1
|
Zuccarelli L, Baldassarre G, Winnard A, Harris KM, Weber T, Green DA, Petersen LG, Kamine TH, Roberts L, Kim DS, Greaves DK, Arya R, Laws JM, Elias A, Rittweger J, Grassi B, Goswami N. Effects of whole-body vibration or resistive-vibration exercise on blood clotting and related biomarkers: a systematic review. NPJ Microgravity 2023; 9:87. [PMID: 38057333 DOI: 10.1038/s41526-023-00338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Whole-body vibration (WBV) and resistive vibration exercise (RVE) are utilized as countermeasures against bone loss, muscle wasting, and physical deconditioning. The safety of the interventions, in terms of the risk of inducing undesired blood clotting and venous thrombosis, is not clear. We therefore performed the present systematic review of the available scientific literature on the issue. The review was conducted following the guidelines by the Space Biomedicine Systematic Review Group, based on Cochrane review guidelines. The relevant context or environment of the studies was "ground-based environment"; space analogs or diseased conditions were not included. The search retrieved 801 studies; 77 articles were selected for further consideration after an initial screening. Thirty-three studies met the inclusion criteria. The main variables related to blood markers involved angiogenic and endothelial factors, fibrinolysis and coagulation markers, cytokine levels, inflammatory and plasma oxidative stress markers. Functional and hemodynamic markers involved blood pressure measurements, systemic vascular resistance, blood flow and microvascular and endothelial functions. The available evidence suggests neutral or potentially positive effects of short- and long-term interventions with WBV and RVE on variables related to blood coagulation, fibrinolysis, inflammatory status, oxidative stress, cardiovascular, microvascular and endothelial functions. No significant warning signs towards an increased risk of undesired clotting and venous thrombosis were identified. If confirmed by further studies, WBV and RVE could be part of the countermeasures aimed at preventing or attenuating the muscular and cardiovascular deconditioning associated with spaceflights, permanence on planetary habitats and ground-based simulations of microgravity.
Collapse
Affiliation(s)
| | | | | | - Katie M Harris
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Tobias Weber
- Space Medicine Team, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - David A Green
- Space Medicine Team, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany
- KBR GmbH, Cologne, Germany
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Lonnie G Petersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tovy Haber Kamine
- Division of Trauma, Acute Care Surgery, and Surgical Critical Care, Baystate Medical Center, Springfield, MA, USA
| | - Lara Roberts
- Kings College Hospital, NHS Foundation Trust, London, UK
| | - David S Kim
- Space Medicine Team, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany
- Department of Emergency Medicine, Faculty of Medicine, University of British Columbia, Kelowna, Canada
| | - Danielle K Greaves
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Roopen Arya
- Kings College Hospital, NHS Foundation Trust, London, UK
| | | | - Antoine Elias
- Department of Vascular Medicine, Sainte Musse Hospital, Toulon La Seyne Hospital Centre, Toulon, France
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy.
| | - Nandu Goswami
- Division of Physiology, Otto Löwi Research Center for Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
- Mohammed Bin Rashid University of Medicine and Applied Health Sciences, Dubai, UAE
| |
Collapse
|
2
|
Gattner H, Adamiak J, Piotrowska A, Czerwińska-Ledwig O, Mętel S, Kępińska-Szyszkowska M, Pilch W. Effect of Whole-Body Vibration Training on Hemorheological Blood Indices in Young, Healthy Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3232. [PMID: 36833926 PMCID: PMC9961488 DOI: 10.3390/ijerph20043232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The aim of the study is to assess the effect of single and 12-week WBVT and training without vibration on changes in hemorheological blood indices and plasma fibrinogen levels in young, healthy women. Three groups are distinguished: the experimental group-participating in WBVT (n = 17); the comparison group-implementing the same physical exercise protocol without the vibration factor (n = 12); and the control group-no intervention (n = 17). In the experimental and comparison group, blood is collected before and after the first and last training, while in the control group, blood is collected twice, 3 months apart. After a series of WBVT, a significant decrease in the mean erythrocyte volume and mean hemoglobin mass in erythrocytes, as well as a slight increase in the mean erythrocyte hemoglobin concentration, is found, and the effect of the last training is a significant decrease in plasma volume. Under the influence of repeated WBVT, there is an increase in erythrocyte deformability at low shear stress and an increase in the aggregation amplitude. The study shows that WBVT improves blood flow in the vessels and does not affect erythrocyte aggregation and the level of fibrinogen, which confirms the safety of this form of exercise.
