1
|
Heilman SA, Schriever HC, Kostka D, Koenig KM, Gross JM. tet2 and tet3 regulate cell fate specification and differentiation events during retinal development. Sci Rep 2025; 15:10404. [PMID: 40140485 PMCID: PMC11947307 DOI: 10.1038/s41598-025-93825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Tet family methylcytosine dioxygenases recognize and oxidize 5-methyl-cytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Previous work demonstrated the requirement for Tet and 5hmC during zebrafish retinogenesis. tet2-/-;tet3-/- mutants possessed defects in the formation of differentiated retinal neurons, but the mechanisms underlying these defects are unknown. Here, we leveraged scRNAseq technologies to better understand cell type-specific deficits and molecular signatures underlying the tet2-/-;tet3-/- retinal phenotype. Our results identified defects in tet2-/-;tet3-/- retinae that included delayed specification of several retinal cell types, reduced maturity across late-stage cones, expansions of immature subpopulations of horizontal and bipolar cells, and altered biases of bipolar cell subtype fates at late differentiation stages. Together, these data highlight the critical role that tet2 and tet3 play as regulators of cell fate specification and terminal differentiation events during retinal development.
Collapse
Affiliation(s)
- Shea A Heilman
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hannah C Schriever
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis Kostka
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kristen M Koenig
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Heilman SA, Schriever HC, Kostka D, Koenig KM, Gross JM. tet2 and tet3 regulate cell fate specification and differentiation events during retinal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627071. [PMID: 39713311 PMCID: PMC11661121 DOI: 10.1101/2024.12.06.627071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Tet enzymes are epigenetic modifiers that impact gene expression via 5mC to 5hmC oxidation. Previous work demonstrated the requirement for Tet and 5hmC during zebrafish retinogenesis. tet2 -/- ;tet3 -/- mutants possessed defects in the formation of differentiated retinal neurons, but the mechanisms underlying these defects are unknown. Here, we leveraged scRNAseq technologies to better understand cell type-specific deficits and molecular signatures underlying the tet2 -/- ;tet3 -/- retinal phenotype. Our results identified defects in the tet2 -/- ;tet3 -/- retinae that included delayed specification of several retinal cell types, reduced maturity across late-stage cones, expansions of immature subpopulations of horizontal and bipolar cells, and altered biases of bipolar cell subtype fates at late differentiation stages. Together, these data highlight the critical role that tet2 and tet3 play as regulators of cell fate specification and terminal differentiation events during retinal development.
Collapse
Affiliation(s)
- Shea A Heilman
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Hannah C Schriever
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Dennis Kostka
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Kristen M Koenig
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Jeffrey M Gross
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
3
|
Haug M, Haddad-Velioglu SA, Berger M, Enz A, Zang J, Neuhauss SCF. Differential Localization and Functional Roles of mGluR6 Paralogs in Zebrafish Retina. Invest Ophthalmol Vis Sci 2024; 65:44. [PMID: 39475940 PMCID: PMC11536201 DOI: 10.1167/iovs.65.12.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose To define the location of mglur6 paralogs in the outer zebrafish retina and delineate their contribution to retina light responses across the visual spectrum. Methods In situ hybridization and immunolocalization with custom-made antibodies were used to localize mglur6 transcripts, proteins, and additional components of the mGluR6 signaling complex. Gene editing was used to generate knockout mutants that were analyzed with white light and spectral electroretinography. Results Both mglur6 paralogs colocalized with known downstream pathway genes, such as trpm1a, nyctalopin, and gnaoβ. All rod photoreceptors contacted mGluR6-positive cells, while cone connectivity presented a more complex situation with no red cones and only a few UV and blue-sensitive cones connecting to mGluR6a-positive bipolar cells. All cone subtypes contacted mGluR6b-positive cells with markedly fewer red-sensitive cones. Retinas of knockout animals displayed no morphologic alterations. While ERG responses were unaffected in mglur6a knockout animals, mglur6b mutants displayed decreased responses over all spectral wavelengths. Conclusions We demonstrated that mGlurR6 signalplex components are similar in the zebrafish and the mammalian retina. Despite mglur6b knockout animals having significantly impaired ERG b-wave responses, a residual b-wave persists, even in double knockouts, suggesting additional pathway components yet to be identified.
