1
|
EFSA Scientific Committee, Bennekou SH, Allende A, Bearth A, Casacuberta J, Castle L, Coja T, Crépet A, Halldorsson T, Hoogenboom L(R, Knutsen H, Koutsoumanis K, Lambré C, Nielsen S, Turck D, Civera AV, Villa R, Zorn H, Bampidis V, Castenmiller J, Chagnon M, Cottrill B, Darney K, Gropp J, Puente SL, Rose M, Vinceti M, Bastaki M, Gergelová P, Greco L, Innocenti ML, Janossy J, Lanzoni A, Terron A, Benford D. Risks to human and animal health from the presence of bromide in food and feed. EFSA J 2025; 23:e9121. [PMID: 39877303 PMCID: PMC11773346 DOI: 10.2903/j.efsa.2025.9121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The European Commission mandated EFSA to assess the toxicity of bromide, the existing maximum residue levels (MRLs), and possible transfer from feed into food of animal origin. The critical effects of bromide in experimental animals are on the thyroid and central nervous system. Changes in thyroid hormone homeostasis could result in neurodevelopmental toxicity, among other adverse effects. Changes in thyroid hormone concentrations and neurophysiological parameters have also been observed in experimental human studies, but the evidence was limited. Dose-response modelling of decreased blood thyroxine concentrations in rats resulted in a reference point of 40 mg/kg body weight (bw) per day. The Scientific Committee established a tolerable daily intake (TDI) of 0.4 mg/kg bw per day and an acute reference dose (ARfD) of 0.4 mg/kg bw per day to protect against adverse neurodevelopmental effects. The TDI value is supported by the results of experimental human studies with a NOAEL of 4 mg/kg bw per day and 10-fold interindividual variability. The TDI and ARfD are considered as conservative with 90% certainty. Insufficient evidence related to the toxicological effects of bromide was available for animals, with the exception of dogs. Therefore, the reference point of 40 mg/kg bw per day was extrapolated to maximum safe concentrations of bromide in complete feed for other animal species. Bromide can transfer from feed to food of animal origin, but, from the limited data, it was not possible to quantify the transfer rate. Monitoring data exceeded the current MRLs for some food commodities, generally with a low frequency. A conservative safety screening of the MRLs indicated that the TDI and ARfD are exceeded for some EU diets. Dietary exposure assessment for animals was not feasible due to insufficient data. The Scientific Committee recommends data be generated to allow robust dietary exposure assessments in the future, and data that support the risk assessment.
Collapse
|
2
|
Wang B, Fan L, Yang S, Zhou M, Mu G, Liu W, Yu L, Yang M, Cheng M, Wang X, Qiu W, Shi T, Chen W. Cross-sectional and longitudinal relationships between urinary 1-bromopropane metabolite and pulmonary function and underlying role of oxidative damage among urban adults in the Wuhan-Zhuhai cohort in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120147. [PMID: 36096263 DOI: 10.1016/j.envpol.2022.120147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
1-bromopropane is a US Environmental Protection Agency-identified significant hazardous air pollutant with concerned adverse respiratory effect. We aimed to investigate the relationship between 1-bromopropane exposure and pulmonary function and the underlying role of oxidative damage, which all remain unknown. Pulmonary function and urinary biomarkers of 1-bromopropane exposure (N-Acetyl-S-(n-propyl)-L-cysteine, BPMA) and oxidative damage to DNA (8-hydroxy-deoxyguanosine, 8-OHdG) and lipid (8-iso-prostaglandin-F2α, 8-iso-PGF2α) were measured for 3259 Chinese urban adults from the Wuhan-Zhuhai cohort. The cross-sectional relationship of BPMA with pulmonary function and the joint relationship of BPMA and 8-OHdG or 8-iso-PGF2α with pulmonary function were investigated by linear mixed models. The mediating roles of 8-OHdG and 8-iso-PGF2α were evaluated by mediation analysis. Additionally, a panel of 138 subjects was randomly convened from the same cohort to evaluate the stability of BPMA repeatedly measured in urine samples collected over consecutive three days and intervals of one, two, and three years, and to estimate the longitudinal relationship of BPMA with pulmonary function change in three years. We found each 3-fold increase in BPMA was cross-sectionally related to FVC and FEV1 reductions by 29.88-mL and 25.67-mL, respectively (all P < 0.05). Joint relationship of BPMA and 8-OHdG rather than 8-iso-PGF2α with reduced pulmonary function was observed. Moreover, 8-OHdG significantly mediated 9.44% of the BPMA-related FVC reduction. Findings from the panel revealed a fair to excellent stability (intraclass correlation coefficient: 0.43-0.79) of BPMA in repeated urines collected over a period of three years. Besides, BPMA was longitudinally related to pulmonary function reduction in three years: compared with subjects with persistently low BPMA level, those with persistently high BPMA level had 79.08-mL/year and 49.80-mL/year declines in FVC and FEV1, respectively (all P < 0.05). Conclusively, 1-bromopropane exposure might impair pulmonary function of urban adult population, and oxidative DNA damage might be a potential mechanism underlying 1-bromopropane impairing pulmonary function especially FVC.
