1
|
Hirabayashi R, Edama M, Takeda M, Yamada Y, Yokota H, Sekine C, Onishi H. Participant attention on the intervention target during repetitive passive movement improved spinal reciprocal inhibition enhancement and joint movement function. Eur J Med Res 2023; 28:428. [PMID: 37828546 PMCID: PMC10571356 DOI: 10.1186/s40001-023-01418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/30/2023] [Indexed: 10/14/2023] Open
Abstract
This study aimed to evaluate the effects of the participant's attention target during repetitive passive movement (RPM) intervention on reciprocal inhibition (RI) and joint movement function. Twenty healthy adults participated in two experiments involving four attention conditions [control (forward attention with no RPM), forward attention (during RPM), monitor attention (monitor counting task during RPM), ankle joint attention (ankle movement counting task during RPM)] during 10-min RPM interventions on the ankle joint. Counting tasks were included to ensure the participant's attention remained on the target during the intervention. In Experiment 1, RI was measured before, immediately after, and 5, 10, 15, 20, and 30 min after the RPM intervention. In Experiment 2, we evaluated ankle joint movement function at the same time points before and after RPM intervention. The maximum ankle dorsiflexion movement (from 30° plantar flexion to 10° dorsiflexion) was measured, reflecting RI. In Experiment 1, the RI function reciprocal Ia inhibition was enhanced for 10 min after RPM under all attention conditions (excluding the control condition. D1 inhibition was enhanced for 20 min after RPM in the forward and monitor attention conditions and 30 min after RPM in the ankle joint attention condition. In Experiment 2, the joint movement function decreased under the forward and monitor attention conditions but improved under the ankle joint attention condition. This study is the first to demonstrate that the participant's attention target affected the intervention effect of the RI enhancement method, which has implications for improving the intervention effect of rehabilitation.
Collapse
Affiliation(s)
- Ryo Hirabayashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan.
| | - Mutsuaki Edama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| | - Mai Takeda
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| | - Yuki Yamada
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| | - Chie Sekine
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, , Niigata-shi, Niigata, 950-3198, Japan
| |
Collapse
|
2
|
Hirabayashi R, Kojima S, Edama M, Onishi H. Activation of the Supplementary Motor Areas Enhances Spinal Reciprocal Inhibition in Healthy Individuals. Brain Sci 2020; 10:brainsci10090587. [PMID: 32847117 PMCID: PMC7565304 DOI: 10.3390/brainsci10090587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 02/02/2023] Open
Abstract
The supplementary motor area (SMA) may modulate spinal reciprocal inhibition (RI) because the descending input from the SMA is coupled to interneurons in the spinal cord via the reticulospinal tract. Our study aimed to verify whether the anodal transcranial direct current stimulation (anodal-tDCS) of the SMA enhances RI. Two tDCS conditions were used: the anodal stimulation (anodal-tDCS) and sham stimulation (sham-tDCS) conditions. To measure RI, there were two conditions: one with the test stimulus (alone) and the other with the conditioning-test stimulation intervals (CTIs), including 2 ms and 20 ms. RI was calculated at multiple time points: before the tDCS intervention (Pre); at 5 (Int 5) and 10 min; and immediately after (Post 0); and at 5, 10 (Post 10), 15, and 20 min after the intervention. In anodal-tDCS, the amplitude values of H-reflex were significantly reduced for a CTI of 2 ms at Int 5 to Post 0, and a CTI of 20 ms at Int 5 to Pot 10 compared with Pre. Stimulation of the SMA with anodal-tDCS for 15 min activated inhibitory interneurons in RIs by descending input from the reticulospinal tract via cortico–reticulospinal projections. The results showed that 15 min of anodal-tDCS in the SMA enhanced and sustained RI in healthy individuals.
