1
|
Morales A, Gómez T, Villalobos YD, Bernal H, Htoo JK, González-Vega JC, Espinoza S, Yáñez J, Cervantes M. Dietary protein-bound or free amino acids differently affect intestinal morphology, gene expression of amino acid transporters, and serum amino acids of pigs exposed to heat stress. J Anim Sci 2020; 98:5739008. [PMID: 32064529 DOI: 10.1093/jas/skaa056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/12/2020] [Indexed: 01/10/2023] Open
Abstract
Pigs exposed to heat stress (HS) increase body temperature in which can damage the intestinal epithelia and affect the absorption and availability of amino acids (AA). Protein digestion and metabolism further increase body temperature. An experiment was conducted with six pairs of pigs (of 47.3 ± 1.3 kg initial body weight) exposed to natural HS to assess the effect of substituting dietary protein-bound AA by free AA on morphology and gene expression of intestinal epithelial and serum concentration (SC) of free AA. Treatments were: high protein, 21.9% crude protein (CP) diet (HShp) and low protein, 13.5% CP diet supplemented with crystalline Lys, Thr, Met, Trp, His, Ile, Leu, Phe, and Val (HSaa). The HShp diet met or exceeded all AA requirements. The HSaa diet was formulated on the basis of ideal protein. Pigs were fed the same amount at 0700 and 1900 hours during the 21-d study. Blood samples were collected at 1700 hours (2.0 h before the evening meal), 2030 hours, and 2130 hours (1.5 and 2.5 h after the evening meal). At the end, all pigs were sacrificed to collect intestinal mucosa and a 5-cm section from each segment of the small intestine from each pig. Villi measures, expression of AA transporters (y+L and B0) in mucosa, and SC of AA were analyzed. Ambient temperature fluctuated daily from 24.5 to 42.6 °C. Weight gain and G.F were not affected by dietary treatment. Villi height tended to be larger (P ≤ 0.10) and the villi height:crypt depth ratio was higher in duodenum and jejunum of pigs fed the HSaa diet (P < 0.05). Gene expression of transporter y+L in jejunum tended to be lower (P < 0.10) and transporter B0 in the ileum was lower (P < 0.05) in HSaa pigs. Preprandial (1700 hours) SC of Arg, His, Ile, Leu, Thr, Trp, and Val was higher (P < 0.05), and Phe tended to be higher (P < 0.10) in HShp pigs. At 2030 hours (1.5 h postprandial), serum Lys, Met, and Thr were higher in the HSaa pigs (P < 0.05). At 2130 hours (2.5 h), Arg, His, Ile, Phe, and Trp were lower (P < 0.05); Met was higher (P < 0.05); and Lys tended to be higher (P < 0.10) in HSaa pigs. In conclusion, feeding HS pigs with low protein diets supplemented with free AA reduces the damage of the intestinal epithelia and seems to improve its absorption capacity, in comparison with HS pigs fed diets containing solely protein-bound AA. This information is useful to formulate diets that correct the reduced AA consumption associated with the decreased voluntary feed intake of pigs under HS.