Collapse
Affiliation(s)
- Halina Gattner
- Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II Avenue 78, 31-571 Krakow, Poland
| | - Justyna Adamiak
- Institute of Applied Sciences, Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II Avenue 78, 31-571 Krakow, Poland
| | - Anna Piotrowska
- Department of Chemistry and Biochemistry, Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II Avenue 78, 31-571 Krakow, Poland
| | - Olga Czerwińska-Ledwig
- Department of Chemistry and Biochemistry, Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II Avenue 78, 31-571 Krakow, Poland
| | - Sylwia Mętel
- Institute of Applied Sciences, Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II Avenue 78, 31-571 Krakow, Poland
| | - Magdalena Kępińska-Szyszkowska
- Institute of Applied Sciences, Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II Avenue 78, 31-571 Krakow, Poland
| | - Wanda Pilch
- Department of Chemistry and Biochemistry, Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II Avenue 78, 31-571 Krakow, Poland
| |
Collapse
|
3
|
Buttan A, Cui J, Guo X, Chen YDI, Hsueh WA, Rotter JI, Goodarzi MO. Physical Activity Associations with Bone Mineral Density and Modification by Metabolic Traits. J Endocr Soc 2020; 4:bvaa092. [PMID: 32803094 PMCID: PMC7417873 DOI: 10.1210/jendso/bvaa092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/02/2020] [Indexed: 11/19/2022] Open
Abstract
Objective To assess the relationship of physical activity with bone mineral density (BMD) at various sites and examine potential modifying metabolic factors. Methods Responses from physical activity questionnaires were used to determine total physical activity (PA), moderate physical activity (mod-PA), and sedentary time. Regression analyses were performed to evaluate association of activity traits with insulin sensitivity by euglycemic clamp, adiponectin, C-reactive protein (CRP), and plasminogen activator inhibitor-1 (PAI-1) in 741 healthy subjects. Results The cohort was relatively sedentary. Activity level was associated with arm, pelvis, and leg BMD in univariate analyses. In multivariate association analyses of arm BMD, only female sex (β = -0.73, P < 0.0001) and adiponectin (β = -0.076, P = 0.0091) were significant. Multivariate analyses of pelvis BMD found independent associations with body mass index (BMI) (β = 0.33, P < 0.0001), adiponectin (β = -0.10, P = 0.013), female sex (β = -0.18, P < 0.0001), sedentary time (β = -0.088, P = 0.034), PA (β = 0.11, P = 0.01), and mod-PA (β = 0.11, P = 0.014). Age (β = -0.10, P = 0.0087), female sex (β = -0.63, P < 0.0001), BMI (β = 0.24, P < 0.0001), and mod-PA (β = 0.10, P = 0.0024) were independently associated with leg BMD. Conclusions These results suggest that BMD increases with physical activity in the arms, legs, and pelvis and is inversely related to sedentary time in the pelvis and legs; these associations may be modified by age, sex, BMI, and adiponectin, depending on the site, with physical activity being more important to pelvis and leg BMD than arm BMD and sedentary time being important for pelvis BMD. Moreover, we demonstrated that CRP, PAI-1, and insulin sensitivity play a minor role in BMD.
Collapse
Affiliation(s)
- Anshu Buttan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jinrui Cui
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California
| | - Yii-Der I Chen
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California
| | - Willa A Hsueh
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
4
|
Song N, Liu X, Feng Q, Xu M, Lan X, Li M, Liu R, Li C, Dong T, Wang D, Liu S. Whole Body Vibration Triggers a Change in the Mutual Shaping State of Intestinal Microbiota and Body's Immunity. Front Bioeng Biotechnol 2019; 7:377. [PMID: 31850333 PMCID: PMC6895539 DOI: 10.3389/fbioe.2019.00377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
Whole body vibration (WBV) is a non-invasive physical therapy that has recently been included in the hospital's patient rehabilitation training catalog, but its health effects have not been sufficiently studied. In the present study, to examine the possible effects of WBV on immune cell differentiation, the IFN, IL-4,−17, F4/80 and CD3,−4,−8,−11b,−11c,−19 markers were used to characterizing the cells in mouse spleen. The results showed that the CD4 and CD25 positive lymphocytes in the spleen were significantly increased in the WBV group, and the population of Treg cells was enhanced significantly in response to WBV. Since the differentiation in immune cells is usually associated with microbiota, therefore the intestinal flora was characterized in mice and human individuals. The results indicated that WBV significantly reduced the α-diversity of mouse intestinal microbiota. Moreover, the principal coordinate analysis (PCoA) results indicated that the β-diversities of both mice and human fecal microbiota increased after WBV. Analysis of the bacterial composition indicated that the contents of a variety of bacteria changed in mice upon the stimulation of vibration, such as Lactobacillus animalis in mice, and Lactobacillus paraplantarum and Lactobacillus sanfranciscensis in human. The succeeding correlation analysis revealed that some bacteria with significant content variations were correlated to the regulatory T cell differentiation in mice and physical characteristics in human. Our research will provide the basis for future non-invasive treatment of microbial and immune related diseases.