Collapse
|
3
|
Hirabayashi R, Edama M, Kojima S, Miyaguchi S, Onishi H. Enhancement of spinal reciprocal inhibition depends on the movement speed and range of repetitive passive movement. Eur J Neurosci 2020; 52:3929-3943. [DOI: 10.1111/ejn.14855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Ryo Hirabayashi
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Mutsuaki Edama
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences Niigata University of Health and Welfare Niigata Japan
| |
Collapse
|
4
|
Grosprêtre S, Lebon F, Papaxanthis C, Martin A. Spinal plasticity with motor imagery practice. J Physiol 2018; 597:921-934. [PMID: 30417924 DOI: 10.1113/jp276694] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/09/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS While a consensus has now been reached on the effect of motor imagery (MI) - the mental simulation of an action - on motor cortical areas, less is known about its impact on spinal structures. The current study, using H-reflex conditioning paradigms, examined the effect of a 20 min MI practice on several spinal mechanisms of the plantar flexor muscles. We observed modulations of spinal presynaptic circuitry while imagining, which was even more pronounced following an acute session of MI practice. We suggested that the small cortical output generated during MI may reach specific spinal circuits and that repeating MI may increase the sensitivity of the spinal cord to its effects. The short-term plasticity induced by MI practice may include spinal network modulation in addition to cortical reorganization. ABSTRACT Kinesthetic motor imagery (MI) is the mental simulation of a movement with its sensory consequences but without its concomitant execution. While the effect of MI practice on cortical areas is well known, its influence on spinal circuitry remains unclear. Here, we assessed plastic changes in spinal structures following an acute MI practice. Thirteen young healthy participants accomplished two experimental sessions: a 20 min MI training consisting of four blocks of 25 imagined maximal isometric plantar flexions, and a 20 min rest (control session). The level of spinal presynaptic inhibition was assessed by conditioning the triceps surae spinal H-reflex with two methods: (i) the stimulation of the common peroneal nerve that induced D1 presynaptic inhibition (HPSI response), and (ii) the stimulation of the femoral nerve that induced heteronymous Ia facilitation (HFAC response). We then compared the effects of MI on unconditioned (HTEST ) and conditioned (HPSI and HFAC ) responses before, immediately after and 10 min after the 20 min session. After resting for 20 min, no changes were observed on the recorded parameters. After MI practice, the amplitude of rest HTEST was unchanged, while HPSI and HFAC significantly increased, showing a reduction of presynaptic inhibition with no impact on the afferent-motoneuronal synapse. The current results revealed the acute effect of MI practice on baseline spinal presynaptic inhibition, increasing the sensitivity of the spinal circuitry to MI. These findings will help in understanding the mechanisms of neural plasticity following chronic practice.
Collapse
Affiliation(s)
- Sidney Grosprêtre
- EA4660-C3S Laboratory - Culture, Sport, Health and Society, University of Bourgogne Franche-Comté, Besançon, France
| | - Florent Lebon
- CAPS, U1093 INSERM, Université de Bourgogne Franche-Comté, Facultés des Sciences du Sport, F-21078, Dijon, France
| | - Charalambos Papaxanthis
- CAPS, U1093 INSERM, Université de Bourgogne Franche-Comté, Facultés des Sciences du Sport, F-21078, Dijon, France
| | - Alain Martin
- CAPS, U1093 INSERM, Université de Bourgogne Franche-Comté, Facultés des Sciences du Sport, F-21078, Dijon, France
| |
Collapse
|
5
|
Eftekhar A, Norton JJS, McDonough CM, Wolpaw JR. Retraining Reflexes: Clinical Translation of Spinal Reflex Operant Conditioning. Neurotherapeutics 2018; 15:669-683. [PMID: 29987761 PMCID: PMC6095771 DOI: 10.1007/s13311-018-0643-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurological disorders, such as spinal cord injury, stroke, traumatic brain injury, cerebral palsy, and multiple sclerosis cause motor impairments that are a huge burden at the individual, family, and societal levels. Spinal reflex abnormalities contribute to these impairments. Spinal reflex measurements play important roles in characterizing and monitoring neurological disorders and their associated motor impairments, such as spasticity, which affects nearly half of those with neurological disorders. Spinal reflexes can also serve as therapeutic targets themselves. Operant conditioning protocols can target beneficial plasticity to key reflex pathways; they can thereby trigger wider plasticity that improves impaired motor skills, such as locomotion. These protocols may complement standard therapies such as locomotor training and enhance functional recovery. This paper reviews the value of spinal reflexes and the therapeutic promise of spinal reflex operant conditioning protocols; it also considers the complex process of translating this promise into clinical reality.