Collapse
Affiliation(s)
- Adriana Morales
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - Tania Gómez
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - Yuri D Villalobos
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - Hugo Bernal
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - John K Htoo
- Evonik Nutrition & Care GmbH, Hanau, Germany
| | | | - Salvador Espinoza
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - Jorge Yáñez
- Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Miguel Cervantes
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| |
Collapse
|
2
|
Claydon VE, Moore JP, Greene ER, Appenzeller O, Hainsworth R. Evaluation of forearm vascular resistance during orthostatic stress: Velocity is proportional to flow and size doesn't matter. PLoS One 2019; 14:e0224872. [PMID: 31730662 PMCID: PMC6857923 DOI: 10.1371/journal.pone.0224872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/23/2019] [Indexed: 02/08/2023] Open
Abstract
Background The upright posture imposes a significant challenge to blood pressure regulation that is compensated through baroreflex-mediated increases in heart rate and vascular resistance. Orthostatic cardiac responses are easily inferred from heart rate, but vascular resistance responses are harder to elucidate. One approach is to determine vascular resistance as arterial pressure/blood flow, where blood flow is inferred from ultrasound-based measurements of brachial blood velocity. This relies on the as yet unvalidated assumption that brachial artery diameter does not change during orthostatic stress, and so velocity is proportional to flow. It is also unknown whether the orthostatic vascular resistance response is related to initial blood vessel diameter. Methods We determined beat-to-beat heart rate (ECG), blood pressure (Portapres) and vascular resistance (Doppler ultrasound) during a combined orthostatic stress test (head-upright tilting and lower body negative pressure) continued until presyncope. Participants were 16 men (aged 38.4±2.3 years) who lived permanently at high altitude (4450m). Results The supine brachial diameter ranged from 2.9–5.6mm. Brachial diameter did not change during orthostatic stress (supine: 4.19±0.2mm; tilt: 4.20±0.2mm; -20mmHg lower body negative pressure: 4.19±0.2mm, p = 0.811). There was no significant correlation between supine brachial artery diameter and the maximum vascular resistance response (r = 0.323; p = 0.29). Forearm vascular resistance responses evaluated using brachial arterial flow and velocity were strongly correlated (r = 0.989, p<0.00001) and demonstrated high equivalency with minimal bias (-6.34±24.4%). Discussion During severe orthostatic stress the diameter of the brachial artery remains constant, supporting use of brachial velocity for accurate continuous non-invasive orthostatic vascular resistance responses. The magnitude of the orthostatic forearm vascular resistance response was unrelated to the baseline brachial arterial diameter, suggesting that upstream vessel size does not matter in the ability to mount a vasoconstrictor response to orthostasis.
Collapse
Affiliation(s)
- V. E. Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| | - J. P. Moore
- School of Sport, Health & Exercise Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - E. R. Greene
- Department of Biology and Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, United States of America
| | - O. Appenzeller
- Department of Neurology, New Mexico Health Enhancement and Marathon Clinics Research Foundation, Albuquerque, New Mexico, United States of America
| | - R. Hainsworth
- Division of Cardiovascular and Neuronal Remodeling, Faculty of Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
3
|
Bou E, Ly A, Roul J, Llopis O, Vieu C, Cerf A. Compact system for in situ laser Doppler velocimetry of blood flow. BIOMEDICAL OPTICS EXPRESS 2019; 10:5862-5876. [PMID: 31799052 PMCID: PMC6865117 DOI: 10.1364/boe.10.005862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
This work describes the implementation of a compact system allowing measurement of blood flow velocity using laser Doppler velocimetry in situ. The compact setup uses an optical fiber acting as an emitter and receptor of the signal. The signal is then recovered by a photodiode and processed using a spectrum analyzer. The prototype was successfully tested to measure microbead suspension and whole blood flow velocities in a fluidic chip. Fibers with hemispherical lenses with three different radius of curvature were investigated. This simple yet precise setup would enable the insertion of the fiber via a medical catheter to monitor blood flow velocity in non superficial vessels where previous reported techniques cannot be implemented.
Collapse
Affiliation(s)
- Elise Bou
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
- Smartcatch, Toulouse, France
| | - Aliou Ly
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
| | - Julien Roul
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
| | - Olivier Llopis
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
| | - Christophe Vieu
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
| | - Aline Cerf
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
| |
Collapse
|
4
|
Age-related attenuation of conduit artery blood flow response to passive heating differs between the arm and leg. Eur J Appl Physiol 2018; 118:2307-2318. [DOI: 10.1007/s00421-018-3953-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
|
5
|
Kalsi KK, Chiesa ST, Trangmar SJ, Ali L, Lotlikar MD, González-Alonso J. Mechanisms for the control of local tissue blood flow during thermal interventions: influence of temperature-dependent ATP release from human blood and endothelial cells. Exp Physiol 2018; 102:228-244. [PMID: 27859767 PMCID: PMC5363389 DOI: 10.1113/ep085910] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/14/2016] [Indexed: 12/17/2022]
Abstract
New Findings What is the central question of this study? Skin and muscle blood flow increases with heating and decreases with cooling, but the temperature‐sensitive mechanisms underlying these responses are not fully elucidated. What is the main finding and its importance? We found that local tissue hyperaemia was related to elevations in ATP release from erythrocytes. Increasing intravascular ATP augmented skin and tissue perfusion to levels equal or above thermal hyperaemia. ATP release from isolated erythrocytes was altered by heating and cooling. Our findings suggest that erythrocytes are involved in thermal regulation of blood flow via modulation of ATP release.