Collapse
Affiliation(s)
- Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, Hubei, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Data Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Meng Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430019, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Qiu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Tingming Shi
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, Hubei, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
3
|
Yang S, Zhou M, Wang B, Mu G, Wang X, Yuan J, Chen W. Lipid peroxidation mediated the association of urinary 1-bromopropane metabolites with plasma glucose and the risk of diabetes: A cross-sectional study of urban adults in China. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121889. [PMID: 31859167 DOI: 10.1016/j.jhazmat.2019.121889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 05/15/2023]
Abstract
Exposure to 1-bromopropane (1-BP) has been reported to cause glutathione depletion and increase the level of oxidative damage, which play critical roles in diabetes. However, the possible associations or mechanisms of the exposure of 1-BP with the plasma glucose level and the risk of diabetes are unclear. In this study, we explored the relationships of the urinary 1-BP metabolite N-Acetyl-S-(n-propyl)-l-cysteine (BPMA) with fasting plasma glucose (FPG) levels and the risk of diabetes, and the mediating role of oxidative damage in the above relationships in 3678 urban adults from the Wuhan-Zhuhai cohort in China. We found a significant dose-response relationship between BPMA and FPG levels with a β of 0.09 (95 % CI: 0.04, 0.14). In addition, mediating effect of urinary BPMA on FPG levels was observed depending on elevated 8-isoprostane level, with a median proportion of 32.06 %. Furthermore, we observed a significant association between urinary BPMA and the risk of diabetes, with an adjusted odds ratio of 1.34 (1.18, 1.52) for all participants. These results indicated that urinary 1-BP metabolites were positively associated with FPG levels and the risk of diabetes among urban adults in this cross-sectional study. Lipid peroxidation partially mediated the association between urinary 1-BP metabolites and FPG levels.
Collapse
Affiliation(s)
- Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Yuan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
4
|
Wang TH, Wu ML, Wu YH, Tsai WJ, Lin KP, Wang CL, Yang CC, Deng JF. Neurotoxicity associated with exposure to 1-bromopropane in golf-club cleansing workers. Clin Toxicol (Phila) 2015; 53:823-6. [PMID: 26161839 DOI: 10.3109/15563650.2015.1064939] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND 1-Bromopropane (1-BP) is an alternative to ozone-depleting solvent that is used in degreasing, dry cleaning, spray adhesives, and aerosol solvents. Occupational exposure to 1-BP is associated with adverse peripheral sensory, motor, and central nervous system (CNS) effects. We report our Health Hazard and Medical Evaluation of 6 patients with neurotoxicity associated with occupational exposure to 1-BP. Case series and environmental evaluation. Six workers, 1 male and 5 female, were exposed to high ambient 1-BP concentrations while employed in a golf club cleaning factory. 1-BP was identified in the bulk solvent sample used by the workers and confirmed the workers' daily occupational exposure to 1-BP for 3-10 months. The major presenting symptoms were tingling pain, soreness in lower extremities, and paresthesia. N-acetyl-S-(n-propyl)-L-cysteine (AcPrCys), a 1-BP metabolite, was identified by LC/MS/MS in the urine (0.171-1.74 mg/g-Cr) of these workers 5-26 days following 1-BP exposure. DISCUSSION AND CONCLUSION An occupational outbreak of 1-BP poisoning occurred as a result of recurrent power outages, condenser, and exhaust fans malfunction, and inadequate personal protection. Occupational exposure to 1-BP may result in peripheral neuropathy as well as adverse CNS effects. Urine AcPrCys may be a specific biomarker for 1-BP exposure.
