1
|
Ward AMM, Guluzade NA, Kowalchuk JM, Keir DA. Coupling of
V
˙
E
and
V
˙
CO
2
kinetics: insights from multiple exercise transitions below the estimated lactate threshold. Eur J Appl Physiol 2023; 123:509-522. [PMID: 36371597 DOI: 10.1007/s00421-022-05073-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
During a step-change in exercise power output (PO), ventilation (V ˙ E ) increases with a similar time course to the rate of carbon dioxide delivery to the lungs (V ˙ CO 2 . To test the strength of this coupling, we comparedV ˙ E andV ˙ CO 2 kinetics from ten independent exercise transitions performed within the moderate-intensity domain. Thirteen males completed 3-5 repetitions of ∆40 W step transitions initiated from 20, 40, 60, 80, 100, and 120 W on a cycle ergometer. Preceding the ∆40 W step transitions from 60, 80, 100, and 120 W was a 6 min bout of 20 W cycling from which the transitions of variable ∆PO were examined. Gas exchange (V ˙ CO 2 and oxygen uptake,V ˙ O 2 ) andV ˙ E were measured by mass spectrometry and volume turbine. The kinetics of the responses were characterized by the time constant (τ) and amplitude (ΔV ˙ E /ΔV ˙ CO 2 ). Overall,V ˙ CO 2 kinetics were consistently slower thanV ˙ O 2 kinetics (by ~ 45%) and τV ˙ CO 2 rose progressively with increasing baseline PO and with heightened ∆PO from a common baseline. Compared to τV ˙ CO 2 , τV ˙ E was on average slightly greater (by ~ 4 s). Repeated-measures analysis of variance revealed that there was no interaction between τV ˙ CO 2 and τV ˙ E in either the variable baseline (p = 0.49) and constant baseline (p = 0.56) conditions indicating that each changed in unison. Additionally, for ΔV ˙ E /ΔV ˙ CO 2 , there was no effect of either variable baseline PO (p = 0.05) or increasing ΔPO (p = 0.16). These data provide further evidence that, within the moderate-intensity domain, both the temporal- and amplitude-based characteristics of V̇E kinetics are inextricably linked to those ofV ˙ CO 2 .
Collapse
Affiliation(s)
- Alexandra M M Ward
- School of Kinesiology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Nasimi A Guluzade
- School of Kinesiology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - John M Kowalchuk
- School of Kinesiology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Daniel A Keir
- School of Kinesiology, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada.
- Toronto General Research Institute, Toronto General Hospital, Toronto, ON, Canada.
| |
Collapse
|
2
|
Iannetta D, de Almeida Azevedo R, Keir DA, Murias JM. Establishing the V̇o 2 versus constant-work-rate relationship from ramp-incremental exercise: simple strategies for an unsolved problem. J Appl Physiol (1985) 2019; 127:1519-1527. [PMID: 31580218 DOI: 10.1152/japplphysiol.00508.2019] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The dissociation between constant work rate of O2 uptake (V̇o2) and ramp V̇o2 at a given work rate might be mitigated during slowly increasing ramp protocols. This study characterized the V̇o2 dynamics in response to five different ramp protocols and constant-work-rate trials at the maximal metabolic steady state (MMSS) to characterize 1) the V̇o2 gain (G) in the moderate, heavy, and severe domains, 2) the mean response time of V̇o2 (MRT), and 3) the work rates at lactate threshold (LT) and respiratory compensation point (RCP). Eleven young individuals performed five ramp tests (5, 10, 15, 25, and 30 W/min), four to five time-to-exhaustions for critical power estimation, and two to three constant-work-rate trials for confirmation of the work rate at MMSS. G was greatest during the slowest ramp and progressively decreased with increasing ramp slopes (from ~12 to ~8 ml·min-1·W-1, P < 0.05). The MRT was smallest during the slowest ramp slopes and progressively increased with faster ramp slopes (1 ± 1, 2 ± 1, 5 ± 3, and 10 ± 4, 15 ± 6 W, P < 0.05). After "left shifting" the ramp V̇o2 by the MRT, the work rate at LT was constant regardless of the ramp slope (~150 W, P > 0.05). The work rate at MMSS was 215 ± 55 W and was similar and highly correlated with the work rate at RCP during the 5 W/min ramp (P > 0.05, r = 0.99; Lin's concordance coefficient = 0.99; bias = -3 W; root mean square error = 6 W). Findings showed that the dynamics of V̇o2 (i.e., G) during ramp exercise explain the apparent dichotomy existing with constant-work-rate exercise. When these dynamics are appropriately "resolved", LT is constant regardless of the ramp slope of choice, and RCP and MMSS display minimal variations between each other.NEW & NOTEWORTHY This study demonstrates that the dynamics of V̇o2 during ramp-incremental exercise are dependent on the characteristics of the increments in work rate, such that during slow-incrementing ramp protocols the magnitude of the dissociation between ramp V̇o2 and constant V̇o2 at a given work rate is reduced. Accurately accounting for these dynamics ensures correct characterizations of the V̇o2 kinetics at ramp onset and allows appropriate comparisons between ramp and constant-work-rate exercise-derived indexes of exercise intensity.