Local tissue perfusion changes with alterations in temperature during heating and cooling, but the thermosensitivity of the vascular ATP signalling mechanisms for control of blood flow during thermal interventions remains unknown. Here, we tested the hypotheses that the release of the vasodilator mediator ATP from human erythrocytes, but not from endothelial cells or other blood constituents, is sensitive to both increases and reductions in temperature and that increasing intravascular ATP availability with ATP infusion would potentiate thermal hyperaemia in limb tissues. We first measured blood temperature, brachial artery blood flow and plasma [ATP] during passive arm heating and cooling in healthy men and found that they increased by 3.0 ± 1.2°C, 105 ± 25 ml min−1 °C−1 and twofold, respectively, (all P < 0.05) with heating, but decreased or remained unchanged with cooling. In additional men, infusion of ATP into the brachial artery increased skin and deep tissue perfusion to levels equal or above thermal hyperaemia. In isolated erythrocyte samples exposed to different temperatures, ATP release increased 1.9‐fold from 33 to 39°C (P < 0.05) and declined by ∼50% at 20°C (P < 0.05), but no changes were observed in cultured human endothelial cells, plasma or serum samples. In conclusion, increases in plasma [ATP] and skin and deep tissue perfusion with limb heating are associated with elevations in ATP release from erythrocytes, but not from endothelial cells or other blood constituents. Erythrocyte ATP release is also sensitive to temperature reductions, suggesting that erythrocytes may function as thermal sensors and ATP signalling generators for control of tissue perfusion during thermal interventions.
Collapse
Affiliation(s)
- Kameljit K Kalsi
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| | - Scott T Chiesa
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| | - Steven J Trangmar
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| | - Leena Ali
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK.,Department of Anaesthetics, Ealing Hospital NHS Trust, Southall, UK
| | - Makrand D Lotlikar
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK.,Department of Anaesthetics, Ealing Hospital NHS Trust, Southall, UK
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| |
Collapse
|
6
|
Cervantes M, Ibarra N, Vásquez N, Reyes F, Avelar E, Espinoza S, Morales A. Serum concentrations of free amino acids in growing pigs exposed to diurnal heat stress fluctuations. J Therm Biol 2017; 69:69-75. [DOI: 10.1016/j.jtherbio.2017.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 01/19/2023]
|
7
|
Oue A, Sato K, Yoneya M, Sadamoto T. Decreased compliance in the deep and superficial conduit veins of the upper arm during prolonged cycling exercise. Physiol Rep 2017; 5:5/8/e13253. [PMID: 28438985 PMCID: PMC5408284 DOI: 10.14814/phy2.13253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 11/24/2022] Open
Abstract
We examined whether there is a difference in compliance between the deep and superficial conduit veins of the upper arm in response to prolonged exercise. Eight young men performed cycling exercise at 60% of peak oxygen uptake until rectal temperature had been increased by 1.1°C for 38–48 min. The cross‐sectional area (CSA) of the brachial (deep) and basilic (superficial) veins was assessed by ultrasound during a cuff deflation protocol. Compliance (CPL) was calculated as the numerical derivative of the cuff pressure and CSA curve. During prolonged exercise, CPL in both conduit veins was similarly decreased when compared with pre‐exercise values; however, the CSA decreased in the deep vein but increased in the superficial vein. In addition, passive heating caused an analogous change in CSA and CPL of superficial vein when compared with prolonged exercise, but did not change CSA and CPL of deep vein. Cold pressor test induced the decreased CSA of deep and superficial veins without the alteration of CPL of both veins. These results suggest that CPL in the deep and superficial conduit veins adjusts to prolonged exercise via different mechanisms.
