Importantly, ectopic overexpression of p53 reduced levels of LC3B-II, supporting a negative regulatory role on autophagy in differentiating trophoblasts. This was also shown in primary trophoblasts and human first trimester placental explants, where pharmacological stabilization of p53 decreased LC3B-II levels. In summary our data suggest that differentiation-dependent downregulation of p53 is a prerequisite for activating autophagy in the syncytiotrophoblast.
Collapse
Affiliation(s)
- Martin Gauster
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria.
| | - Sabine Maninger
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
| | - Monika Siwetz
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
| | - Alexander Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Amin El-Heliebi
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
| | - Dagmar Kolb-Lenz
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
- Center for Medical Research, Core Facility Ultrastructure Analysis, Medical University Graz, Graz, Austria
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University Graz, Graz, Austria
| | - Florian Herse
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Andreas Prokesch
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria.
| |
Collapse
|
20
|
Pan T, He G, Chen M, Bao C, Chen Y, Liu G, Zhou M, Li S, Xu W, Liu X. Abnormal CYP11A1 gene expression induces excessive autophagy, contributing to the pathogenesis of preeclampsia. Oncotarget 2017; 8:89824-89836. [PMID: 29163791 PMCID: PMC5685712 DOI: 10.18632/oncotarget.21158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022] Open
Abstract
Objective In this study, we investigated the exact mechanism by which excessive CYP11A1 expression impairs the placentation process and whether this causes preeclampsia (PE) in an in vivo model. Setting and Design In order to study CYP11A1 overexpression, BeWo cells were transfected with CYP11A1. Pregnenolone, progesterone, and testosterone levels were measured by enzyme linked immunosorbent assays, and levels of autophagy markers were quantified by western blotting and immunofluorescence. Trophoblastic cell invasion was assessed using transwell assays; BeWo cells were treated with testosterone and an androgen receptor (AR) inhibitor (flutamide) to elucidate the invasion mechanism. An adenovirus overexpression rat model was established to investigate CYP11A1 overexpression in vivo and the phenotype was examined. Furthermore, human placenta samples (n = 24) were used to determine whether PE patient placentas showed altered CYP11A1 and autophagy marker expression. Results BeWo cells overexpressing CYP11A1 had significantly increased levels of pregnenolone, progesterone, and testosterone. Additionally, the expression levels of autophagy markers in CYP11A1-overexpressing BeWo cells were significantly increased. Trophoblast invasion was significantly reduced in CYP11A1-overexpressing cells as well as in cells treated with high testosterone. This reduction could be significantly rescued when cells were pretreated with flutamide. Overexpression of CYP11A1 in rat pregnancies led to PE-like symptoms and an over-activation of the AR-mediated pathway in the placenta. Elevated expression of CYP11A1 and autophagy markers could also be detected in PE placenta samples. Conclusions These results suggest that abnormally high expression of CYP11A1 induces trophoblast autophagy and inhibits trophoblastic invasion, which is associated with the etiology of PE.
Collapse
Affiliation(s)
- Tianying Pan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Guolin He
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Chenyi Bao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Chen
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Guangyu Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Mi Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Shuying Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xinghui Liu
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|