Collapse
Affiliation(s)
- Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | | | - Daniel A Keir
- Department of Medicine, University Health Network, Toronto, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Zignoli A, Fornasiero A, Bertolazzi E, Pellegrini B, Schena F, Biral F, Laursen PB. State-of-the art concepts and future directions in modelling oxygen consumption and lactate concentration in cycling exercise. SPORT SCIENCES FOR HEALTH 2019. [DOI: 10.1007/s11332-019-00557-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
IANNETTA DANILO, MURIAS JUANM, KEIR DANIELA. A Simple Method to Quantify the V˙O2 Mean Response Time of Ramp-Incremental Exercise. Med Sci Sports Exerc 2019; 51:1080-1086. [DOI: 10.1249/mss.0000000000001880] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Francisco CDO, Beltrame T, Hughson RL, Milan-Mattos JC, Ferroli-Fabricio AM, Galvão Benze B, Ferraresi C, Parizotto NA, Bagnato VS, Borghi-Silva A, Porta A, Catai AM. Effects of light-emitting diode therapy (LEDT) on cardiopulmonary and hemodynamic adjustments during aerobic exercise and glucose levels in patients with diabetes mellitus: A randomized, crossover, double-blind and placebo-controlled clinical trial. Complement Ther Med 2019; 42:178-183. [PMID: 30670240 DOI: 10.1016/j.ctim.2018.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 09/21/2018] [Accepted: 11/09/2018] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to evaluate the acute effects of light-emitting diode therapy (LEDT) on cardiopulmonary adjustments and muscle oxygenation dynamics during transition to moderate exercise, as well as in glucose and lactate levels in patients with type 2 diabetes mellitus (T2DM). Sixteen individuals with T2DM (age 55.1±5.4 years) performed four separate tests receiving LEDT or placebo in random order, at intervals of at least 14 days. A light-emitting diode array (50GaAIAs LEDs, 850nm, 75mW per diode) was used to perform LEDT bilaterally on the quadriceps femoris and triceps surae muscles for 40s at each site. After, a moderate cycling exercise was performed and oxygen uptake, muscular deoxyhemoglobin, heart rate and cardiac output were measured. Lactate and glucose levels were measured before LEDT/placebo and after the exercise. The LEDT decreased the glucose levels after the exercise compared with values before LEDT (173.7±61.0 to 143.5±53.5 mg/dl, P=0.02) and it did not affect the cardiopulmonary and hemodynamic adjustments in exercise, as well as lactate levels in both groups. In conclusion, the LEDT in combination with moderate exercise acutely decreased the glucose levels in men with T2DM.
Collapse
Affiliation(s)
- Cristina de Oliveira Francisco
- Federal University of São Carlos, Cardiovascular Physical Therapy Laboratory, Department of Physiotherapy, Rod. Washington Luís, km 235, São Carlos, 13.565-905, Brazil
| | - Thomas Beltrame
- University of Waterloo, Faculty of Applied Health Sciences, 200 University Ave W, Waterloo, N2L 3G1, Canada
| | - Richard L Hughson
- University of Waterloo, Faculty of Applied Health Sciences, 200 University Ave W, Waterloo, N2L 3G1, Canada; Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Drive, Waterloo, N2J 0E2, Canada
| | - Juliana Cristina Milan-Mattos
- Federal University of São Carlos, Cardiovascular Physical Therapy Laboratory, Department of Physiotherapy, Rod. Washington Luís, km 235, São Carlos, 13.565-905, Brazil
| | - Amanda Magdalena Ferroli-Fabricio
- Federal University of São Carlos, Cardiovascular Physical Therapy Laboratory, Department of Physiotherapy, Rod. Washington Luís, km 235, São Carlos, 13.565-905, Brazil
| | - Benedito Galvão Benze
- Federal University of São Carlos, Department of Statistics, Rod. Washington Luís, km 235, São Carlos, 13.565-905, Brazil
| | - Cleber Ferraresi
- Wellman Center for Photomedicine, Massachusetts General, Hospital - Harvard Medical School, 40 Blossom Street, Massachusetts, MA 02114, USA
| | - Nivaldo Antônio Parizotto
- Federal University of São Carlos, Cardiovascular Physical Therapy Laboratory, Department of Physiotherapy, Rod. Washington Luís, km 235, São Carlos, 13.565-905, Brazil
| | - Vanderlei Salvador Bagnato
- São Paulo University, Departament of Physics, Av. Trabalhador São-carlense, 400, São Carlos, 13566-590, Brazil
| | - Audrey Borghi-Silva
- Federal University of São Carlos, Cardiovascular Physical Therapy Laboratory, Department of Physiotherapy, Rod. Washington Luís, km 235, São Carlos, 13.565-905, Brazil
| | - Alberto Porta
- University of Milan, Department of Biomedical Sciences for Health, Via C. Pascal 36, Milan, 20133, Italy; IRCCS Policlinico San Donato, Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, Via F. Fellini 4, Milan, 20097, Italy
| | - Aparecida Maria Catai
- Federal University of São Carlos, Cardiovascular Physical Therapy Laboratory, Department of Physiotherapy, Rod. Washington Luís, km 235, São Carlos, 13.565-905, Brazil.
| |
Collapse
|
6
|
Müller PDT, Nogueira JHZ, Augusto TRDL, Chiappa GR. Faster oxygen uptake, heart rate, and ventilatory kinetics in stepping compared with cycle ergometry in patients with COPD during moderate-intensity exercise. Appl Physiol Nutr Metab 2019; 44:879-885. [PMID: 30649910 DOI: 10.1139/apnm-2018-0662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Step tests are a stressful and feasible cost-effective modality to evaluate aerobic performance. However, the eccentric in addition to concentric muscle contractions of the legs on stepping emerge as a potential speeding factor for cardioventilatory and metabolic adjustments towards a steady-state, since eccentric contractions would prompt an earlier and stronger mechanoreceptor activation, as well as higher heart rate/cardiac output adjustments to the same metabolic demand. Moreover, shorter tests are ideal for exercise-limited subjects. Nine subjects with chronic obstructive pulmonary disease were invited to participate in comprehensive lung function tests and constant work tests performed on different days at a 90% gas exchange threshold for 6 min, in single-step tests or cycle ergometry. After careful monoexponential regression modelling, statistically relevant faster phase II time constants for oxygen uptake (45 ± 18 s vs 53 ± 17 s, p = 0.017) and minute ventilation (61 ± 13 s vs 74 ± 17 s, p = 0.027) were observed in the 6-min step tests compared with cycle ergometry, respectively. Despite an absence of heart rate time constant difference (43 ± 20 s vs 69 ± 46 s, p = 0.167), there was a significantly faster rate constant toward a steady state for heart rate (p = 0.02). In addition, 4-min compared with 6-min analysis presented similar results (p > 0.05), providing an appropriate steady-state. We conclude that step tests might elicit faster time constants compared with cycle ergometry, at the same average metabolic level, and 4-min analysis has similar mean errors compared with 6-min analysis within an acceptable range. New studies, comprising mechanisms and detailed physiological backgrounds, are necessary.