Collapse
Affiliation(s)
- Anna Oue
- Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Kohei Sato
- Research Institute of Physical Fitness, Japan Women's College of Physical Education, Tokyo, Japan
| | - Marina Yoneya
- Research Institute of Physical Fitness, Japan Women's College of Physical Education, Tokyo, Japan
| | - Tomoko Sadamoto
- Research Institute of Physical Fitness, Japan Women's College of Physical Education, Tokyo, Japan
| |
Collapse
|
8
|
Morales A, Hernández L, Buenabad L, Avelar E, Bernal H, Baumgard LH, Cervantes M. Effect of heat stress on the endogenous intestinal loss of amino acids in growing pigs. J Anim Sci 2016; 94:165-72. [PMID: 26812323 DOI: 10.2527/jas.2015-9393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Heat stress (HS) increases the death of intestinal cells in pigs, which, in turn, may elevate the endogenous intestinal loss (EIL) of proteins and AA. An experiment was conducted to analyze the effect of HS on the AA composition of intestinal endogenous proteins and the EIL of AA in pigs. Eight pigs (25.2 ± 1.2 kg initial BW) were surgically implanted with T-type cannulas at the end of the small intestine. After surgery recovery, during the subsequent 7 d, all pigs were adapted to a protein- and AA-free diet and trained to consume the same amount of feed twice a day. All pigs were housed under thermoneutral (TN) conditions (22 ± 2°C) during this time. The following day, all pigs were still under TN conditions and ileal content was collected during 12 consecutive hours, at the end of which and for the following 8 d the pigs were exposed to natural HS conditions (31 to 37°C). Ileal content was collected again on d 2 (HS at d 2 [HSd2]) and 8 (HS at d 8 [HSd8]). Body temperature (BT) was measured in another group of 8 pigs every 15 min during the whole study. The average BT at HSd2 (39.6°C) was higher ( < 0.05) compared with both TN conditions (38.6°C) and HSd8 (38.8°C), but it did not differ between TN conditions and HSd8. The AA composition of endogenous intestinal protein was not affected by HS. The EIL of Arg and His were greater ( < 0.05) and the EIL of Thr and Phe tended to be greater ( ≤ 0.10) at HSd2 than in TN conditions; the EIL of Pro was greater ( = 0.01) at HSd8. The EIL of the remaining AA was not affected by HS. Although HS increased the EIL of Arg and His within the first 2 d, it appeared that normal EIL was shortly reestablished. These data show that acute HS does not affect the AA composition of intestinal endogenous proteins in growing pigs and that the EIL of AA may not be critical in growing pigs acclimated to high ambient temperature. Nevertheless, the increased EIL of Arg and Thr at HSd2 indicate that HS might affect the integrity of the intestinal epithelium of pigs during the first day of their exposure to high ambient temperature.
Collapse
|
9
|
Morales A, Pérez M, Castro P, Ibarra N, Bernal H, Baumgard LH, Cervantes M. Heat stress affects the apparent and standardized ileal digestibilities of amino acids in growing pigs1. J Anim Sci 2016; 94:3362-3369. [DOI: 10.2527/jas.2016-0571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
10
|
Morales A, Cota SEM, Ibarra NO, Arce N, Htoo JK, Cervantes M. Effect of heat stress on the serum concentrations of free amino acids and some of their metabolites in growing pigs. J Anim Sci 2016; 94:2835-42. [PMID: 27482670 DOI: 10.2527/jas.2015-0073] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Exposure to heat stress (HS) may affect the intestinal epithelia of pigs, resulting in impaired digestive and absorptive capacity. The serum concentration (SC) of free AA in pigs can be used as indicators of their availability. This study was conducted with 12 crossbred (Landrace × Hampshire × Duroc) pigs (29.0 ± 2.8 kg initial BW) distributed into 2 groups to analyze the SC of free AA and some AA metabolites in pigs exposed to HS conditions. The treatments were pigs housed under natural HS conditions in a room with no ambient temperature control (23.6 to 37.6°C, HS) and pigs housed at thermoneutral conditions (24 ± 2°C), feed restricted to a level similar to that of their HS counterparts. All pigs received a wheat-soybean meal diet. Blood samples were collected at both the absorptive (2.5 h after a meal) and postabsorptive (10.0 h after a meal) phase. At the absorptive phase, the SC of free Arg, Leu, Lys, Phe, Thr, and Trp were lower ( < 0.05) and the SC of His, Val, Ala, Pro, Ser, and Tyr tended to be lower ( < 0.10) in HS pigs. At the postabsorptive phase, the SC of free Arg, His, Met, Asn, Gln, and Tyr were higher ( < 0.05) but the SC of Ala was lower ( < 0.01) and the SC of Pro tended to be lower ( < 0.10) in HS pigs. The absorptive SC of carnosine, ornithine (Orn), and Tau were lower ( < 0.05) and of citrulline (Cit), cystathionine, and urea tended to be lower ( < 0.10) in HS pigs. The postabsorptive SC of 3-methyl-His, homo-Cys, OH-Lys, and OH-Pro increased ( = 0.05) and of Cit tended to increase ( = 0.10) but that of carnosine and sarcosine ( < 0.05) decreased in HS pigs. The results of this study show a marked and differential effect of HS on the SC of AA. These data indicate that HS negatively affects the digestive and absorptive capacity of pigs and that the metabolism of some AA is modified in pigs to counteract the negative effects of the HS.
