1
|
Nano E, Gambella A, Paudice M, Garuti A, Pigozzi S, Valle L, Grillo F, Mastracci L. Be bold, start cold! cold formalin fixation of colorectal cancer specimens granted superior DNA and RNA quality for downstream molecular analysis. Histochem Cell Biol 2024; 162:541-550. [PMID: 39317804 PMCID: PMC11455702 DOI: 10.1007/s00418-024-02326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
The use of cold formalin fixation (CFF; i.e., fixating tissue samples with 4 °C precooled formalin) recently attracted further attention owing to its putative improved ability to preserve nucleic acid compared with standard room temperature formalin (SFF). In this study, we aimed to assess the effect of four formalin-based fixation protocols (SFF, CFF, delayed formalin fixation-DFF, and cold formalin hyperfixation; CFH) on both DNA and RNA quality. We collected 97 colorectal cancer (CRC) and analyzed 23 metrics of nucleic acid quantity and quality yield using a multiplatform approach by combining spectrophotometric, fluorimetric, electrophoretic, and polymerase chain reaction (PCR) assays. Following confirmation of fixation-protocol-related different effects via clustering analysis, CFF presented best metrics compared with all protocols, specifically positive coefficients of DV1000-60000, DV2/DV1, DNA λ ratio 260/230, and ABL gene expression absolute copies, and negative coefficient of DV150-1000. The SFF subgroup presented a positive coefficient of DV150-1000 and negative coefficients for DV1000-60000, DV2/DV1, RNA λ ratio 260/230, RNA QuBit concentration, DV100/200, RNA electrophoresis concentration and absolute quantity, and ABL copies. Overall, we confirmed the superior yield performances of CFF preservation for both DNA and RNA compared with the other protocols in our series of CRC samples. Pending further validations and clarification of the specific mechanisms behind these findings, our study supports the implementation of CFF in the pathology unit routine specimen management for tumor tissue molecular profiling.
Collapse
Affiliation(s)
- Ennio Nano
- Molecular Pathology Unit, IRCCS San Martino Policlinic Hospital of Genoa, Genoa, Italy
| | - Alessandro Gambella
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy.
| | - Michele Paudice
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- IRCCS San Martino Policlinic Hospital of Genoa, Genoa, Italy
| | - Anna Garuti
- Internal Medicine Clinic, IRCCS San Martino Policlinic Hospital of Genoa, Genoa, Italy
| | - Simona Pigozzi
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- IRCCS San Martino Policlinic Hospital of Genoa, Genoa, Italy
| | - Luca Valle
- IRCCS San Martino Policlinic Hospital of Genoa, Genoa, Italy
| | - Federica Grillo
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- IRCCS San Martino Policlinic Hospital of Genoa, Genoa, Italy
| | - Luca Mastracci
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- IRCCS San Martino Policlinic Hospital of Genoa, Genoa, Italy
| |
Collapse
|
2
|
Durmanova V, Mikolaskova I, Zsemlye E, Ocenasova A, Bandzuchova H, Suchankova M, Kollarik B, Palacka P, Zvarik M, Bucova M, Hunakova L. Association of HLA-G Expression, Its Genetic Variants and Related Neuro-Immunomodulation with Characteristics of Bladder Carcinoma. Cancers (Basel) 2024; 16:3877. [PMID: 39594832 PMCID: PMC11593171 DOI: 10.3390/cancers16223877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Human leukocyte antigen G (HLA-G) is an immune checkpoint molecule with immunosuppressive and anti-inflammatory activities. It belongs to class I non-classical major histocompatibility complex molecules and has been upregulated in various cancer types. In bladder cancer (BC) tumors, the association of HLA-G with cancer progression has to be explained. METHODS A total of 89 BC patients and 74 control subjects were genotyped for the HLA-G 14 bp ins/del polymorphism. In urine cell samples, HLA-G mRNA expression was analyzed using real-time PCR. Soluble HLA-G (sHLA-G) serum levels were measured by ELISA. The associations between the HLA-G 14 bp ins/del polymorphism, HLA-G mRNA expression, and/or sHLA-G levels and selected variables including tumor grade, disease stage, body mass index, and heart rate variability (HRV) parameters were evaluated. RESULTS The protective HLA-G 14 bp ins/ins genotype under the recessive genetic model was associated with lower HLA-G mRNA expression in the BC group (p = 0.049). Significantly higher HLA-G mRNA expression was detected in patients with pT2 + pT3 as compared to those with pTa + pT1 stages (p = 0.0436). Furthermore, higher HLA-G mRNA expression was observed in high-grade muscle-infiltrating BC (MIBC) than in the low-grade non-MIBC group (p = 0.0365). Patients with a level of sHLA-G above 29 U/mL had shorter disease-free survival than patients with lower sHLA-G levels. Furthermore, the opposite HRV correlations with sHLA-G levels in BC patients as compared to controls probably reflect the different roles of HLA-G in health and cancer. CONCLUSIONS Our results suggest the impact of the HLA-G 14 bp ins/del variant, HLA-G expression, and autonomic nervous system imbalance on advanced stages of BC.