Collapse
Affiliation(s)
- Paulo de Tarso Müller
- a Laboratory of Respiratory Pathophysiology (LAFIR), Maria Aparecida Pedrossian Universitary Hospital (HUMAP), Campo Grande, MS 79040-630, Brazil
| | - João Henrique Zardetti Nogueira
- a Laboratory of Respiratory Pathophysiology (LAFIR), Maria Aparecida Pedrossian Universitary Hospital (HUMAP), Campo Grande, MS 79040-630, Brazil
| | - Tiago Rodrigues de Lemos Augusto
- a Laboratory of Respiratory Pathophysiology (LAFIR), Maria Aparecida Pedrossian Universitary Hospital (HUMAP), Campo Grande, MS 79040-630, Brazil
| | | |
Collapse
|
7
|
Goulding RP, Roche DM, Marwood S. "Work-to-Work" exercise slows pulmonary oxygen uptake kinetics, decreases critical power, and increases W' during supine cycling. Physiol Rep 2018; 6:e13916. [PMID: 30426722 PMCID: PMC6234148 DOI: 10.14814/phy2.13916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 01/21/2023] Open
Abstract
We have previously demonstrated that the phase II time constant of pulmonary oxygen uptake kinetics ( τ v ˙ o 2 ) is an independent determinant of critical power (CP) when O2 availability is not limiting, that is, during upright cycle exercise in young, healthy individuals. Whether this causative relationship remains when O2 availability is impaired remains unknown. During supine exercise, which causes an O2 availability limitation during the exercise transition, we therefore determined the impact of a raised baseline work rate on τ v ˙ o 2 and CP. CP, τ v ˙ o 2 , and muscle oxygenation status (the latter via near-infrared spectroscopy) were determined via four severe-intensity constant-power exercise tests completed in two conditions: (1) with exercise initiated from an unloaded cycling baseline (U→S), and (2) with exercise initiated from a moderate-intensity baseline work rate of 90% of the gas exchange threshold (M→S). In M→S, critical power was lower (U→S = 146 ± 39 W vs. M→S = 132 ± 33 W, P = 0.023) and τ v ˙ o 2 was greater (U→S = 45 ± 16 sec, vs. M→S = 69 ± 129 sec, P = 0.001) when compared to U→S. There was no difference in tissue oxyhemoglobin concentration ([HbO2 + MbO2 ]) at baseline or during exercise. The concomitant increase in τ v ˙ o 2 and reduction in CP during M→S compared to U→S shows for the first time that τ v ˙ o 2 is an independent determinant of CP in conditions where O2 availability is limiting.
Collapse
Affiliation(s)
- Richie P. Goulding
- School of Health SciencesLiverpool Hope UniversityLiverpoolUnited Kingdom
| | - Denise M. Roche
- School of Health SciencesLiverpool Hope UniversityLiverpoolUnited Kingdom
| | - Simon Marwood
- School of Health SciencesLiverpool Hope UniversityLiverpoolUnited Kingdom
| |
Collapse
|
8
|
Goulding RP, Roche DM, Marwood S. Elevated baseline work rate slows pulmonary oxygen uptake kinetics and decreases critical power during upright cycle exercise. Physiol Rep 2018; 6:e13802. [PMID: 30039557 PMCID: PMC6056736 DOI: 10.14814/phy2.13802] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Abstract
Critical power is a fundamental parameter defining high-intensity exercise tolerance, and is related to the phase II time constant of pulmonary oxygen uptake kinetics (τV˙O2). Whether this relationship is causative is presently unclear. This study determined the impact of raised baseline work rate, which increases τV˙O2, on critical power during upright cycle exercise. Critical power was determined via four constant-power exercise tests to exhaustion in two conditions: (1) with exercise initiated from an unloaded cycling baseline (U→S), and (2) with exercise initiated from a baseline work rate of 90% of the gas exchange threshold (M→S). During these exercise transitions, τV˙O2 and the time constant of muscle deoxyhemoglobin kinetics (τ[HHb + Mb] ) (the latter via near-infrared spectroscopy) were determined. In M→S, critical power was lower (M→S = 203 ± 44 W vs. U→S = 213 ± 45 W, P = 0.011) and τV˙O2 was greater (M→S = 51 ± 14 sec vs. U→S = 34 ± 16 sec, P = 0.002) when compared with U→S. Additionally, τ[HHb + Mb] was greater in M→S compared with U→S (M→S = 28 ± 7 sec vs. U→S = 14 ± 7 sec, P = 0.007). The increase in τV˙O2 and concomitant reduction in critical power in M→S compared with U→S suggests a causal relationship between these two parameters. However, that τ[HHb + Mb] was greater in M→S exculpates reduced oxygen availability as being a confounding factor. These data therefore provide the first experimental evidence that τV˙O2 is an independent determinant of critical power. Keywords critical power, exercise tolerance, oxygen uptake kinetics, power-duration relationship, muscle deoxyhemoglobin kinetics, work-to-work exercise.
Collapse
Affiliation(s)
- Richie P. Goulding
- School of Health SciencesLiverpool Hope UniversityLiverpoolUnited Kingdom
| | - Denise M. Roche
- School of Health SciencesLiverpool Hope UniversityLiverpoolUnited Kingdom
| | - Simon Marwood
- School of Health SciencesLiverpool Hope UniversityLiverpoolUnited Kingdom
| |
Collapse
|
9
|
Goulding RP, Roche DM, Marwood S. Prior exercise speeds pulmonary oxygen uptake kinetics and increases critical power during supine but not upright cycling. Exp Physiol 2017. [PMID: 28627041 DOI: 10.1113/ep086304] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? Critical power (CP) represents the highest work rate for which a metabolic steady state is attainable. The physiological determinants of CP are unclear, but research suggests that CP might be related to the time constant of phase II oxygen uptake kinetics (τV̇O2). What is the main finding and its importance? We provide the first evidence that τV̇O2 is mechanistically related to CP. A reduction of τV̇O2 in the supine position was observed alongside a concomitant increase in CP. This effect may be contingent on measures of oxygen availability derived from near-infrared spectroscopy. Critical power (CP) is a fundamental parameter defining high-intensity exercise tolerance and is related to the time constant of phase II pulmonary oxygen uptake kinetics (τV̇O2). To test the hypothesis that this relationship is causal, we determined the impact of prior exercise ('priming') on CP and τV̇O2 in the upright and supine positions. Seventeen healthy men were assigned to either upright or supine exercise groups, whereby CP, τV̇O2 and muscle deoxyhaemoglobin kinetics (τ[HHb] ) were determined via constant-power tests to exhaustion at four work rates with (primed) and without (control) priming exercise at ∼31%Δ. During supine exercise, priming reduced τV̇O2 (control 54 ± 18 s versus primed 39 ± 11 s; P < 0.001), increased τ[HHb] (control 8 ± 4 s versus primed 12 ± 4 s; P = 0.003) and increased CP (control 177 ± 31 W versus primed 185 ± 30 W, P = 0.006) compared with control conditions. However, priming exercise had no effect on τV̇O2 (control 37 ± 12 s versus primed 35 ± 8 s; P = 0.82), τ[HHb] (control 10 ± 5 s versus primed 14 ± 10 s; P = 0.10) or CP (control 235 ± 42 W versus primed 232 ± 35 W; P = 0.57) during upright exercise. The concomitant reduction of τV̇O2 and increased CP following priming in the supine group, effects that were absent in the upright group, provide the first experimental evidence that τV̇O2 is mechanistically related to critical power. The increased τ[HHb+Mb] suggests that this effect was mediated, at least in part, by improved oxygen availability.