Collapse
|
11
|
Olubodun JO, Zulkifli I, Farjam AS, Hair-Bejo M, Kasim A. Glutamine and Glutamic Acid Supplementation Enhances Performance of Broiler Chickens Under the Hot and Humid Tropical Condition. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.3263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Chiesa ST, Trangmar SJ, González-Alonso J. Temperature and blood flow distribution in the human leg during passive heat stress. J Appl Physiol (1985) 2016; 120:1047-58. [PMID: 26823344 PMCID: PMC4894946 DOI: 10.1152/japplphysiol.00965.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/22/2016] [Indexed: 01/19/2023] Open
Abstract
The ability of direct heat stress to increase limb blood flow is well known, but the magnitude and profile of hemodynamic responses within the major vessels of the leg have not been explored. Here, we systematically characterize these responses through a wide range of heat stress levels and show that isolated leg heating confers potentially beneficial hemodynamic changes equivalent to those of moderate whole body hyperthermia, with these hemodynamic adjustments being predominantly driven by local temperature-sensitive mechanisms. The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia.
Collapse
Affiliation(s)
- Scott T Chiesa
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - Steven J Trangmar
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
13
|
Pankratov D, Ohlsson L, Gudmundsson P, Halak S, Ljunggren L, Blum Z, Shleev S. Ex vivo electric power generation in human blood using an enzymatic fuel cell in a vein replica. RSC Adv 2016. [DOI: 10.1039/c6ra17122b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proof-of-principle demonstration of sustained electricity generation by a biofuel cell operating in an authentic human blood stream.
Collapse
Affiliation(s)
- Dmitry Pankratov
- Biomedical Science, Health & Society
- Malmö University
- 205 06 Malmö
- Sweden
- Engineering Enzymology
| | - Lars Ohlsson
- Biomedical Science, Health & Society
- Malmö University
- 205 06 Malmö
- Sweden
| | - Petri Gudmundsson
- Biomedical Science, Health & Society
- Malmö University
- 205 06 Malmö
- Sweden
| | - Sanela Halak
- Medical Imaging and Physiology
- Skåne University Hospital
- 205 06 Malmö
- Sweden
| | - Lennart Ljunggren
- Biomedical Science, Health & Society
- Malmö University
- 205 06 Malmö
- Sweden
| | - Zoltan Blum
- Biomedical Science, Health & Society
- Malmö University
- 205 06 Malmö
- Sweden
| | - Sergey Shleev
- Biomedical Science, Health & Society
- Malmö University
- 205 06 Malmö
- Sweden
- Engineering Enzymology
| |
Collapse
|
14
|
Abstract
Environmental temperature can have a surprising impact on extremity growth in homeotherms, but the underlying mechanisms have remained elusive for over a century. Limbs of animals raised at warm ambient temperature are significantly and permanently longer than those of littermates housed at cooler temperature. These remarkably consistent lab results closely resemble the ecogeographical tenet described by Allen's "extremity size rule," that appendage length correlates with temperature and latitude. This phenotypic growth plasticity could have adaptive significance for thermal physiology. Shortened extremities help retain body heat in cold environments by decreasing surface area for potential heat loss. Homeotherms have evolved complex mechanisms to maintain tightly regulated internal temperatures in challenging environments, including "facultative extremity heterothermy" in which limb temperatures can parallel ambient. Environmental modulation of tissue temperature can have direct and immediate consequences on cell proliferation, metabolism, matrix production, and mineralization in cartilage. Temperature can also indirectly influence cartilage growth by modulating circulating levels and delivery routes of essential hormones and paracrine regulators. Using an integrated approach, this article synthesizes classic studies with new data that shed light on the basis and significance of this enigmatic growth phenomenon and its relevance for treating human bone elongation disorders. Discussion centers on the vasculature as a gateway to understanding the complex interconnection between direct (local) and indirect (systemic) mechanisms of temperature-enhanced bone lengthening. Recent advances in imaging modalities that enable the dynamic study of cartilage growth plates in vivo will be key to elucidating fundamental physiological mechanisms of long bone growth regulation.