Collapse
Affiliation(s)
- Ning Song
- School of Basic Medical Science, Shandong University, Jinan, China.,Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Xia Liu
- School of Basic Medical Science, Shandong University, Jinan, China.,Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Qiang Feng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mengchen Xu
- School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Xiang Lan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Jinan, China
| | - Meihui Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Jinan, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Caixia Li
- Department of Evidence Identification, Institute of Forensic Science of China, Beijing, China
| | - Tianyi Dong
- Department of Breast Thyroid Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Deqiang Wang
- School of Basic Medical Science, Shandong University, Jinan, China.,Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Shili Liu
- School of Basic Medical Science, Shandong University, Jinan, China.,Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
5
|
Vaughan DE, Rai R, Khan SS, Eren M, Ghosh AK. Plasminogen Activator Inhibitor-1 Is a Marker and a Mediator of Senescence. Arterioscler Thromb Vasc Biol 2017; 37:1446-1452. [PMID: 28572158 DOI: 10.1161/atvbaha.117.309451] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/15/2017] [Indexed: 01/23/2023]
Abstract
PAI-1 (plasminogen activator inhibitor-1) is a member of the evolutionarily conserved serine protease inhibitor family and a potent and rapid-acting inhibitor of both of the mammalian plasminogen activators. Organismal homeostasis requires physiological levels of endogenous PAI-1, and increased PAI-1 production guides the onset and progression of numerous human diseases and contributes to the multimorbidity of aging. Both chronological and stress-induced accelerated aging are associated with cellular senescence and accompanied by marked increases in PAI-1 expression in tissues. Recent studies suggest that PAI-1 is not only a marker but also a key mediator of cellular senescence and organismal aging. Here, we review the significance of PAI-1 as a bonafide marker, as well as a critical mediator, of cellular senescence associated with aging and aging-related pathologies.
Collapse
Affiliation(s)
- Douglas E Vaughan
- From the Department of Medicine, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL.
| | - Rahul Rai
- From the Department of Medicine, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Sadiya S Khan
- From the Department of Medicine, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Mesut Eren
- From the Department of Medicine, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Asish K Ghosh
- From the Department of Medicine, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
6
|
Haider T, Gunga HC, Matteucci-Gothe R, Sottara E, Griesmacher A, Belavý DL, Felsenberg D, Werner A, Schobersberger W. Effects of long-term head-down-tilt bed rest and different training regimes on the coagulation system of healthy men. Physiol Rep 2013; 1:e00135. [PMID: 24400137 PMCID: PMC3871450 DOI: 10.1002/phy2.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 01/25/2023] Open
Abstract
Immobility plus preexisting chronic disease or acute trauma can activate the coagulation system, thus increasing the risk for thromboembolic events. The effects of long-term bed-rest immobility and microgravity on the coagulation system of healthy persons (e.g., during crewed Mars missions) have not yet been studied. The main objective of the second Berlin BedRest Study (BBR2-2) “Coagulation Part” was to investigate adaptations of the hemostatic system during long-term bed rest (60 days) under simulated microgravity (6° head-down-tilt [6°HDT]) and after mobilization in three different volunteer groups (randomly assigned to CTR= inactive control group; RE= resistive exercise only group; and RVE= resistive exercise with whole-body vibration group). In 24 males (aged 21–45 years), before, during, and after long-term bed rest, key parameters of coagulation were measured from venous blood samples: D-dimer (DD), thrombin–antithrombin III complex (TAT), and prothrombin fragment F1 + 2 (PT-F1 + 2). Additionally, modified rotational thrombelastometry (ROTEM®) analysis was performed. Times of exploratory analyses were as follows: baseline data collection 2 days before bed rest (BDC-2); eight different days of 6°HDT bed rest (HDT1–HDT60), and two different days after reambulation (R + 3 and R + 6). We found significant changes in DD, TAT, and PT-F1 + 2 over the total time course, but no consistent effect of physical interventions (RE, RVE) on these parameters. Notably, no parameter reached levels indicative of intravascular thrombin formation. All ROTEM® parameters remained within the normal range and no pathological traces were found. Sixty days of 6°HDT bed rest are not associated with pronounced activation of the coagulation system indicative of intravascular thrombus formation in healthy volunteers independent of the training type during the bed rest.
Collapse
Affiliation(s)
- Thomas Haider
- Institute for Sports Medicine Alpine, Medicine and Health Tourism UMIT Hall, Austria ; Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich Zurich, Switzerland
| | - Hanns-Christian Gunga
- Department for Physiology and Centre for Space Medicine, Charité University Medicine Berlin, Germany
| | | | - Elke Sottara
- Central Institute for Med. and Chem. Laboratory Diagnostics, TILAK Innsbruck, Austria
| | - Andrea Griesmacher
- Central Institute for Med. and Chem. Laboratory Diagnostics, TILAK Innsbruck, Austria
| | - Daniel L Belavý
- Centre for Muscle and Bone Research, Charité University Medicine Berlin, Germany
| | - Dieter Felsenberg
- Centre for Muscle and Bone Research, Charité University Medicine Berlin, Germany
| | - Andreas Werner
- Department for Physiology and Centre for Space Medicine, Charité University Medicine Berlin, Germany
| | | |
Collapse
|