Collapse
Affiliation(s)
- Richie P Goulding
- School of Health Sciences, Liverpool Hope University, Hope Park Campus, Liverpool, Merseyside, L16 9JD, UK
| | - Denise M Roche
- School of Health Sciences, Liverpool Hope University, Hope Park Campus, Liverpool, Merseyside, L16 9JD, UK
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Hope Park Campus, Liverpool, Merseyside, L16 9JD, UK
| |
Collapse
|
10
|
Drescher U, Koschate J, Schiffer T, Schneider S, Hoffmann U. Analysis of heart rate and oxygen uptake kinetics studied by two different pseudo-random binary sequence work rate amplitudes. Respir Physiol Neurobiol 2017; 240:70-80. [DOI: 10.1016/j.resp.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 10/20/2022]
|
11
|
Keir DA, Robertson TC, Benson AP, Rossiter HB, Kowalchuk JM. The influence of metabolic and circulatory heterogeneity on the expression of pulmonary oxygen uptake kinetics in humans. Exp Physiol 2016; 101:176-92. [PMID: 26537768 DOI: 10.1113/ep085338] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/30/2015] [Indexed: 11/08/2022]
Abstract
We examined the relationship amongst baseline work rate (WR), phase II pulmonary oxygen uptake (V̇(O2p)) time constant (τV̇(O2p)) and functional gain (G(P)=ΔV̇(O2p)/ΔWR) during moderate-intensity exercise. Transitions were initiated from a constant or variable baseline WR. A validated circulatory model was used to examine the role of heterogeneity in muscle metabolism (V̇(O2m)) and blood flow (Q̇(m)) in determining V̇(O2p) kinetics. We hypothesized that τV̇(O2p) and G(P) would be invariant in the constant baseline condition but would increase linearly with increased baseline WR. Fourteen men completed three to five repetitions of ∆40 W step transitions initiated from 20, 40, 60, 80, 100 and 120 W on a cycle ergometer. The ∆40 W step transitions from 60, 80, 100 and 120 W were preceded by 6 min of 20 W cycling, from which the progressive ΔWR transitions (constant baseline condition) were examined. The V̇(O2p) was measured breath by breath using mass spectrometry and a volume turbine. For a given ΔWR, both τV̇(O2p) (22-35 s) and G(P) (8.7-10.5 ml min(-1) W(-1)) increased (P < 0.05) linearly as a function of baseline WR (20-120 W). The τV̇(O2p) was invariant (P < 0.05) in transitions initiated from 20 W, but G(P) increased with ΔWR (P < 0.05). Modelling the summed influence of multiple muscle compartments revealed that τV̇(O2p) could appear fast (24 s), and similar to in vivo measurements (22 ± 6 s), despite being derived from τV̇(O2p) values with a range of 15-40 s and τQ̇(m) with a range of 20-45 s, suggesting that within the moderate-intensity domain phase II V̇(O2p) kinetics are slowed dependent on the pretransition WR and are strongly influenced by muscle metabolic and circulatory heterogeneity.
Collapse
Affiliation(s)
- Daniel A Keir
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, ON, Canada.,School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - Taylor C Robertson
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, ON, Canada.,School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - Alan P Benson
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory & Critical Care Physiology & Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - John M Kowalchuk
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, ON, Canada.,School of Kinesiology, The University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
12
|
Grey TM, Spencer MD, Belfry GR, Kowalchuk JM, Paterson DH, Murias JM. Effects of age and long-term endurance training on VO2 kinetics. Med Sci Sports Exerc 2016; 47:289-98. [PMID: 24870579 DOI: 10.1249/mss.0000000000000398] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study examined the effects of age and training status on the pulmonary oxygen uptake (VO2p) kinetics of untrained and chronically trained young, middle-age, and older groups of men. METHODS Breath-by-breath VO2p and near-infrared spectroscopy-derived muscle deoxygenation ([HHb]) were monitored continuously in young (20-39 yr) trained (YT, n = 8) and untrained (YuT, n = 8), middle-age (40-59 yr) trained (MT, n = 9) and untrained (MuT, n = 9), and older (60-85 yr) trained (OT, n = 9) and untrained (OuT, n = 8) men. On-transient VO2p and [HHb] responses to cycling exercise at 80% of the estimated lactate threshold (three repeats) were modeled as monoexponential. Data were scaled to a relative percentage of the response (0%-100%), the signals time aligned, and the individual [HHb]-to-VO2p ratio was calculated as the average [HHb]/VO2 during the 20- to 120-s period after exercise onset. RESULTS The time constant for the adjustment of phase II pulmonary VO2 (τVO2p) was larger in OuT (42.0 ± 11.3 s) compared with that in YT (17.0 ± 7.5 s), MT (18.1 ± 5.3 s), OT (19.8 ± 5.4 s), YuT (25.7 ± 6.6 s), and MuT (24.4 ± 7.4 s) (P < 0.05). Similarly, the [HHb]/VO2 ratio was larger than 1.0 in OuT (1.30 ± 0.13, P < 0.05) and this value was larger than that observed in YT (1.01 ± 0.07), MT (1.04 ± 0.05), OT (1.04 ± 0.04), YuT (1.05 ± 0.03), and MuT (1.02 ± 0.09) (P < 0.05). CONCLUSIONS This study showed that the slower VO2kinetics typically observed in older individuals can be prevented by long-term endurance training interventions. Although the role of O2 delivery relative to peripheral use cannot be elucidated from the current measures, the absence of age-related slowing of VO2 kinetics seems to be partly related to a preservation of the matching of O2 delivery to O2 utilization in chronically trained older individuals, as suggested by the reduction in the [HHb]/VO2 ratio.