Collapse
Affiliation(s)
- Maria A Serrat
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
15
|
Effects of increased skin blood flow on muscle oxygenation/deoxygenation: comparison of time-resolved and continuous-wave near-infrared spectroscopy signals. Eur J Appl Physiol 2014; 115:335-43. [DOI: 10.1007/s00421-014-3019-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/02/2014] [Indexed: 01/23/2023]
|
16
|
Amano T, Koga S, Inoue Y, Nishiyasu T, Kondo N. Characteristics of sweating responses and peripheral sweat gland function during passive heating in sprinters. Eur J Appl Physiol 2013; 113:2067-75. [DOI: 10.1007/s00421-013-2641-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/04/2013] [Indexed: 05/27/2023]
|
17
|
Kandala SK, Deng D, Herman C. SIMULATION OF DISCRETE BLOOD VESSEL EFFECTS ON THE THERMAL SIGNATURE OF A MELANOMA LESION. INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION : [PROCEEDINGS]. INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2013; 3B:V03BT03A038-V03BT03A044. [PMID: 25328916 DOI: 10.1115/imece2013-64451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of the underlying blood vessel on the transient thermal response of the skin surface with and without a melanoma lesion is studied. A 3D computational model of the layers of the skin tissue with cancerous lesion was developed in COMSOL software package. Heat transfer in the skin layers and the lesion is governed by the Pennes bio-heat equation, while the blood vessel is modeled as fully developed pipe flow with constant heat transfer coefficient. The effect of various pertinent parameters, such as diameter of the blood vessel, lateral location of the blood vessel relative to the lesion, flow velocity of the blood, on the skin surface temperature distribution, have been studied in the paper. The results show significant influence of the underlying blood vessel on the temperature of the skin surface and lesion as well as on the surrounding healthy tissue. Thus, a need for development of evaluation criteria for detection of malignant lesions in the presence of blood vessels is is discussed.