Collapse
Affiliation(s)
- Amir Eftekhar
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | - James J S Norton
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Christine M McDonough
- School of Health and Rehabilitation Services, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Neurology, Stratton VA Medical Center, Albany, NY, USA
| |
Collapse
|
6
|
Nuzzo JL, Barry BK, Gandevia SC, Taylor JL. Acute Strength Training Increases Responses to Stimulation of Corticospinal Axons. Med Sci Sports Exerc 2016; 48:139-50. [PMID: 26258855 DOI: 10.1249/mss.0000000000000733] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Acute strength training of forearm muscles increases resting twitch forces from motor cortex stimulation. It is unclear if such effects are spinal in origin and if they also occur with training of larger muscles. With the use of subcortical stimulation of corticospinal axons, the current study examined if one session of strength training of the elbow flexor muscles leads to spinal cord changes and if the type of training is important. METHODS In experiment 1, 10 subjects completed ballistic isometric training, ballistic concentric training, and no training (control) on separate days. In experiment 2, 13 subjects completed ballistic isometric training and slow-ramp isometric training. Before and after training, transcranial magnetic stimulation over the contralateral motor cortex elicited motor-evoked potentials (MEPs) in the resting biceps brachii, and electrical stimulation of corticospinal tract axons at the cervicomedullary junction elicited cervicomedullary motor-evoked potentials (CMEPs). Motor-evoked potential and CMEP twitch forces were also measured. RESULTS In experiment 1, CMEPs and CMEP twitch forces were significantly facilitated after ballistic isometric training compared to control. In experiment 2, MEPs, MEP twitch forces, CMEPs, and CMEP twitch forces increased for 15 to 25 min after ballistic and slow-ramp isometric training. CONCLUSION Via processes within the spinal cord, one session of strength training of the elbow flexors increases net output from motoneurons projecting to the trained muscles. Likely mechanisms include increased efficacy of corticospinal-motoneuronal synapses or increased motoneuron excitability. However, the rate of force generation during training is not important for inducing these changes. A concomitant increase in motor cortical excitability is likely. These short-term changes may represent initial neural adaptations to strength training.
Collapse
Affiliation(s)
- James L Nuzzo
- 1Neuroscience Research Australia, Randwick, NSW, AUSTRALIA; 2School of Medical Sciences, University of New South Wales, Kensington, NSW, AUSTRALIA; 3Prince of Wales Clinical School, University of New South Wales, Kensington, NSW, AUSTRALIA
| | | | | | | |
Collapse
|
7
|
Piazza S, Gómez-Soriano J, Bravo-Esteban E, Torricelli D, Avila-Martin G, Galan-Arriero I, Pons JL, Taylor J. Maintenance of cutaneomuscular neuronal excitability after leg-cycling predicts lower limb muscle strength after incomplete spinal cord injury. Clin Neurophysiol 2016; 127:2402-9. [PMID: 27178859 DOI: 10.1016/j.clinph.2016.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/15/2016] [Accepted: 03/04/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Controlled leg-cycling modulates H-reflex activity after spinal cord injury (SCI). Preserved cutaneomuscular reflex activity is also essential for recovery of residual motor function after SCI. Here the effect of a single leg-cycling session was assessed on cutaneomuscular-conditioned H-reflex excitability in relation to residual lower limb muscle function after incomplete SCI (iSCI). METHODS Modulation of Soleus H-reflex activity was evaluated following ipsilateral plantar electrical stimulation applied at 25-100ms inter-stimulus intervals (ISI's), before and after leg-cycling in ten healthy individuals and nine subjects with iSCI. RESULTS Leg-cycling in healthy subjects increased cutaneomuscular-conditioned H-reflex excitability between 25 and 75ms ISI (p<0.001), compared to a small loss of excitability at 75ms ISI after iSCI (p<0.05). In addition, change in cutaneomuscular-conditioned H-reflex excitability at 50ms and 75ms ISI in subjects with iSCI after leg-cycling predicted lower ankle joint hypertonia and higher Triceps Surae muscle strength, respectively. CONCLUSION Leg-cycling modulates cutaneomuscular-conditioned spinal neuronal excitability in healthy subjects and individuals with iSCI, and is related to residual lower limb muscle function. SIGNIFICANCE Cutaneomuscular-conditioned H reflex modulation could be used as a surrogate biomarker of both central neuroplasticity and lower limb muscle function, and could benchmark lower-limb rehabilitation programs in subjects with iSCI.