Collapse
Affiliation(s)
- Marion Haug
- University of Zurich, Department of Molecular Life Sciences, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sara A Haddad-Velioglu
- University of Zurich, Department of Molecular Life Sciences, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Manuela Berger
- University of Zurich, Department of Molecular Life Sciences, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Anja Enz
- University of Zurich, Department of Molecular Life Sciences, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jingjing Zang
- University of Zurich, Department of Molecular Life Sciences, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Stephan C F Neuhauss
- University of Zurich, Department of Molecular Life Sciences, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
4
|
Niklaus S, Glasauer SMK, Kovermann P, Farshori KF, Cadetti L, Früh S, Rieser NN, Gesemann M, Zang J, Fahlke C, Neuhauss SCF. Glutamate transporters are involved in direct inhibitory synaptic transmission in the vertebrate retina. Open Biol 2024; 14:240140. [PMID: 39079673 PMCID: PMC11288666 DOI: 10.1098/rsob.240140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 08/03/2024] Open
Abstract
In the central nervous system of vertebrates, glutamate serves as the primary excitatory neurotransmitter. However, in the retina, glutamate released from photoreceptors causes hyperpolarization in post-synaptic ON-bipolar cells through a glutamate-gated chloride current, which seems paradoxical. Our research reveals that this current is modulated by two excitatory glutamate transporters, EAAT5b and EAAT7. In the zebrafish retina, these transporters are located at the dendritic tips of ON-bipolar cells and interact with all four types of cone photoreceptors. The absence of these transporters leads to a decrease in ON-bipolar cell responses, with eaat5b mutants being less severely affected than eaat5b/eaat7 double mutants, which also exhibit altered response kinetics. Biophysical investigations establish that EAAT7 is an active glutamate transporter with a predominant anion conductance. Our study is the first to demonstrate the direct involvement of post-synaptic glutamate transporters in inhibitory direct synaptic transmission at a central nervous system synapse.
Collapse
Affiliation(s)
- Stephanie Niklaus
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stella M. K. Glasauer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Peter Kovermann
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Leo-Brandt-Strasse, 52425 Jülich, Germany
| | - Kulsum F. Farshori
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lucia Cadetti
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Simon Früh
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nicolas N. Rieser
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Gesemann
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Leo-Brandt-Strasse, 52425 Jülich, Germany
| | - Stephan C. F. Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Shihabeddin E, Santhanam A, Aronowitz AL, O’Brien J. Cost-effective strategies to knock down genes of interest in the retinas of adult zebrafish. Front Cell Neurosci 2024; 17:1321337. [PMID: 38322239 PMCID: PMC10845135 DOI: 10.3389/fncel.2023.1321337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/22/2023] [Indexed: 02/08/2024] Open
Abstract
High throughput sequencing has generated an enormous amount of information about the genes expressed in various cell types and tissues throughout the body, and about how gene expression changes over time and in diseased conditions. This knowledge has made targeted gene knockdowns an important tool in screening and identifying the roles of genes that are differentially expressed among specific cells of interest. While many approaches are available and optimized in mammalian models, there are still several limitations in the zebrafish model. In this article, we describe two approaches to target specific genes in the retina for knockdown: cell-penetrating, translation-blocking Vivo-Morpholino oligonucleotides and commercially available lipid nanoparticle reagents to deliver siRNA. We targeted expression of the PCNA gene in the retina of a P23H rhodopsin transgenic zebrafish model, in which rapidly proliferating progenitor cells replace degenerated rod photoreceptors. Retinas collected 48 h after intravitreal injections in adult zebrafish reveal that both Vivo-Morpholinos and lipid encapsulated siRNAs were able to successfully knock down expression of PCNA. However, only retinas injected with Vivo-Morpholinos showed a significant decrease in the formation of P23H rhodopsin-expressing rods, a downstream effect of PCNA inhibition. Surprisingly, Vivo-Morpholinos were able to exit the injected eye and enter the contralateral non-injected eye to inhibit PCNA expression. In this article we describe the techniques, concentrations, and considerations we found necessary to successfully target and inhibit genes through Vivo-Morpholinos and lipid encapsulated siRNAs.