Collapse
Affiliation(s)
- Sri Kamal Kandala
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Daxiang Deng
- The Johns Hopkins University, Baltimore, MD, USA
| | - Cila Herman
- School of Mechanical and Automotive Engineering, South China University of Technology, China
| |
Collapse
|
18
|
Ooue A, Sato K, Hirasawa A, Sadamoto T. Tendon vibration attenuates superficial venous vessel response of the resting limb during static arm exercise. J Physiol Anthropol 2012; 31:29. [PMID: 23134654 PMCID: PMC3520744 DOI: 10.1186/1880-6805-31-29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/19/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The superficial vein of the resting limb constricts sympathetically during exercise. Central command is the one of the neural mechanisms that controls the cardiovascular response to exercise. However, it is not clear whether central command contributes to venous vessel response during exercise. Tendon vibration during static elbow flexion causes primary muscle spindle afferents, such that a lower central command is required to achieve a given force without altering muscle force. The purpose of this study was therefore to investigate whether a reduction in central command during static exercise with tendon vibration influences the superficial venous vessel response in the resting limb. METHODS Eleven subjects performed static elbow flexion at 35% of maximal voluntary contraction with (EX + VIB) and without (EX) vibration of the biceps brachii tendon. The heart rate, mean arterial pressure, and rating of perceived exertion (RPE) in overall and exercising muscle were measured. The cross-sectional area (CSAvein) and blood velocity of the basilic vein in the resting upper arm were assessed by ultrasound, and blood flow (BFvein) was calculated using both variables. RESULTS Muscle tension during exercise was similar between EX and EX + VIB. However, RPEs at EX + VIB were lower than those at EX (P <0.05). Increases in heart rate and mean arterial pressure during exercise at EX + VIB were also lower than those at EX (P <0.05). CSAvein in the resting limb at EX decreased during exercise from baseline (P <0.05), but CSAvein at EX + VIB did not change during exercise. CSAvein during exercise at EX was smaller than that at EX + VIB (P <0.05). However, BFvein did not change during the protocol under either condition. The decreases in circulatory response and RPEs during EX + VIB, despite identical muscle tension, showed that activation of central command was less during EX + VIB than during EX. Abolishment of the decrease in CSAvein during exercise at EX + VIB may thus have been caused by a lower level of central command at EX + VIB rather than EX. CONCLUSION Diminished central command induced by tendon vibration may attenuate the superficial venous vessel response of the resting limb during sustained static arm exercise.
Collapse
Affiliation(s)
- Anna Ooue
- Research Institute of Physical Fitness, Japan Women's College of Physical Education, 8-19-1 Kitakarasuyama, Setagaya-ku, Tokyo 157-8565, Japan.
| | | | | | | |
Collapse
|
19
|
Changes in arterial blood pressure elicited by severe passive heating at rest is associated with hyperthermia-induced hyperventilation in humans. Eur J Appl Physiol 2012; 113:51-62. [DOI: 10.1007/s00421-012-2413-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
|
20
|
Hahn A, Nics L, Baldinger P, Ungersböck J, Dolliner P, Frey R, Birkfellner W, Mitterhauser M, Wadsak W, Karanikas G, Kasper S, Lanzenberger R. Combining image-derived and venous input functions enables quantification of serotonin-1A receptors with [carbonyl-11C]WAY-100635 independent of arterial sampling. Neuroimage 2012; 62:199-206. [PMID: 22579604 DOI: 10.1016/j.neuroimage.2012.04.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/11/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022] Open
Abstract
UNLABELLED image- derived input functions (IDIFs) represent a promising technique for a simpler and less invasive quantification of PET studies as compared to arterial cannulation. However, a number of limitations complicate the routine use of IDIFs in clinical research protocols and the full substitution of manual arterial samples by venous ones has hardly been evaluated. This study aims for a direct validation of IDIFs and venous data for the quantification of serotonin-1A receptor binding (5-HT(1A)) with [carbonyl-(11)C]WAY-100635 before and after hormone treatment. METHODS Fifteen PET measurements with arterial and venous blood sampling were obtained from 10 healthy women, 8 scans before and 7 after eight weeks of hormone replacement therapy. Image-derived input functions were derived automatically from cerebral blood vessels, corrected for partial volume effects and combined with venous manual samples from 10 min onward (IDIF+VIF). Corrections for plasma/whole-blood ratio and metabolites were done separately with arterial and venous samples. 