Collapse
Affiliation(s)
- Stefano Piazza
- Neural Rehabilitation Group, Cajal Institute, CSIC, Madrid 28002, Spain.
| | - Julio Gómez-Soriano
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo 45072, Spain; Toledo Physiotherapy Research Group (GIFTO), Nursing and Physiotherapy School, Castilla La Mancha University, Toledo 45072, Spain.
| | - Elisabeth Bravo-Esteban
- Neural Rehabilitation Group, Cajal Institute, CSIC, Madrid 28002, Spain; Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo 45072, Spain; iPhysio Research Group, San Jorge University Zaragoza, Spain.
| | - Diego Torricelli
- Neural Rehabilitation Group, Cajal Institute, CSIC, Madrid 28002, Spain.
| | - Gerardo Avila-Martin
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo 45072, Spain.
| | - Iriana Galan-Arriero
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo 45072, Spain.
| | - José Luis Pons
- Neural Rehabilitation Group, Cajal Institute, CSIC, Madrid 28002, Spain.
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo 45072, Spain; Stoke Mandeville Spinal Research, National Spinal Injuries Centre, Aylesbury HP218AL, UK; Harris Manchester College, University of Oxford, Oxford OX1 3TD, UK.
| |
Collapse
|
8
|
Kubota S, Hirano M, Koizume Y, Tanabe S, Funase K. Changes in the Spinal Neural Circuits are Dependent on the Movement Speed of the Visuomotor Task. Front Hum Neurosci 2015; 9:667. [PMID: 26696873 PMCID: PMC4678204 DOI: 10.3389/fnhum.2015.00667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/23/2015] [Indexed: 12/02/2022] Open
Abstract
Previous studies have shown that spinal neural circuits are modulated by motor skill training. However, the effects of task movement speed on changes in spinal neural circuits have not been clarified. The aim of this research was to investigate whether spinal neural circuits were affected by task movement speed. Thirty-eight healthy subjects participated in this study. In experiment 1, the effects of task movement speed on the spinal neural circuits were examined. Eighteen subjects performed a visuomotor task involving ankle muscle slow (nine subjects) or fast (nine subjects) movement speed. Another nine subjects performed a non-visuomotor task (controls) in fast movement speed. The motor task training lasted for 20 min. The amounts of D1 inhibition and reciprocal Ia inhibition were measured using H-relfex condition-test paradigm and recorded before, and at 5, 15, and 30 min after the training session. In experiment 2, using transcranial magnetic stimulation (TMS), the effects of corticospinal descending inputs on the presynaptic inhibitory pathway were examined before and after performing either a visuomotor (eight subjects) or a control task (eight subjects). All measurements were taken under resting conditions. The amount of D1 inhibition increased after the visuomotor task irrespective of movement speed (P < 0.01). The amount of reciprocal Ia inhibition increased with fast movement speed conditioning (P < 0.01), but was unchanged by slow movement speed conditioning. These changes lasted up to 15 min in D1 inhibition and 5 min in reciprocal Ia inhibition after the training session. The control task did not induce changes in D1 inhibition and reciprocal Ia inhibition. The TMS conditioned inhibitory effects of presynaptic inhibitory pathways decreased following visuomotor tasks (P < 0.01). The size of test H-reflex was almost the same size throughout experiments. The results suggest that supraspinal descending inputs for controlling joint movement are responsible for changes in the spinal neural circuits, and that task movement speed is one of the critical factors for inducing plastic changes in reciprocal Ia inhibition.