Collapse
Affiliation(s)
- Eyad Shihabeddin
- Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Abirami Santhanam
- University of Houston College of Optometry, Houston, TX, United States
| | - Alexandra L. Aronowitz
- Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - John O’Brien
- Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- University of Houston College of Optometry, Houston, TX, United States
| |
Collapse
|
6
|
Wu L, Zeeshan M, Dang Y, Zhang YT, Liang LX, Huang JW, Zhou JX, Guo LH, Fan YY, Sun MK, Yu T, Wen Y, Lin LZ, Liu RQ, Dong GH, Chu C. Maternal transfer of F-53B inhibited neurobehavior in zebrafish offspring larvae and potential mechanisms: Dopaminergic dysfunction, eye development defects and disrupted calcium homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164838. [PMID: 37353013 DOI: 10.1016/j.scitotenv.2023.164838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/25/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Maternal exposure to environment toxicants is an important risk factor for neurobehavioral health in their offspring. In our study, we investigated the impact of maternal exposure to chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs, commercial name: F-53B) on behavioral changes and the potential mechanism in the offspring larvae of zebrafish. Adult zebrafish exposed to Cl-PFESAs (0, 0.2, 2, 20 and 200 μg/L) for 21 days were subsequently mated their embryos were cultured for 5 days. Higher concentrations of Cl-PFESAs in zebrafish embryos were observed, along with, reduced swimming speed and distance travelled in the offspring larvae. Molecular docking analysis revealed that Cl-PFESAs can form hydrogen bonds with brain-derived neurotropic factor (BDNF), protein kinase C, alpha, (PKCα), Ca2+-ATPase and Na, K - ATPase. Molecular and biochemical studies evidenced Cl-PFESAs induce dopaminergic dysfunction, eye developmental defects and disrupted Ca2+ homeostasis. Together, our results showed that maternal exposure to Cl-PFESAs lead to behavioral alteration in offspring mediated by disruption in Ca2+ homeostasis, dopaminergic dysfunction and eye developmental defects.
Collapse
Affiliation(s)
- Luyin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Xia Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Wen Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia-Xin Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Hao Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan-Yuan Fan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ming-Kun Sun
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Tao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Wen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
7
|
Shrestha AP, Rameshkumar N, Boff JM, Rajmanna R, Chandrasegaran T, Frederick CE, Zenisek D, Vaithianathan T. The Effects of Aging on Rod Bipolar Cell Ribbon Synapses. Cells 2023; 12:2385. [PMID: 37830599 PMCID: PMC10572008 DOI: 10.3390/cells12192385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The global health concern posed by age-related visual impairment highlights the need for further research focused on the visual changes that occur during the process of aging. To date, multiple sensory alterations related to aging have been identified, including morphological and functional changes in inner hair cochlear cells, photoreceptors, and retinal ganglion cells. While some age-related morphological changes are known to occur in rod bipolar cells in the retina, their effects on these cells and on their connection to other cells via ribbon synapses remain elusive. To investigate the effects of aging on rod bipolar cells and their ribbon synapses, we compared synaptic calcium currents, calcium dynamics, and exocytosis in zebrafish (Danio rerio) that were middle-aged (MA,18 months) or old-aged (OA, 36 months). The bipolar cell terminal in OA zebrafish exhibited a two-fold reduction in number of synaptic ribbons, an increased ribbon length, and a decrease in local Ca2+ signals at the tested ribbon location, with little change in the overall magnitude of the calcium current or exocytosis in response to brief pulses. Staining of the synaptic ribbons with antibodies specific for PKCa revealed shortening of the inner nuclear and plexiform layers (INL and IPL). These findings shed light on age-related changes in the retina that are related to synaptic ribbons and calcium signals.
Collapse
Affiliation(s)
- Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nirujan Rameshkumar
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johane M. Boff
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rhea Rajmanna
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Courtney E. Frederick
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA (D.Z.)
| | - David Zenisek
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA (D.Z.)
| | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
8
|
Rowe CJ, Delbridge-Perry M, Bonan NF, Cohen A, Bentley M, DeCicco-Skinner KL, Davidson T, Connaughton VP. Time dependent effects of prolonged hyperglycemia in zebrafish brain and retina. FRONTIERS IN OPHTHALMOLOGY 2022; 2:947571. [PMID: 38983568 PMCID: PMC11182107 DOI: 10.3389/fopht.2022.947571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/29/2022] [Indexed: 07/11/2024]
Abstract
Prolonged hyperglycemia causes long-term vision complications and an increased risk of cognitive deficits. High blood sugar also confers an osmotic load/stress to cells. We assessed behavioral and neurochemical changes in zebrafish brain and retina following prolonged hyperglycemia for 4-weeks or 8-weeks. At each time point, behavior was assessed using 3-chamber choice task and optomotor response; tissue was then collected and levels of inflammatory markers, tight junction proteins, and neurotransmitters determined using Western Blots. After 4-weeks, brain levels of v-rel reticuloendotheliosis viral oncogene homolog A (avian) (RelA; NF-kB subunit), IkB kinase (IKK), and glial fibrillary acidic protein (GFAP) were significantly elevated; differences in zonula occludens-1 (ZO-1), claudin-5, glutamic acid decarboxylase (GAD), and tyrosine hydroxylase (TH) were not significant. In retina, significant differences were observed only for TH (decreased), Rel A (increased), and GFAP (increased) levels. Glucose-specific differences in initial choice latency and discrimination ratios were also observed. After 8-weeks, RelA, GAD, and TH were significantly elevated in both tissues; IKK and GFAP levels were also elevated, though not significantly. ZO-1 and claudin-5 levels osmotically decreased in retina but displayed an increasing trend in glucose-treated brains. Differences in discrimination ratio were driven by osmotic load. OMRs increased in glucose-treated fish at both ages. In vivo analysis of retinal vasculature suggested thicker vessels after 4-weeks, but thinner vessels at 8-weeks. In vitro, glucose treatment reduced formation of nodes and meshes in 3B-11 endothelial cells, suggesting a reduced ability to form a vascular network. Overall, hyperglycemia triggered a strong inflammatory response causing initial trending changes in tight junction and neuronal markers. Most differences after 4-weeks of exposure were observed in glucose-treated fish suggesting effects on glucose metabolism independent of osmotic load. After 8-weeks, the inflammatory response remained and glucose-specific effects on neurotransmitter markers were observed. Osmotic differences impacted cognitive behavior and retinal protein levels; protein levels in brain displayed glucose-driven changes. Thus, we not only observed differential sensitivities of retina and brain to glucose-insult, but also different cellular responses, suggesting hyperglycemia causes complex effects at the cellular level and/or that zebrafish are able to compensate for the continued high blood glucose levels.
Collapse
Affiliation(s)
- Cassie J. Rowe
- Department of Biology, American University, Washington, DC, United States
- Center for Neuroscience and Behavior, American University, Washington, DC, United States
| | - Mikayla Delbridge-Perry
- Department of Biology, American University, Washington, DC, United States
- Department of Chemistry, American University, Washington, DC, United States
| | - Nicole F. Bonan
- Department of Biology, American University, Washington, DC, United States
| | - Annastelle Cohen
- Department of Biology, American University, Washington, DC, United States
| | - Meg Bentley
- Department of Biology, American University, Washington, DC, United States
| | - Kathleen L. DeCicco-Skinner
- Department of Biology, American University, Washington, DC, United States
- Center for Neuroscience and Behavior, American University, Washington, DC, United States
| | - Terry Davidson
- Center for Neuroscience and Behavior, American University, Washington, DC, United States
- Department of Neuroscience, and American University, Washington, DC, United States
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC, United States
- Center for Neuroscience and Behavior, American University, Washington, DC, United States
| |
Collapse
|
9
|
Alba‐González A, Folgueira M, Castro A, Anadón R, Yáñez J. Distribution of neurogranin-like immunoreactivity in the brain and sensory organs of the adult zebrafish. J Comp Neurol 2022; 530:1569-1587. [PMID: 35015905 PMCID: PMC9415131 DOI: 10.1002/cne.25297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022]
Abstract
We studied the expression of neurogranin in the brain and some sensory organs (barbel taste buds, olfactory organs, and retina) of adult zebrafish. Database analysis shows zebrafish has two paralog neurogranin genes (nrgna and nrgnb) that translate into three peptides with a conserved IQ domain, as in mammals. Western blots of zebrafish brain extracts using an anti-neurogranin antiserum revealed three separate bands, confirming the presence of three neurogranin peptides. Immunohistochemistry shows neurogranin-like expression in the brain and sensory organs (taste buds, neuromasts and olfactory epithelium), not being able to discern its three different peptides. In the retina, the most conspicuous positive cells were bipolar neurons. In the brain, immunopositive neurons were observed in all major regions (pallium, subpallium, preoptic area, hypothalamus, diencephalon, mesencephalon and rhombencephalon, including the cerebellum), a more extended distribution than in mammals. Interestingly, dendrites, cell bodies and axon terminals of some neurons were immunopositive, thus zebrafish neurogranins may play presynaptic and postsynaptic roles. Most positive neurons were found in primary sensory centers (viscerosensory column and medial octavolateral nucleus) and integrative centers (pallium, subpallium, optic tectum and cerebellum), which have complex synaptic circuitry. However, we also observed expression in areas not related to sensory or integrative functions, such as in cerebrospinal fluid-contacting cells associated with the hypothalamic recesses, which exhibited high neurogranin-like immunoreactivity. Together, these results reveal important differences with the patterns reported in mammals, suggesting divergent evolution from the common ancestor.