Collapse
Affiliation(s)
- Tyler M Grey
- 1Canadian Centre for Activity and Aging, University of Western Ontario, London, Ontario, CANADA; 2School of Kinesiology, University of Western Ontario, London, Ontario, CANADA; 3Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, CANADA; and 4Faculty of Kinesiology, University of Calgary, Calgary, Alberta, CANADA
| | | | | | | | | | | |
Collapse
|
13
|
Keir DA, Benson AP, Love LK, Robertson TC, Rossiter HB, Kowalchuk JM. Influence of muscle metabolic heterogeneity in determining the V̇o2p kinetic response to ramp-incremental exercise. J Appl Physiol (1985) 2015; 120:503-13. [PMID: 26679614 DOI: 10.1152/japplphysiol.00804.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022] Open
Abstract
The pulmonary O2 uptake (V̇o2p) response to ramp-incremental (RI) exercise increases linearly with work rate (WR) after an early exponential phase, implying that a single time constant (τ) and gain (G) describe the response. However, variability in τ and G of V̇o2p kinetics to different step increments in WR is documented. We hypothesized that the "linear" V̇o2p-WR relationship during RI exercise results from the conflation between WR-dependent changes in τ and G. Nine men performed three or four repeats of RI exercise (30 W/min) and two step-incremental protocols consisting of four 60-W increments beginning from 20 W or 50 W. During testing, breath-by-breath V̇o2p was measured by mass spectrometry and volume turbine. For each individual, the V̇o2p RI response was characterized with exponential functions containing either constant or variable τ and G values. A relationship between τ and G vs. WR was determined from the step-incremental protocols to derive the variable model parameters. τ and G increased from 21 ± 5 to 98 ± 20 s and from 8.7 ± 0.6 to 12.0 ± 1.9 ml·min(-1)·W(-1) for WRs of 20-230 W, respectively, and were best described by a second-order (τ) and a first-order (G) polynomial function of WR (lowest Akaike information criterion score). The sum of squared residuals was not different (P > 0.05) when the V̇o2p RI response was characterized with either the constant or variable models, indicating that they described the response equally well. Results suggest that τ and G increase progressively with WR during RI exercise. Importantly, these relationships may conflate to produce a linear V̇o2p-WR response, emphasizing the influence of metabolic heterogeneity in determining the apparent V̇o2p-WR relationship during RI exercise.
Collapse
Affiliation(s)
- Daniel A Keir
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Alan P Benson
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Lorenzo K Love
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Taylor C Robertson
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California; and School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - John M Kowalchuk
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, The University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada;
| |
Collapse
|
14
|
Francisco CDO, Beltrame T, Ferraresi C, Parizotto NA, Bagnato VS, Borghi Silva A, Benze BG, Porta A, Catai AM. Evaluation of acute effect of light-emitting diode (LED) phototherapy on muscle deoxygenation and pulmonary oxygen uptake kinetics in patients with diabetes mellitus: study protocol for a randomized controlled trial. Trials 2015; 16:572. [PMID: 26666374 PMCID: PMC4678643 DOI: 10.1186/s13063-015-1093-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/30/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (DM) is responsible for a significant reduction in the quality of life due to its negative impact on functional capacity. Cardiopulmonary fitness impairment in DM patients has been associated with limited tissue oxygenation. Phototherapy is widely utilized to treat several disorders due to expected light-tissue interaction. This type of therapy may help to improve muscular oxygenation, thereby increasing aerobic fitness and functional capacity. METHODS/DESIGN This study is a randomized, double-blind, placebo-controlled crossover trial approved by the Ethics Committee of the Federal University of São Carlos and registered at ClinicalTrials.gov. Four separate tests will be performed to evaluate the acute effect of phototherapy. All participants will receive both interventions in random order: light-emitting diode therapy (LEDT) and placebo, with a minimum 14-day interval between sessions (washout period). Immediately after the intervention, participants will perform moderate constant workload cycling exercise corresponding to 80 % of the pulmonary oxygen uptake [Formula: see text] during the gas exchange threshold (GET). LEDT will be administered with a multidiode cluster probe (50 GaAIA LEDs, 850 ηm, 75 mW each diode, and 3 J per point) before each exercise session. Pulmonary oxygen uptake, muscle oxygenation, heart rate, and arterial pressure will be measured using a computerized metabolic cart, a near-infrared spectrometer, an electrocardiogram, and a photoplethysmography system, respectively. DISCUSSION The main objective of this study is to evaluate the acute effects of muscular pre-conditioning using LED phototherapy on pulmonary oxygen uptake, muscle oxygenation, heart rate, and arterial pressure dynamics during dynamic moderate exercise. We hypothesize that phototherapy may be beneficial to optimize aerobic fitness in the DM population. Data will be published after the study is completed. TRIAL REGISTRATION Registered at ClinicalTrials.gov under trial number NCT01889784 (date of registration 5 June 2013).
Collapse
Affiliation(s)
- Cristina de Oliveira Francisco
- Department of Physiotherapy, Federal University of São Carlos, Rod. Washington Luís, km 235, 13.565-905, São Carlos, São Paulo, Brazil.
| | - Thomas Beltrame
- Faculty of Applied Health Sciences, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada.
| | - Cleber Ferraresi
- Wellman Center for Photomedicine, Massachusetts General Hospital - Harvard Medical School, 55 Fruit Street, MA 02114, Boston, Massachusetts, USA.
| | - Nivaldo Antonio Parizotto
- Department of Physiotherapy, Federal University of São Carlos, Rod. Washington Luís, km 235, 13.565-905, São Carlos, São Paulo, Brazil.
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University od São Paulo, Av. Trabalhador São-carlense, 400, 13566-590, São Carlos, São Paulo, Brazil.
| | - Audrey Borghi Silva
- Department of Physiotherapy, Federal University of São Carlos, Rod. Washington Luís, km 235, 13.565-905, São Carlos, São Paulo, Brazil.
| | - Benedito Galvão Benze
- Department of Statistics, Federal University of São Carlos, Rod. Washington Luís, km 235, 13.565-905, São Carlos, São Paulo, Brazil.
