1
|
El-Ashmawy NE, Al-Ashmawy GM, Hamada OB, Khedr NF. The role of ABCG2 in health and disease: Linking cancer therapy resistance and other disorders. Life Sci 2025; 360:123245. [PMID: 39561874 DOI: 10.1016/j.lfs.2024.123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
All biological systems have adenosine triphosphate (ATP) binding cassette (ABC) transporters, one of the significant protein superfamilies involved in transport across membranes. ABC transporters have been implicated in the etiology of diseases like metabolic disorders, cancer, and Alzheimer's disease. ATP-binding cassette superfamily G member 2 (ABCG2), one of the ABC transporters, is necessary for the ATP-dependent efflux of several endogenous and exogenous substances. Consequently, it maintained cellular homeostasis and shielded tissue from xenobiotic substances. ABCG2 was initially identified in an Adriamycin-selected breast cancer cell line (MCF-7/AdrVp) and was linked to the emergence of multidrug resistance (MDR) in cancerous cells. Under many pathophysiological conditions, including inflammation, disease pathology, tissue injury, infection, and in response to xenobiotics and endogenous substances, the expression of ABCG2 undergoes alterations that result in modifications in its function and activity. Genetic variants in the ABCG2 transporter can potentially impact its expression and function, contributing to the development of many disorders. This review aimed to illustrate the impact of ABCG2 expression and its variants on oral drug bioavailability, MDR in specific cancer cells, explore the relationship between ABCG2 expression and other disorders such as gout, Alzheimer's disease, epilepsy, and erythropoietic protoporphyria, and demonstrate the influence of various synthetic and natural compounds in regulating ABCG2 expression.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt; The British University in Egypt, Faculty of Pharmacy, Department of Pharmacology & Biochemistry, El Sherouk City, Cairo Postal Code: 11837, Egypt.
| | - Ghada M Al-Ashmawy
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt; Alsalam University in Egypt, Faculty of Pharmacy, Department of Biochemistry, Kafr El Zayat, Egypt.
| | - Omnia B Hamada
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt.
| | - Naglaa F Khedr
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt.
| |
Collapse
|
2
|
Fang T, Hu S, Song X, Wang J, Zuo R, Yun S, Jiang S, Guo D. Combination of monensin and erlotinib synergistically inhibited the growth and cancer stem cell properties of triple-negative breast cancer by simultaneously inhibiting EGFR and PI3K signaling pathways. Breast Cancer Res Treat 2024; 207:435-451. [PMID: 38958784 DOI: 10.1007/s10549-024-07374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Cancer stem cells (CSCs) in triple-negative breast cancer (TNBC) are recognized as a highly challenging subset of cells, renowned for their heightened propensity for relapse and unfavorable prognosis. Monensin, an ionophoric antibiotic, has been reported to exhibit significant therapeutic efficacy against various cancers, especially CSCs. Erlotinib is classified as one of the EGFR-TKIs and has been previously identified as a promising therapeutic target for TNBC. Our research aims to assess the effectiveness of combination of monensin and erlotinib as a potential treatment strategy for TNBC. METHODS The combination of monensin and erlotinib was assessed for its potential anticancer activity through various in vitro assays, including cytotoxicity assay, colony formation assay, wound healing assay, transwell assay, mammosphere formation assay, and proportion of CSCs assay. Additionally, an in vivo study using tumor-bearing nude mice was conducted to evaluate the inhibitory effect of the monensin and erlotinib combination on tumor growth. RESULTS The results indicated that combination of monensin with erlotinib synergistically inhibited cell proliferation, the migration rate, the invasion ability and decreased the CSCs proportion, and CSC markers SOX2 and CD133 in vivo and in vitro. Furthermore, the primary proteins involved in the signaling pathways of the EGFR/ERK and PI3K/AKT are simultaneously inhibited by the combination treatment of monensin and erlotinib in vivo and in vitro. CONCLUSIONS The simultaneous inhibition of the EGFR/ERK and PI3K/AKT/mTOR signaling pathways by the combination of monensin and erlotinib exhibited a synergistic effect on suppressing tumor proliferation and cancer cell stemness in TNBC.
Collapse
Affiliation(s)
- Tian Fang
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Department of Comparative Medicine, Affiliated Hospital of Medicine School, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Shiheng Hu
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xinhao Song
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Junqi Wang
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Runan Zuo
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Shifeng Yun
- Department of Comparative Medicine, Affiliated Hospital of Medicine School, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Shanxiang Jiang
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| | - Dawei Guo
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
3
|
Chen M, Yang Y, Ying Y, Huang J, Sun M, Hong M, Wang H, Xie S, Chen D. ABC Transporters and CYP3A4 Mediate Drug Interactions between Enrofloxacin and Salinomycin Leading to Increased Risk of Drug Residues and Resistance. Antibiotics (Basel) 2023; 12:antibiotics12020403. [PMID: 36830313 PMCID: PMC9952136 DOI: 10.3390/antibiotics12020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 02/22/2023] Open
Abstract
Enrofloxacin (ENR) is one of the most common drugs used in poultry production to treat bacterial diseases, and there is a high risk of drug interactions (DDIs) between polyether anticoccidial drugs added to poultry feed over time. This may affect the efficacy of antibiotics or lead to toxicity, posing a potential risk to the environment and food safety. This study aimed to investigate the DDI of ENR and salinomycin (SAL) in broilers and the mechanism of their DDI. We found that SAL increased the area under the curve and elimination half-life of ENR and ciprofloxacin (CIP) by 1.3 and 2.4 times, 1.2 and 2.5 times, respectively. Cytochrome 3A4 (CYP3A4), p-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) were important factors for the DDI between ENR and SAL in broilers. ENR and SAL are substrates of CYP3A4, P-gp and BCRP in broilers; ENR and SAL inhibited the expression of CYP3A4 activity in a time- and concentration-dependent. Meanwhile, ENR downregulated the expression of P-gp and BCRP in a time- and concentration-dependent manner. A single oral administration of SAL inhibited CYP3A4, P-gp, and BCRP, but long-term mixed feeding upregulated the expression of CYP3A4, P-gp, and BCRP. Molecular docking revealed that ENR and SAL compete with each other for CYP3A4 to affect hepatic metabolism, and compete with ATP for P-gp and BCRP binding sites to inhibit efflux. ENR and SAL in broilers can lead to severe DDI. Drug residues and resistance following co-administration of ENR and SAL and other SAL-based drug-feed interactions warrant further study.
Collapse
Affiliation(s)
- Min Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
| | - Yujuan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
| | - Yupeng Ying
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
| | - Jiamin Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
| | - Mengyuan Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
| | - Mian Hong
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
| | - Haizhen Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (S.X.); (D.C.); Tel.: +86-027-8728-7323 (D.C.)
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (S.X.); (D.C.); Tel.: +86-027-8728-7323 (D.C.)
| |
Collapse
|