Collapse
Affiliation(s)
- Vladimira Durmanova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (V.D.); (I.M.); (A.O.); (M.S.); (M.B.)
| | - Iveta Mikolaskova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (V.D.); (I.M.); (A.O.); (M.S.); (M.B.)
| | - Eszter Zsemlye
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (V.D.); (I.M.); (A.O.); (M.S.); (M.B.)
| | - Agata Ocenasova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (V.D.); (I.M.); (A.O.); (M.S.); (M.B.)
| | | | - Magda Suchankova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (V.D.); (I.M.); (A.O.); (M.S.); (M.B.)
| | - Boris Kollarik
- Department of Urology, Saints Cyril and Methodius Hospital, University Hospital Bratislava, 851 07 Bratislava, Slovakia
| | - Patrik Palacka
- 2nd Department of Oncology, Faculty of Medicine and National Cancer Institute, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia;
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 814 39 Bratislava, Slovakia
| | - Milan Zvarik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Computer Science, Comenius University in Bratislava, 842 48 Bratislava, Slovakia;
| | - Maria Bucova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (V.D.); (I.M.); (A.O.); (M.S.); (M.B.)
| | - Luba Hunakova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (V.D.); (I.M.); (A.O.); (M.S.); (M.B.)
| |
Collapse
|
3
|
Ashouri K, Wong A, Mittal P, Torres-Gonzalez L, Lo JH, Soni S, Algaze S, Khoukaz T, Zhang W, Yang Y, Millstein J, Lenz HJ, Battaglin F. Exploring Predictive and Prognostic Biomarkers in Colorectal Cancer: A Comprehensive Review. Cancers (Basel) 2024; 16:2796. [PMID: 39199569 PMCID: PMC11353018 DOI: 10.3390/cancers16162796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Colorectal cancer (CRC) remains the second leading cause of cancer-related mortality worldwide. While immune checkpoint inhibitors have significantly improved patient outcomes, their effectiveness is mostly limited to tumors with microsatellite instability (MSI-H/dMMR) or an increased tumor mutational burden, which comprise 10% of cases. Advancing personalized medicine in CRC hinges on identifying predictive biomarkers to guide treatment decisions. This comprehensive review examines established tissue markers such as KRAS and HER2, highlighting their roles in resistance to anti-EGFR agents and discussing advances in targeted therapies for these markers. Additionally, this review summarizes encouraging data on promising therapeutic targets and highlights the clinical utility of liquid biopsies. By synthesizing current evidence and identifying knowledge gaps, this review provides clinicians and researchers with a contemporary understanding of the biomarker landscape in CRC. Finally, the review examines future directions and challenges in translating promising biomarkers into clinical practice, with the goal of enhancing personalized medicine approaches for colorectal cancer patients.