Collapse
Affiliation(s)
- Shinji Kubota
- Human Motor Control Laboratory, Department of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University Hiroshima, Japan ; Research Fellow of the Japan Society for the Promotion of Science Tokyo, Japan
| | - Masato Hirano
- Human Motor Control Laboratory, Department of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University Hiroshima, Japan ; Research Fellow of the Japan Society for the Promotion of Science Tokyo, Japan
| | - Yoshiki Koizume
- Human Motor Control Laboratory, Department of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University Hiroshima, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University Aichi, Japan
| | - Kozo Funase
- Human Motor Control Laboratory, Department of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University Hiroshima, Japan
| |
Collapse
|
9
|
Knikou M, Mummidisetty CK. Locomotor training improves premotoneuronal control after chronic spinal cord injury. J Neurophysiol 2014; 111:2264-75. [PMID: 24598526 DOI: 10.1152/jn.00871.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spinal inhibition is significantly reduced after spinal cord injury (SCI) in humans. In this work, we examined if locomotor training can improve spinal inhibition exerted at a presynaptic level. Sixteen people with chronic SCI received an average of 45 training sessions, 5 days/wk, 1 h/day. The soleus H-reflex depression in response to low-frequency stimulation, presynaptic inhibition of soleus Ia afferent terminals following stimulation of the common peroneal nerve, and bilateral EMG recovery patterns were assessed before and after locomotor training. The soleus H reflexes evoked at 1.0, 0.33, 0.20, 0.14, and 0.11 Hz were normalized to the H reflex evoked at 0.09 Hz. Conditioned H reflexes were normalized to the associated unconditioned H reflex evoked with subjects seated, while during stepping both H reflexes were normalized to the maximal M wave evoked after the test H reflex at each bin of the step cycle. Locomotor training potentiated homosynaptic depression in all participants regardless the type of the SCI. Presynaptic facilitation of soleus Ia afferents remained unaltered in motor complete SCI patients. In motor incomplete SCIs, locomotor training either reduced presynaptic facilitation or replaced presynaptic facilitation with presynaptic inhibition at rest. During stepping, presynaptic inhibition was modulated in a phase-dependent manner. Locomotor training changed the amplitude of locomotor EMG excitability, promoted intralimb and interlimb coordination, and altered cocontraction between knee and ankle antagonistic muscles differently in the more impaired leg compared with the less impaired leg. The results provide strong evidence that locomotor training improves premotoneuronal control after SCI in humans at rest and during walking.