5-HT(1A) receptor quantification was achieved with arterial input functions (AIF) and IDIF+VIF using a two-tissue compartment model. RESULTS Comparison between arterial and venous manual blood samples yielded excellent reproducibility. Variability (VAR) was less than 10% for whole-blood activity (p>0.4) and below 2% for plasma to whole-blood ratios (p>0.4). Variability was slightly higher for parent fractions (VARmax=24% at 5 min, p<0.05 and VAR<13% after 20 min, p>0.1) but still within previously reported values. IDIFs after partial volume correction had peak values comparable to AIFs (mean difference Δ=-7.6 ± 16.9 kBq/ml, p>0.1), whereas AIFs exhibited a delay (Δ=4 ± 6.4s, p<0.05) and higher peak width (Δ=15.9 ± 5.2s, p<0.001). Linear regression analysis showed strong agreement for 5-HT(1A) binding as obtained with AIF and IDIF+VIF at baseline (R(2)=0.95), after treatment (R(2)=0.93) and when pooling all scans (R(2)=0.93), with slopes and intercepts in the range of 0.97 to 1.07 and -0.05 to 0.16, respectively. In addition to the region of interest analysis, the approach yielded virtually identical results for voxel-wise quantification as compared to the AIF. CONCLUSIONS Despite the fast metabolism of the radioligand, manual arterial blood samples can be substituted by venous ones for parent fractions and plasma to whole-blood ratios. Moreover, the combination of image-derived and venous input functions provides a reliable quantification of 5-HT(1A) receptors. This holds true for 5-HT(1A) binding estimates before and after treatment for both regions of interest-based and voxel-wise modeling. Taken together, the approach provides less invasive receptor quantification by full independence of arterial cannulation. This offers great potential for the routine use in clinical research protocols and encourages further investigation for other radioligands with different kinetic characteristics.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
BACKGROUND Contrast baths have been adopted widely in clinics. However, the time ratio of heat to cold modalities has not been well established. OBJECTIVE The purpose of this study was to explore the effect of time ratio on brachial artery mean blood velocity (aMBV) and determine the optimal duration in the second heating phase. DESIGN This was a within-participant, repeated-measures, experimental study. METHODS Thirty-four young volunteers who were healthy were recruited. Each participant performed 2 kinds of contrast baths within 2 separate sessions. In the first trial with a fixed time ratio, participants immersed their left hands in a 40°C hot bath for 3 minutes and then in an 18°C cold bath for 1 minute. This procedure was repeated 3 times. In the second trial, after the initial 3-minute hot bath and 1-minute cold bath, a 10-minute 40°C hot bath immersion was adopted as the second cycle. A color Doppler ultrasound scanner was used to measure aMBV, which was used to calculate the percentage of change related to the baseline (aMBV%) and the fluctuation in the heating phases (ΔaMBV%). RESULTS In the first trial, compared with the first heating phase, the ΔaMBV% was significantly lower by 57% and by 46% in the second and third heating phases, respectively. In the second trial, the ΔaMBV% beyond the 7th minute did not reach a significantly lower level. LIMITATIONS The results cannot be generalized to elderly individuals or patients with medical conditions. CONCLUSION A longer duration in the second heating phase during contrast baths was required to produce a sufficient fluctuation in blood flow.
Collapse
|
22
|
Liu F, Yin J, Du M, Yan P, Xu J, Zhu X, Yu J. Heat-stress-induced damage to porcine small intestinal epithelium associated with downregulation of epithelial growth factor signaling. J Anim Sci 2009; 87:1941-9. [PMID: 19213704 DOI: 10.2527/jas.2008-1624] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Extreme heat during certain days of the summer renders pigs susceptible to severe heat stress, which negatively affects their growth performance. We hypothesized that such heat stress impaired the small intestinal mucosa, a site responsible for nutrient absorption. To simulate heat stress, Chinese experimental mini-pigs were treated with 5 h of continual 40 degrees C temperature each day for 10 d in succession. Pigs were killed at 1, 3, 6 and 10 d after treatment, and small intestinal epithelia were sampled for histochemical examination and biochemical analyses. The duodenum and jejunum were seriously damaged within 3 d of initiation of treatment. Subsequent study of the process of jejunum recovery showed that the initiation of recovery started within 6 d following heat stress. Such damage was associated with the downregulation of epithelial growth factor signaling. In conclusion, heat stress induced short-term damage to the epithelium of porcine intestine. Because the intestinal epithelium is crucial for nutrient uptake, such damage should partially account for the impairment of growth performance of pigs under heat stress.
Collapse
Affiliation(s)
- F Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | | | |
Collapse
|
23
|
Ooue A, Ichinose TK, Inoue Y, Nishiyasu T, Koga S, Kondo N. Changes in blood flow in conduit artery and veins of the upper arm during leg exercise in humans. Eur J Appl Physiol 2008; 103:367-73. [DOI: 10.1007/s00421-008-0706-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
|