Collapse
Affiliation(s)
- Karam Ashouri
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Alexandra Wong
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Pooja Mittal
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Lesly Torres-Gonzalez
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Jae Ho Lo
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Sandra Algaze
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Taline Khoukaz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Yan Yang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.W.)
| |
Collapse
|
4
|
Seliger B. Role of HLA-G in tumors and upon COVID-19 infection. Hum Immunol 2024; 85:110792. [PMID: 38555250 DOI: 10.1016/j.humimm.2024.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
HLA-G expression of tumors and upon viral infections is involved in their immune escape leading to the evasion from both T and NK cell recognition. The underlying mechanisms of HLA-G expression in both pathophysiologic conditions are broad and range from genetic abnormalities to epigenetic, transcriptional and posttranscriptional regulation. This review summarizes the current knowledge of the frequency, regulation and clinical relevance of HLA-G expression upon neoplastic and viral transformation, its interaction with components of the microenvironment as well as its potential as diagnostic marker and/or therapeutic target. In addition, it discusses urgent topics, which have to be addressed in HLA-G research.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Translational Immunology, Medical School "Theodor Fontane", 14770, Brandenburg an der Havel, Germany; Medical Faculty, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany; Fraunhofer Institute for Cell Therapy and Immunology, 04103, Leipzig, Germany.
| |
Collapse
|
5
|
Wang S, Wang J, Xia Y, Zhang L, Jiang Y, Liu M, Gao Q, Zhang C. Harnessing the potential of HLA-G in cancer therapy: advances, challenges, and prospects. J Transl Med 2024; 22:130. [PMID: 38310272 PMCID: PMC10838004 DOI: 10.1186/s12967-024-04938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024] Open
Abstract
Immune checkpoint blockades have been prized in circumventing and ablating the impediments posed by immunosuppressive receptors, reaching an exciting juncture to be an innovator in anticancer therapy beyond traditional therapeutics. Thus far, approved immune checkpoint blockades have principally targeted PD-1/PD-L1 and CTLA-4 with exciting success in a plethora of tumors and yet are still trapped in dilemmas of limited response rates and adverse effects. Hence, unveiling new immunotherapeutic targets has aroused immense scientific interest in the hope of expanding the clinical application of immune checkpoint blockades to scale new heights. Human leukocyte antigen-G (HLA-G), a non-classical major histocompatibility complex (MHC) class I molecule, is enriched on various malignant cells and is involved in the hindrance of immune effector cells and the facilitation of immunosuppressive cells. HLA-G stands out as a crucial next-generation immune checkpoint showing great promise for the benefit of cancer patients. Here, we provide an overview of the current understanding of the expression pattern and immunological functions of HLA-G, as well as its interaction with well-characterized immune checkpoints. Since HLA-G can be shed from the cell surface or released by various cells as free soluble HLA-G (sHLA-G) or as part of extracellular vesicles (EVs), namely HLA-G-bearing EVs (HLA-GEV), we discuss the potential of sHLA-G and HLA-GEV as predictive biomarkers. This review also addresses the advancement of HLA-G-based therapies in preclinical and clinical settings, with a focus on their clinical application in cancer.