Collapse
Affiliation(s)
- Anabel Alba‐González
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Mónica Folgueira
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Antonio Castro
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Ramón Anadón
- Department of Functional Biology, Faculty of BiologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
| | - Julián Yáñez
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| |
Collapse
|
10
|
Guo R, Li F, Lu M, Ge K, Gan L, Sheng D. LIM Homeobox 9 knockdown by morpholino does not affect zebrafish retinal development. Biol Open 2021; 10:bio.056382. [PMID: 33579692 PMCID: PMC7969587 DOI: 10.1242/bio.056382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
LIM homeobox 9 (Lhx9) is a member of the LIM homeodomain transcription factor family, which expresses and functions in various vertebrate tissues, such as the gonads and pineal gland. Previous studies on lhx9 in zebrafish have mainly focused on the brain. However, little is known about the expression pattern of lhx9 during embryogenesis. Here, we detected lhx9 expression in zebrafish embryos using whole-mount in situ hybridization and found lhx9 expressed in heart, pectoral fin, and retina during their development in zebrafish. We then detailed the expression of lhx9 in retinal development. To further investigate the function of Lhx9 in retinogenesis, we performed morpholino (MO) knockdown experiments and found that upon lhx9 knockdown by MO, larvae presented normal eye development, retinal neural development, differentiation, proliferation, apoptosis, and responses to light stimulus. We not only elaborated the expression pattern of lhx9 in zebrafish embryogenesis, but we also demonstrated that lhx9 knockdown by morpholino does not affect the zebrafish retinal development, and our study provides data for further understanding of the role of Lhx9 in zebrafish retinal development. Summary:lhx9 is expressed in the development of the zebrafish heart, pectoral fin, and retina, but lhx9 knockdown by morpholino does not affect zebrafish retinal development.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311100 Zhejiang, China.,College of Life Sciences, Zhejiang University, Hangzhou 310013 Zhejiang, China
| | - Fei Li
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311100 Zhejiang, China
| | - Minxia Lu
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311100 Zhejiang, China
| | - Kangkang Ge
- Hangzhou jingbai biotechnology Co, LTD., Hangzhou 310004 Zhejiang, China
| | - Lin Gan
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311100 Zhejiang, China .,College of Life Sciences, Zhejiang University, Hangzhou 310013 Zhejiang, China
| | - Donglai Sheng
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311100 Zhejiang, China
| |
Collapse
|
11
|
Santhanam A, Shihabeddin E, Atkinson JA, Nguyen D, Lin YP, O’Brien J. A Zebrafish Model of Retinitis Pigmentosa Shows Continuous Degeneration and Regeneration of Rod Photoreceptors. Cells 2020; 9:E2242. [PMID: 33036185 PMCID: PMC7599532 DOI: 10.3390/cells9102242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
More than 1.5 million people suffer from Retinitis Pigmentosa, with many experiencing partial to complete vision loss. Regenerative therapies offer some hope, but their development is challenged by the limited regenerative capacity of mammalian model systems. As a step toward investigating regenerative therapies, we developed a zebrafish model of Retinitis Pigmentosa that displays ongoing regeneration. We used Tol2 transgenesis to express mouse rhodopsin carrying the P23H mutation and an epitope tag in zebrafish rod photoreceptors. Adult and juvenile fish were examined by immunofluorescence, TUNEL and BrdU incorporation assays. P23H transgenic fish expressed the transgene in rods from 3 days post fertilization onward. Rods expressing the mutant rhodopsin formed very small or no outer segments and the mutant protein was delocalized over the entire cell. Adult fish displayed thinning of the outer nuclear layer (ONL) and loss of rod outer segments, but retained a single, sparse row of rods. Adult fish displayed ongoing apoptotic cell death in the ONL and an abundance of proliferating cells, predominantly in the ONL. There was a modest remodeling of bipolar and Müller glial cells. This transgenic fish will provide a useful model system to study rod photoreceptor regeneration and integration.
Collapse
Affiliation(s)
- Abirami Santhanam
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Eyad Shihabeddin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Joshua A. Atkinson
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Duc Nguyen
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Ya-Ping Lin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - John O’Brien
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
12
|
In Focus in HCB. Histochem Cell Biol 2019; 151:457-459. [PMID: 31111197 DOI: 10.1007/s00418-019-01788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|