Wang YM, Zhang JJ, Wu BW, Cao XY, Li H, Chen TQ, Huang YR, Shen XY, Li J, You Y, Shi HM. IL-37 improves mice myocardial infarction via inhibiting YAP-NLRP3 signaling mediated macrophage programming.
Eur J Pharmacol 2022;
934:175293. [PMID:
36167152 DOI:
10.1016/j.ejphar.2022.175293]
[Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE
Myocardial infarction is the highest cause of cardiovascular death. Previous studies found that patients with myocardial infarction have elevated serum IL-37 and IL-37 treatment significantly alleviates adverse remodeling in myocardial infarction mice. However, the underlying mechanism of IL-37 in myocardial infarction is still unknown. Here we explored the underlying mechanism of IL-37 in attenuating myocardial infarction.
METHODS
The myocardial infarction mice model was constructed by left anterior descending ligation and then submitted to recombinant IL-37 administration. The histology and cardiac function were detected by HE & Masson staining and echocardiography, respectively. The macrophage phenotypes were analyzed by flow cytometry and real-time PCR. The cytokines in serum and cell culture supernatant were determined by ELISA. In addition, THP-1 cells were used in vitro to investigate the underlying mechanisms.
RESULTS
Infarcted mice showed increased inflammatory cell infiltration and impaired cardiac function. IL-37 treatment alleviated pro-inflammatory macrophage infiltration, tissue injury, and collagen deposition in hearts on day 3 and 7 after infarction in mice. In addition, IL-37 application modulated the balance between M1 and M2 macrophages in infarcted hearts. In vitro, THP-1 cell line polarization was also regulated by IL-37, companied by YAP phosphorylation and NLRP3 inactivation. Verteporfin, a YAP inhibitor, could abolish IL-37-induced NLRP3 inhibition and M2 macrophage polarization.
CONCLUSION
Our results demonstrated that IL-37 achieves a favorable therapeutical function on myocardial infarction by modulating YAP-NLRP3 mediated macrophage programming, providing a promising drug for the treatment of myocardial infarction.
Collapse