Collapse
Affiliation(s)
- Siyuan Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yueqiang Jiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Man Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
6
|
Mejía-Guarnizo LV, Monroy-Camacho PS, Rincón-Rodríguez DE, Rincón-Riveros A, Martinez-Vargas DA, Huertas-Caro CA, Oliveros-Wilches R, Sanchez-Pedraza R, Nuñez-Lemus M, Cristancho-Lievano CF, Castellanos-Moreno AM, Martinez-Correa LM, Rodríguez-García JA. Soluble HLA-G (sHLA-G) measurement might be useful as an early diagnostic biomarker and screening test for gastric cancer. Sci Rep 2023; 13:13119. [PMID: 37573450 PMCID: PMC10423220 DOI: 10.1038/s41598-023-40132-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Gastric cancer (GC) is the fifth most frequent malignancy worldwide and has a high mortality rate related to late diagnosis. Although the gold standard for the GC diagnosis is endoscopy with biopsy, nonetheless, it is not cost-effective and is invasive for the patient. The Human leukocyte antigen G (HLA-G) molecule is a checkpoint of the immune response. Its overexpression in cancer is associated with immune evasion, metastasis, poor prognosis, and lower overall survival. We evaluate the plasma levels of soluble HLA-G, (sHLA-G) in patients with GC and benign gastric pathologies using an ELISA test. A higher concentration of sHLA-G in patients with GC than in those with benign pathologies, higher levels of plasma sHLA-G in women with GC compared with men and significant differences in the sHLA-G levels between the benign gastric pathologies evaluated, was our main findings. As no significant differences were found between the GC assessed stages in our study population, we suggest that sHLA-G is not an adequate marker for staging GC, but it does have diagnostic potential. In addition to providing information on the potential of sHLA-G as a diagnostic marker for GC, our study demonstrate that HLA-G molecules can be found in the membrane of exosomes, which highlights the need to perform studies with a larger number of samples to explore the functional implications of HLA-G positive exosomes in the context of gastric cancer, and to determine the clinical significance and possible applications of these findings in the development of non-invasive diagnostic methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marcela Nuñez-Lemus
- Research Support and Monitoring Group, Instituto Nacional de Cancerología, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
7
|
Behaeddin G, Abdelwaheb BO, Wided K, Sonia Y, Iheb T, Sonia Z, Khadija Z, Mohamed H, Sonia H. Association of HLA-G 3' untranslated region indel polymorphism and its serum expression with susceptibility to colorectal cancer. Biomark Med 2023; 17:541-552. [PMID: 37750737 DOI: 10.2217/bmm-2023-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Background: Colorectal cancer (CRC) is a significant global health challenge with increasing incidence and mortality rates in developing countries. Genome-wide association studies have identified new low-penetrance genetic variants linked to CRC. This study aimed to explore the relationship between HLA-G polymorphism and serum expression with CRC. Methodology: In a case-control configuration, standard PCR was used for genotyping HLA-G 3' indel polymorphism and ELISA for quantifying soluble HLA-G in plasma. Results: The study revealed a significant association between the rs371194629 deletion allele and CRC, as well as higher soluble HLA-G levels in CRC patients. Conclusion: These findings suggest that HLA-G could be a promising biomarker for CRC, and further research could lead to improved screening and treatment for more personalized care.
Collapse
Affiliation(s)
- Garrach Behaeddin
- NAFS Research laboratory LR12ES05, Faculty of Medicine, University of Monastir, Tunisia
| | - Ben Othmen Abdelwaheb
- NAFS Research laboratory LR12ES05, Faculty of Medicine, University of Monastir, Tunisia
| | - Khamlaoui Wided
- NAFS Research laboratory LR12ES05, Faculty of Medicine, University of Monastir, Tunisia
| | - Yatouji Sonia
- NAFS Research laboratory LR12ES05, Faculty of Medicine, University of Monastir, Tunisia
| | - Toumi Iheb
- NAFS Research laboratory LR12ES05, Faculty of Medicine, University of Monastir, Tunisia
| | - Zaied Sonia
- Department of Oncology, University Hospital Fattouma Bourguiba, Monastir, Tunisia
| | - Zouari Khadija
- Department of Surgery, University Hospital Fattouma Bourguiba, Monastir, Tunisia
| | - Hammami Mohamed
- NAFS Research laboratory LR12ES05, Faculty of Medicine, University of Monastir, Tunisia
| | - Hammami Sonia
- NAFS Research laboratory LR12ES05, Faculty of Medicine, University of Monastir, Tunisia
| |
Collapse
|
8
|