Collapse
Affiliation(s)
- Maria Knikou
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg Medical School, Chicago, Illinois; Graduate Center/The City University of New York, New York, New York; and Department of Physical Therapy, College of Staten Island, Staten Island, New York
| | | |
Collapse
|
10
|
Einhorn J, Li A, Hazan R, Knikou M. Cervicothoracic multisegmental transpinal evoked potentials in humans. PLoS One 2013; 8:e76940. [PMID: 24282479 PMCID: PMC3838209 DOI: 10.1371/journal.pone.0076940] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/30/2013] [Indexed: 01/01/2023] Open
Abstract
The objectives of this study were to establish the neurophysiological properties of the transpinal evoked potentials (TEPs) following transcutaneous electric stimulation of the spine (tsESS) over the cervicothoracic region, changes in the amplitude of the TEPs preceded by median nerve stimulation at group I threshold, and the effects of tsESS on the flexor carpi radialis (FCR) H-reflex in thirteen healthy human subjects while seated. Two re-usable self-adhering electrodes, connected to function as one electrode (cathode), were placed bilaterally on the clavicles. A re-usable electrode (anode) was placed on the cervicothoracic region covering from Cervical 4 – Thoracic 2 and held under constant pressure throughout the experiment. TEPs were recorded bilaterally from major arm muscles with subjects seated at stimulation frequencies of 1.0, 0.5, 0.33, 0.2, 0.125, and 0.1 Hz, and upon double tsESS pulses delivered at an inter-stimulus interval of 40 ms. TEPs from the arm muscles were also recorded following median nerve stimulation at the conditioning-test (C-T) intervals of 2, 3, 5, 8, and 10 ms. The FCR H-reflex was evoked and recorded according to conventional methods following double median nerve pulses at 40 ms, and was also conditioned by tsESS at C-T intervals that ranged from −10 to +50 ms. The arm TEPs amplitude was not decreased at low-stimulation frequencies and upon double tsESS pulses in all but one subject. Ipsilateral and contralateral arm TEPs were facilitated following ipsilateral median nerve stimulation, while the FCR H-reflex was depressed by double pulses and following tsESS at short and long C-T intervals. Non-invasive transpinal stimulation can be used as a therapeutic modality to decrease spinal reflex hyper-excitability in neurological disorders and when combined with peripheral nerve stimulation to potentiate spinal output.
Collapse
Affiliation(s)
- Jonathan Einhorn
- The Graduate Center, City University of New York, New York, New York, United States of America
| | - Alan Li
- The Graduate Center, City University of New York, New York, New York, United States of America
| | - Royi Hazan
- The Graduate Center, City University of New York, New York, New York, United States of America
| | - Maria Knikou
- The Graduate Center, City University of New York, New York, New York, United States of America
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
11
|
Knikou M. Neurophysiological characterization of transpinal evoked potentials in human leg muscles. Bioelectromagnetics 2013; 34:630-40. [PMID: 24115026 DOI: 10.1002/bem.21808] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/27/2013] [Indexed: 12/18/2022]
Abstract
The objectives of this study were to characterize the neurophysiological properties of the compound muscle action potentials (CMAPs) evoked by transcutaneous electric stimulation of the spine (tsESS), and the effects of tsESS on the soleus H-reflex in seated and standing healthy human subjects. In seated semi-prone subjects with the trunk semi-flexed, two re-usable self-adhering electrodes (cathode), connected to act as one electrode, were placed bilaterally on the iliac crests. A re-usable pregelled electrode (anode) was placed on the thoracolumbar region at thoracic 10-lumbar 1 and held under constant pressure throughout the experiment. CMAPs were recorded bilaterally from ankle muscles with subjects seated semi-prone at 1.0, 0.3, 0.2, 0.125, and 0.1 Hz following tsESS. The soleus H-reflex, evoked by posterior tibial nerve stimulation via conventional methods, was measured following tsESS at inter-stimulus intervals (ISIs) that ranged from -100 to 100 ms with the subjects seated semi-prone and during standing. The tsESS-induced CMAPs were not decreased at low stimulation frequencies, and the soleus H-reflex excitability was profoundly decreased by tsESS at ISIs that ranged from -5 to 20 ms with the subjects seated semi-prone and during standing. CMAPs induced by tsESS may be utilized to assess spinal-to-muscle conduction time while bypassing spinal motoneuron excitability and tsESS can be used as a modality to decrease spinal reflex hyper-excitability in neurological disorders.
Collapse
Affiliation(s)
- Maria Knikou
- Graduate Center, City University of New York, New York, New York
| |
Collapse
|