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy. .,Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS, Policlinico San Donato, Milan, Italy.
| | - Aparecida Maria Catai
- Department of Physiotherapy, Federal University of São Carlos, Rod. Washington Luís, km 235, 13.565-905, São Carlos, São Paulo, Brazil.
| |
Collapse
|
15
|
Wilcox SL, Broxterman RM, Barstow TJ. Constructing quasi-linear V̇O2 responses from nonlinear parameters. J Appl Physiol (1985) 2015; 120:121-9. [PMID: 26565018 DOI: 10.1152/japplphysiol.00507.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/08/2015] [Indexed: 11/22/2022] Open
Abstract
Oxygen uptake (V̇O2) kinetics have been shown to be governed by a nonlinear control system across a range of work rates. However, the linearity of the V̇O2 response to ramp incremental exercise would appear to be the result of a linear control system. This apparent contradiction could represent a balancing of changing V̇O2 kinetics parameter values across a range of work rates. To test this, six healthy men completed bouts of ramp incremental exercise at 15, 30, and 60 W/min (15R, 30R, 60R, respectively) and four bouts of an extended-step incremental exercise. V̇O2 parameter values were derived from the step exercise using two monoexponential models: one starting at time zero and encompassing the entire stage (MONO), and the other truncated to the first 5 min and allowing a time delay (5TD). The resulting parameter values were applied to an integrative model to estimate the ramp responses. As work rate increased, gain values increased (P < 0.001 for MONO and 5TD), as did mean response time (or time constant) values (MONO: P < 0.001; 5TD: P = 0.003). Up to maximal V̇O2 (V̇O(2 max)), the gains of the estimated ramp responses from both models were not different from the gains of the actual observed V̇O2 responses for 15R and 30R (15R: 11.3 ± 1.2, 11.7 ± 0.7, 10.9 ± 0.3; 30R: 10.5 ± 0.8, 11.0 ± 0.5, 10.7 ± 0.3 ml O2·min(-1)·W(-1), for actual, MONO, 5TD, respectively) but were significantly greater for 60R (8.7 ± 1.0, 9.9 ± 0.4, 10.3 ± 0.3 ml O2·min(-1)·W(-1) for actual, MONO, 5TD, respectively). Up to 80%V̇O(2 max) gain values were not significantly different for any ramp rate (P > 0.05 for all). We conclude that the apparent linearity of the V̇O2 response to ramp incremental exercise is consequent to a balancing of increasing time constant and gain parameter values.
Collapse
Affiliation(s)
- Samuel L Wilcox
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and
| | - Ryan M Broxterman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Thomas J Barstow
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and
| |
Collapse
|
16
|
Murias JM, Edwards JA, Paterson DH. Effects of short-term training and detraining on VO2 kinetics: Faster VO2 kinetics response after one training session. Scand J Med Sci Sports 2015; 26:620-9. [PMID: 25946038 DOI: 10.1111/sms.12487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 11/28/2022]
Abstract
This study examined the time course of short-term training and detraining-induced changes in oxygen uptake ( V ˙ O 2 ) kinetics. Twelve men (24 ± 3 years) were assigned to either a 50% or a 70% of V ˙ O 2 m a x training intensity (n = 6 per group). V ˙ O 2 was measured breath-by-breath. Changes in deoxygenated-hemoglobin concentration (Δ[HHb]) were measured by near-infrared spectroscopy. Moderate-intensity exercise on-transient V ˙ O 2 and Δ[HHb] were modeled with a mono-exponential and normalized (0-100% of response) and the [ H H b ] / V ˙ O 2 ratio was calculated. Similar changes in time constant of V ˙ O 2 ( t V ˙ O 2 ) were observed in both groups. The combined group mean for t V ˙ O 2 decreased ∼14% (32.3 to 27.9 s, P < 0.05) after one training session with a further ∼11% decrease (27.9 to 24.8 s, P < 0.05) following two training sessions. The t V ˙ O 2 p remained unchanged throughout the remaining of training and detraining. A significant "overshoot" in the [ H H b ] / V ˙ O 2 ratio was decreased (albeit not significant) after one training session, and abolished (P < 0.05) after the second one, with no overshoot observed thereafter. Speeding of V ˙ O 2 kinetics was remarkably quick with no further changes being observed with continuous training or during detraining. Improve matching of local O2 delivery to O2 utilization is a mechanism proposed to influence this response.
Collapse
Affiliation(s)
- J M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - J A Edwards
- Canadian Centre for Activity and Aging, Ontario, London, Canada.,School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - D H Paterson
- Canadian Centre for Activity and Aging, Ontario, London, Canada.,School of Kinesiology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
17
|
Koga S, Rossiter HB, Heinonen I, Musch TI, Poole DC. Dynamic heterogeneity of exercising muscle blood flow and O2 utilization. Med Sci Sports Exerc 2014; 46:860-76. [PMID: 24091989 DOI: 10.1249/mss.0000000000000178] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resolving the bases for different physiological functioning or exercise performance within a population is dependent on our understanding of control mechanisms. For example, when most young healthy individuals run or cycle at moderate intensities, oxygen uptake (VO2) kinetics are rapid and the amplitude of the VO2 response is not constrained by O2 delivery. For this to occur, muscle O2 delivery (i.e., blood flow × arterial O2 concentration) must be coordinated superbly with muscle O2 requirements (VO2), the efficacy of which may differ among muscles and distinct fiber types. When the O2 transport system succumbs to the predations of aging or disease (emphysema, heart failure, and type 2 diabetes), muscle O2 delivery and O2 delivery-VO2 matching and, therefore, muscle contractile function become impaired. This forces greater influence of the upstream O2 transport pathway on muscle aerobic energy production, and the O2 delivery-VO2 relationship(s) assumes increased importance. This review is the first of its kind to bring a broad range of available techniques, mostly state of the art, including computer modeling, radiolabeled microspheres, positron emission tomography, magnetic resonance imaging, near-infrared spectroscopy, and phosphorescence quenching to resolve the O2 delivery-VO2 relationships and inherent heterogeneities at the whole body, interorgan, muscular, intramuscular, and microvascular/myocyte levels. Emphasis is placed on the following: 1) intact humans and animals as these provide the platform essential for framing and interpreting subsequent investigations, 2) contemporary findings using novel technological approaches to elucidate O2 delivery-VO2 heterogeneities in humans, and 3) future directions for investigating how normal physiological responses can be explained by O2 delivery-VO2 heterogeneities and the impact of aging/disease on these processes.