Wang Y, Yan X, Qu X, Mao J, Wang J, Yang M, Tao M. Topoisomerase IIβ binding protein 1 serves as a novel prognostic biomarker for stage II-III colorectal cancer patients. Pathol Res Pract 2023; 241:154287. [PMID: 36586311 DOI: 10.1016/j.prp.2022.154287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is a commonly diagnosed human malignancy worldwide. Accumulating evidence has suggested DNA repair related proteins widely participate in CRC initiation and development. TOPBP1 is recently identified as a novel regulator for DNA repair, however, its biological role in CRC remains unknown. METHODS Firstly, the bioinformatics analysis was utilized to investigate the expression and clinical significance of TOPBP1 in CRC patients. Then, a retrospective study enrolling 129 stage II/III CRC patients was performed for validation. The CCK-8, colony formation, transwell assay and xenograft model were used to clarify the biological impact of TOPBP1 on CRC cells. Finally, transcriptome sequencing was performed to investigate the potential oncogenic mechanisms regulated by TOPBP1 in CRC development. RESULTS The expression of TOPBP1 was significantly higher in CRC tissues than that in normal tissues. High TOPBP1 expression was an independent unfavorable prognostic factor for overall and disease-free survival in II/III CRC patients. Knockdown of TOPBP1 not only significantly inhibited the proliferation, colony formation, invasion, migration and epithelial-mesenchymal transition (EMT) molecular phenotype of CRC cells, while the opposite was for TOPBP1 expression. Moreover, knockdown of TOPBP1 slowed down the growth speed of xenografts. The transcriptome sequencing identified MAP3K3 as a downstream gene of TOPBP1 and MAP3K3 knockdown inhibited the EMT molecular phenotype in CRC cells. Finally, the rescue assay indicated MAP3K3 overexpression counteracted the inhibitory effect of TOPBP1 knockdown on the proliferation, colony formation, invasion, migration and EMT phenotype of CRC cells. CONCLUSION TOPBP1 promotes the malignant progression of CRC through MAP3K3 induced EMT. TOPBP1 is a promising clinical biomarker or therapeutical target for CRC patients.
Collapse
Affiliation(s)
- Ying Wang
- Department of Oncology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xuebing Yan
- Department of Oncology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiao Qu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingxian Mao
- Department of Oncology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jiaxin Wang
- Department of Oncology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Mengxue Yang
- Department of Oncology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Min Tao
- Department of Oncology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
9
|
In focus in HCB. Histochem Cell Biol 2022; 158:513-516. [PMID: 36441251 DOI: 10.1007/s00418-022-02167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Kudo-Saito C, Boku N, Hirano H, Shoji H. Targeting myeloid villains in the treatment with immune checkpoint inhibitors in gastrointestinal cancer. Front Immunol 2022; 13:1009701. [PMID: 36211375 PMCID: PMC9539086 DOI: 10.3389/fimmu.2022.1009701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the clinical outcomes being extremely limited, blocking immune inhibitory checkpoint pathways has been in the spotlight as a promising strategy for treating gastrointestinal cancer. However, a distinct strategy for the successful treatment is obviously needed in the clinical settings. Myeloid cells, such as neutrophils, macrophages, dendritic cells, and mast cells, are the majority of cellular components in the human immune system, but have received relatively less attention for the practical implementation than T cells and NK cells in cancer therapy because of concentration of the interest in development of the immune checkpoint blocking antibody inhibitors (ICIs). Abnormality of myeloid cells must impact on the entire host, including immune responses, stromagenesis, and cancer cells, leading to refractory cancer. This implies that elimination and reprogramming of the tumor-supportive myeloid villains may be a breakthrough to efficiently induce potent anti-tumor immunity in cancer patients. In this review, we provide an overview of current situation of the IC-blocking therapy of gastrointestinal cancer, including gastric, colorectal, and esophageal cancers. Also, we highlight the possible oncoimmunological components involved in the mechanisms underlying the resistance to the ICI therapy, particularly focusing on myeloid cells, including unique subsets expressing IC molecules. A deeper understanding of the molecular and cellular determinants may facilitate its practical implementation of targeting myeloid villains, and improve the clinical outcomes in the ICI therapy of gastrointestinal cancer.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
- *Correspondence: Chie Kudo-Saito,
| | - Narikazu Boku
- Department of Oncology and General Medicine, Institute of Medical Science Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|