Collapse
Affiliation(s)
- Te-Hao Wang
- Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Garner CE, Liang S, Yin L, Yu X. Physiologically based pharmacokinetic modeling for 1-bromopropane in F344 rats using gas uptake inhalation experiments. Toxicol Sci 2015; 145:23-36. [PMID: 25634537 DOI: 10.1093/toxsci/kfv018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
1-Bromopropane (1-BP) was introduced into the workplace as an alternative to ozone-depleting solvents and increasingly used in manufacturing industry. The potential exposure to 1-BP and the current reports of adverse effects associated with occupational exposure to high levels of 1-BP have increased the need to understand the mechanism of 1-BP toxicity in animal models as a mean of understanding risk in workers. Physiologically based pharmacokinetic (PBPK) model for 1-BP has been developed to examine 2 metabolic pathway assumptions for gas-uptake inhalation study. Based on previous gas-uptake experiments in the Fischer 344 rat, the PBPK model was developed by simulating the 1-BP concentration in a closed chamber. In the model, we tested the hypothesis that metabolism responsibilities were shared by the p450 CYP2E1 and glutathione (GSH) conjugation. The results showed that 2 metabolic pathways adequately simulated 1-BP closed chamber concentration. Furthermore, the above model was tested by simulating the gas-uptake data of the female rats pretreated with 1-aminobenzotrizole, a general P450 suicide inhibitor, or d,l-buthionine (S,R)-sulfoximine, an inhibitor of GSH synthesis, prior to exposure to 800 ppm 1-BP. The comparative investigation on the metabolic pathway of 1-BP through the PBPK modeling in both sexes provides critical information for understanding the role of p450 and GSH in the metabolism of 1-BP and eventually helps to quantitatively extrapolate current animal studies to human.
Collapse
Affiliation(s)
- C Edwin Garner
- *Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602
| | - Shenxuan Liang
- *Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602
| | - Lei Yin
- *Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602
| | - Xiaozhong Yu
- *Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
6
|
Eckert E, Göen T. Rapid determination of four short-chain alkyl mercapturic acids in human urine by column-switching liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 965:54-60. [PMID: 24997437 DOI: 10.1016/j.jchromb.2014.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/28/2014] [Accepted: 06/09/2014] [Indexed: 11/26/2022]
Abstract
We developed and validated an analytical method for the simultaneous determination of methyl mercapturic acid (MeMA), ethyl mercapturic acid (EtMA), n-propyl mercapturic acid (PrMA) and iso-propyl mercapturic acid (iPrMA) in human urine. These alkyl mercapturic acids are known or presumed biomarkers of exposure to several alkylating agents including methyl bromide, dimethyl sulfate, ethyl bromide, 1-bromopropane and 2-bromopropane. The method involves a column switching arrangement for online solid phase extraction of the analytes with subsequent analytical separation and detection using liquid chromatography and tandem mass spectrometry. Within day and day-to-day imprecision was determined to range from 4.5 to 12.2%. The analytical method is distinguished by its wide linear working range of up to 2,500 μg/L with detection limits ranging from 2.0 μg/L (for PrMA) to 5.1 μg/L (for MeMA) that render possible the application in various biomonitoring studies regarding exposure to alkylating agents. The results of a pilot study on urine samples of 30 individuals occupationally non-exposed to alkylating agents using the new procedure confirmed the background excretion of MeMA (<5.1-35.6 μg/L) and PrMA (<2.0-95.7 μg/L).
Collapse
Affiliation(s)
- Elisabeth Eckert
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schillerstrasse 25/29, 91054 Erlangen, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schillerstrasse 25/29, 91054 Erlangen, Germany.
| |
Collapse
|
7
|
Mathias PI, Cheever KL, Hanley KW, Marlow KL, Johnson BC, B'hymer C. Comparison and evaluation of urinary biomarkers for occupational exposure to spray adhesives containing 1-bromopropane. Toxicol Mech Methods 2012; 22:526-32. [PMID: 22519856 DOI: 10.3109/15376516.2012.686536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Three metabolites of 1-bromopropane (1-BP) were measured in urine samples collected from 30 workers exposed to 1-BP at two facilities making furniture seat cushions and evaluated for use as biomarkers of exposure. The mercapturic acid metabolite, N-acetyl-S-(n-propyl)-l-cysteine (AcPrCys), 3-bromopropionic acid (3-BPA), and bromide ion levels (Br(-)) were quantitated for this evaluation. The high exposure group consisted of 13 workers employed as adhesive sprayers who assembled foam cushions using 1-BP containing spray adhesives and the low exposure group consisted of 17 non-sprayers, who worked in various jobs without spraying adhesives. All workers' urine voids were collected over the same 48 h period at work, and at home before bedtime, and upon awakening. Urinary AcPrCys and Br(-) levels were elevated in the sprayers compared to that of non-sprayers. Following HPLC-MS/MS analysis of mercapturic acid metabolite levels, 50 urine samples having the highest levels of AcPrCys were analyzed for 3-BPA. No 3-BPA was detected in any of the samples. The data collected from this study demonstrate that AcPrCys and Br(-) are effective biomarkers of 1-BP exposure, but 3-BPA is not.
Collapse
Affiliation(s)
- Patricia I Mathias
- US Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Applied Science and Technology, Biomonitoring and Health Assessment Branch , Robert A. Taft Laboratories, Cincinnati, Ohio 45226 , USA
| | | | | | | | | | | |
Collapse
|