Collapse
Affiliation(s)
- Shunsaku Koga
- 1Applied Physiology Laboratory, Kobe Design University, JAPAN; 2Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, and School of Biomedical Sciences, University of Leeds, Leeds, UNITED KINGDOM; 3Turku PET Centre and Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and Turku University Hospital, Turku, FINLAND; Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, THE NETHERLANDS; and 4Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS
| | | | | | | | | |
Collapse
|
18
|
Pulmonary O2 uptake kinetics during moderate-intensity exercise transitions initiated from low versus elevated metabolic rates: insights from manipulations in cadence. Eur J Appl Physiol 2014; 114:2655-65. [DOI: 10.1007/s00421-014-2984-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/16/2014] [Indexed: 10/24/2022]
|
19
|
Williams AM, Paterson DH, Kowalchuk JM. High-intensity interval training speeds the adjustment of pulmonary O2 uptake, but not muscle deoxygenation, during moderate-intensity exercise transitions initiated from low and elevated baseline metabolic rates. J Appl Physiol (1985) 2013; 114:1550-62. [PMID: 23519229 DOI: 10.1152/japplphysiol.00575.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During step transitions in work rate (WR) within the moderate-intensity (MOD) exercise domain, pulmonary O2 uptake (Vo2p) kinetics are slowed, and Vo2p gain (ΔVo2p/ΔWR) is greater when exercise is initiated from an elevated metabolic rate. High-intensity interval training (HIT) has been shown to speed Vo2p kinetics when step transitions to MOD exercise are initiated from light-intensity baseline metabolic rates. The effects of HIT on step transitions initiated from elevated metabolic rates have not been established. Therefore, this study investigated the effects of HIT on Vo2p kinetics during transitions from low and elevated metabolic rates, within the MOD domain. Eight young, untrained men completed 12 sessions of HIT (spanning 4 wk). HIT consisted of 8-12 1-min intervals, cycling at a WR corresponding to 110% of pretraining maximal WR (WRmax). Pre-, mid- and posttraining, subjects completed a ramp-incremental test to determine maximum O2 uptake, WRmax, and estimated lactate threshold (θL). Participants additionally completed double-step constant-load tests, consisting of step transitions from 20 W → Δ45% θL [lower step (LS)] and Δ45 → 90% θL [upper step (US)]. HIT led to increases in maximum O2 uptake (P < 0.05) and WRmax (P < 0.01), and τVo2p of both lower and upper MOD step transitions were reduced by ∼40% (LS: 24 s → 15 s; US: 45 s → 25 s) (P < 0.01). However, the time course of adjustment of local muscle deoxygenation was unchanged in the LS and US. These results suggest that speeding of Vo2p kinetics in both the LS and US may be due, in part, to an improved matching of muscle O2 utilization to microvascular O2 delivery within the working muscle following 12 sessions of HIT, although muscle metabolic adaptations cannot be discounted.
Collapse
Affiliation(s)
- Alexandra M Williams
- Canadian Centre for Activity and Aging and School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
20
|
Spencer MD, Gravelle BMR, Murias JM, Zerbini L, Pogliaghi S, Paterson DH. Duration of “Phase I” V̇o2p: a comparison of methods used in its estimation and the effects of varying moderate-intensity work rate. Am J Physiol Regul Integr Comp Physiol 2013; 304:R238-47. [DOI: 10.1152/ajpregu.00419.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to investigate whether absolute work rate (WR) affects Phase I pulmonary oxygen uptake (V̇o2p) duration during moderate-intensity (Mod) exercise and to compare two methods for estimating Phase I V̇o2p duration (PI-Dur). Fourteen males (24 ± 5 yr) each completed 4–8 repetitions of Mod transitions from 20 W to 50, 70, 90, 110, and 130 W. PI-Dur was identified by 1) a marked decrease in both respiratory exchange ratio and end-tidal partial pressure of O2 following exercise onset [i.e., visual inspection of three independent reviewers, and the average (Avg) of the two most similar values]; or 2) the intersection (time delay, TD) of the first and second components in a biexponential nonlinear regression of the entire V̇o2p response from exercise onset. PI-Dur did not differ among WRs ( P > 0.05), regardless of the estimation method used. No differences were detected between Avg and TD (time in s) at any of the five WRs (50 W, 21 ± 6 vs. 23 ± 10 s; 70 W, 23 ± 9 vs. 23 ± 7 s; 90 W, 24 ± 3 vs. 22 ± 5 s; 110 W, 23 ± 6 vs. 22 ± 6 s; 130 W, 21 ± 6 vs. 21 ± 7 s; P > 0.05 for Avg and TD, respectively). Broad limits of agreement within Bland-Altman plots revealed relatively weak agreement among reviewers for individual estimation of PI-Dur. A nonsignificant correlation coefficient ( r = 0.13) and broad limits of agreement suggest disparity between individual Avg and TD estimates of PI-Dur. The present data do not support a role for Mod WR in determining PI-Dur per se. Furthermore, this study illustrated a poor agreement of PI-Dur estimates derived from two different, but accepted methods.
Collapse
Affiliation(s)
- Matthew D. Spencer
- Canadian Centre for Activity and Aging,
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Braden M. R. Gravelle
- Canadian Centre for Activity and Aging,
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Juan M. Murias
- Canadian Centre for Activity and Aging,
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Livio Zerbini
- CeRiSM, Centre of Sport Health and Mountain, Universiy of Verona, Italy; and
- Dipartimento di Scienze Neurologiche, Neuropsicologiche, Morfologiche e del Movimento, Universiy of Verona, Italy
| | - Silvia Pogliaghi
- Dipartimento di Scienze Neurologiche, Neuropsicologiche, Morfologiche e del Movimento, Universiy of Verona, Italy
| | - Donald H. Paterson
- Canadian Centre for Activity and Aging,
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
21
|
Gravelle BMR, Murias JM, Spencer MD, Paterson DH, Kowalchuk JM. Adjustments of pulmonary O2 uptake and muscle deoxygenation during ramp incremental exercise and constant-load moderate-intensity exercise in young and older adults. J Appl Physiol (1985) 2012; 113:1466-75. [PMID: 22961268 DOI: 10.1152/japplphysiol.00884.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The matching of muscle O(2) delivery to O(2) utilization can be inferred from the adjustments in muscle deoxygenation (Δ[HHb]) and pulmonary O(2) uptake (Vo(2p)). This study examined the adjustments of Vo(2p) and Δ[HHb] during ramp incremental (RI) and constant-load (CL) exercise in adult males. Ten young adults (YA; age: 25 ± 5 yr) and nine older adults (OA; age: 70 ± 3 yr) completed two RI tests and six CL step transitions to a work rate (WR) corresponding to 1) 80% of the estimated lactate threshold (same relative WR) and 2) 50 W (same absolute WR). Vo(2p) was measured breath by breath, and Δ[HHb] of the vastus lateralis was measured using near-infrared spectroscopy. Δ[HHb]-WR profiles were normalized from baseline (0%) to peak Δ[HHb] (100%) and fit using a sigmoid function. The sigmoid slope (d) was greater (P < 0.05) in OA (0.027 ± 0.01%/W) compared with YA (0.017 ± 0.01%/W), and the c/d value (a value corresponding to 50% of the amplitude) was smaller (P < 0.05) for OA (133 ± 40 W) than for YA (195 ± 51 W). No age-related differences in the sigmoid parameters were reported when WR was expressed as a percentage of peak WR. Vo(2p) kinetics compared with Δ[HHb] kinetics for the 50-W transition were similar between YA and OA; however, Δ[HHb] kinetics during the transition to 80% of the lactate threshold were faster than Vo(2p) kinetics in both groups. The greater reliance on O(2) extraction displayed in OA during RI exercise suggests a lower O(2) delivery-to-O(2) utilization relationship at a given absolute WR compared with YA.
