1
|
Bansaccal N, Vieugue P, Sarate R, Song Y, Minguijon E, Miroshnikova YA, Zeuschner D, Collin A, Allard J, Engelman D, Delaunois AL, Liagre M, de Groote L, Timmerman E, Van Haver D, Impens F, Salmon I, Wickström SA, Sifrim A, Blanpain C. The extracellular matrix dictates regional competence for tumour initiation. Nature 2023; 623:828-835. [PMID: 37968399 PMCID: PMC7615367 DOI: 10.1038/s41586-023-06740-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
The skin epidermis is constantly renewed throughout life1,2. Disruption of the balance between renewal and differentiation can lead to uncontrolled growth and tumour initiation3. However, the ways in which oncogenic mutations affect the balance between renewal and differentiation and lead to clonal expansion, cell competition, tissue colonization and tumour development are unknown. Here, through multidisciplinary approaches that combine in vivo clonal analysis using intravital microscopy, single-cell analysis and functional analysis, we show how SmoM2-a constitutively active oncogenic mutant version of Smoothened (SMO) that induces the development of basal cell carcinoma-affects clonal competition and tumour initiation in real time. We found that expressing SmoM2 in the ear epidermis of mice induced clonal expansion together with tumour initiation and invasion. By contrast, expressing SmoM2 in the back-skin epidermis led to a clonal expansion that induced lateral cell competition without dermal invasion and tumour formation. Single-cell analysis showed that oncogene expression was associated with a cellular reprogramming of adult interfollicular cells into an embryonic hair follicle progenitor (EHFP) state in the ear but not in the back skin. Comparisons between the ear and the back skin revealed that the dermis has a very different composition in these two skin types, with increased stiffness and a denser collagen I network in the back skin. Decreasing the expression of collagen I in the back skin through treatment with collagenase, chronic UV exposure or natural ageing overcame the natural resistance of back-skin basal cells to undergoing EHFP reprogramming and tumour initiation after SmoM2 expression. Altogether, our study shows that the composition of the extracellular matrix regulates how susceptible different regions of the body are to tumour initiation and invasion.
Collapse
Affiliation(s)
- Nordin Bansaccal
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Pauline Vieugue
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Rahul Sarate
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Esmeralda Minguijon
- Department of Pathology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yekaterina A Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dagmar Zeuschner
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Amandine Collin
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Justine Allard
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Dan Engelman
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne-Lise Delaunois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Mélanie Liagre
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Leona de Groote
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Evy Timmerman
- VIB Center for Medical Biotechnology, VIB Proteomics Core, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delphi Van Haver
- VIB Center for Medical Biotechnology, VIB Proteomics Core, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Francis Impens
- VIB Center for Medical Biotechnology, VIB Proteomics Core, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Isabelle Salmon
- Department of Pathology, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Sara A Wickström
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium.
- WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
2
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2022; 158:123-125. [PMID: 35859014 DOI: 10.1007/s00418-022-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, CH-8091, Zurich, Switzerland
| |
Collapse
|