Collapse
Affiliation(s)
- Braden M R Gravelle
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
22
|
Effect of moderate-intensity work rate increment on phase II τVO₂, functional gain and Δ[HHb]. Eur J Appl Physiol 2012; 113:545-57. [PMID: 22829340 DOI: 10.1007/s00421-012-2460-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/07/2012] [Indexed: 10/27/2022]
Abstract
This study systematically examined the role of work rate (WR) increment on the kinetics of pulmonary oxygen uptake (VO(2p)) and near-infrared spectroscopy (NIRS)-derived muscle deoxygenation (Δ[HHb]) during moderate-intensity (Mod) cycling. Fourteen males (24 ± 5 years) each completed four to eight repetitions of Mod transitions from 20 to 50, 70, 90, 110 and 130 W. VO(2p) and Δ[HHb] responses were modelled as a mono-exponential; responses were then scaled to a relative % of the respective response (0-100 %). The Δ[HHb]/VO(2) ratio was calculated as the average Δ[HHb]/VO(2) during the 20-120 s period of the on-transient. When considered as a single group, neither the phase II VO(2p) time constant (τVO(2p); 27 ± 9, 26 ± 11, 25 ± 10, 27 ± 14, 29 ± 13 s for 50-130 W transitions, respectively) nor the Δ[HHb]/VO(2) ratio (1.04 ± 0.13, 1.10 ± 0.13, 1.08 ± 0.07, 1.09 ± 0.11, 1.09 ± 0.09, respectively) was affected by WR (p > 0.05); yet, the VO(2) functional gain (G; ΔVO(2)/ΔWR) increased with increasing WR transitions (8.6 ± 1.3, 9.1 ± 1.2, 9.5 ± 1.0, 9.5 ± 1.0, 9.9 ± 1.0 mL min(-1) W(-1); p < 0.05). When subjects were stratified into two groups [Fast (n = 6), τVO(2p130W) < 25 s < τVO(2p130W), Slower (n = 8)], a group by WR interaction was observed for τVO(2p). The increasing functional G persisted (p < 0.05) and did not differ between groups (p > 0.05). The Δ[HHb]/VO(2) ratio was smaller (p < 0.05) in the Fast than Slower group, but was unaffected by WR. In conclusion, the present study demonstrated (1) a non-uniform effect of Mod WR increment on τVO(2p); (2) that τVO(2p) in the Slower group is likely determined by an O(2) delivery limitation; and (3) that increasing Mod WR increments elicits an increased functional G, regardless of the τVO(2p) response.
Collapse
|
23
|
Bowen TS, Cannon DT, Murgatroyd SR, Birch KM, Witte KK, Rossiter HB. The intramuscular contribution to the slow oxygen uptake kinetics during exercise in chronic heart failure is related to the severity of the condition. J Appl Physiol (1985) 2011; 112:378-87. [PMID: 22033530 DOI: 10.1152/japplphysiol.00779.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism for slow pulmonary O(2) uptake (Vo(2)) kinetics in patients with chronic heart failure (CHF) is unclear but may be due to limitations in the intramuscular control of O(2) utilization or O(2) delivery. Recent evidence of a transient overshoot in microvascular deoxygenation supports the latter. Prior (or warm-up) exercise can increase O(2) delivery in healthy individuals. We therefore aimed to determine whether prior exercise could increase muscle oxygenation and speed Vo(2) kinetics during exercise in CHF. Fifteen men with CHF (New York Heart Association I-III) due to left ventricular systolic dysfunction performed two 6-min moderate-intensity exercise transitions (bouts 1 and 2, separated by 6 min of rest) from rest to 90% of lactate threshold on a cycle ergometer. Vo(2) was measured using a turbine and a mass spectrometer, and muscle tissue oxygenation index (TOI) was determined by near-infrared spectroscopy. Prior exercise increased resting TOI by 5.3 ± 2.4% (P = 0.001), attenuated the deoxygenation overshoot (-3.9 ± 3.6 vs. -2.0 ± 1.4%, P = 0.011), and speeded the Vo(2) time constant (τVo(2); 49 ± 19 vs. 41 ± 16 s, P = 0.003). Resting TOI was correlated to τVo(2) before (R(2) = 0.51, P = 0.014) and after (R(2) = 0.36, P = 0.051) warm-up exercise. However, the mean response time of TOI was speeded between bouts in half of the patients (26 ± 8 vs. 20 ± 8 s) and slowed in the remainder (32 ± 11 vs. 44 ± 16 s), the latter group having worse New York Heart Association scores (P = 0.042) and slower Vo(2) kinetics (P = 0.001). These data indicate that prior moderate-intensity exercise improves muscle oxygenation and speeds Vo(2) kinetics in CHF. The most severely limited patients, however, appear to have an intramuscular pathology that limits Vo(2) kinetics during moderate exercise.
Collapse
Affiliation(s)
- T Scott Bowen
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, UK
| | | | | | | | | | | |
Collapse
|
24
|
Bowen TS, Murgatroyd SR, Cannon DT, Cuff TJ, Lainey AF, Marjerrison AD, Spencer MD, Benson AP, Paterson DH, Kowalchuk JM, Rossiter HB. A raised metabolic rate slows pulmonary O2uptake kinetics on transition to moderate-intensity exercise in humans independently of work rate. Exp Physiol 2011; 96:1049-61. [DOI: 10.1113/expphysiol.2011.058321] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|