1
|
Ishikawa N, Asahina M, Umeda S. Reactivity of observers' facial skin blood flow depending on others' facial expressions and blushing. Front Psychol 2023; 14:1259928. [PMID: 38130969 PMCID: PMC10733524 DOI: 10.3389/fpsyg.2023.1259928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Facial skin blood flow (SkBF) has attracted attention as an autonomic indicator because it influences facial colour, which informs others of emotional states, and facial temperature related to social anxiety. Previous studies have examined the facial SkBF in people experiencing emotions; however, facial SkBF changes in the observers of emotions are poorly understood. Our study clarified facial SkBF changes related to observing others' emotions by comparing the changes with other physiological indices. Thirty healthy participants (24 females; mean age: 22.17) observed six types of facial expressions (neutral, angry, and embarrassed expressions with and without facial blushing) and rated the emotional intensity of the other person. We measured their facial SkBF, finger SkBF, and cardiac RR interval as they made their observations. Facial SkBF generally decreased in relation to observing emotional faces (angry and embarrassed faces) and significantly decreased for angry expressions with blushing. None of the participants noticed blushing of facial stimuli. For the RR interval and finger SkBF, there was no variation depending on the observed facial expressions, although there was a general increase related to observation. These results indicated that facial SkBF is sensitive and reactive to emotional faces-especially angry faces with blushing- compared with other autonomic indices. The facial SkBF changes were not related to either RR interval changes or the intensity rating, suggesting that facial SkBF changes may be caused by vasoconstriction and have potential functions for our emotions. The decrease in facial SkBF may have a role in calming observers by preventing them from adopting the same emotional state as a person with intense anger. These findings clarify daily facial SkBF fluctuations and their relationship with our emotional processing in interpersonal situations.
Collapse
Affiliation(s)
- Naoki Ishikawa
- Graduate School of Human Relations, Keio University, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masato Asahina
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Neurology, Kanazawa Medical University, Ishikawa, Japan
| | - Satoshi Umeda
- Department of Neurology, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
2
|
Takahashi N, Kiyota N, Kunikata H, Yamazaki M, Nishimura T, Shiga Y, Aoyagi H, Shidomi M, Tsuda T, Ohtsuka T, Tomida T, Nakazawa T. Vasoreactivity of the optic nerve head, nailfold, and facial skin in response to cold provocation in normal-tension glaucoma patients. BMC Ophthalmol 2023; 23:316. [PMID: 37438715 DOI: 10.1186/s12886-023-03059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The dysfunction of optic nerve head (ONH) hemodynamics has been suggested to be involved in the pathogenesis of normal-tension glaucoma (NTG). The aim of this study was to compare vasoreactivity in the ONH, nailfold, and facial skin in response to cold-water provocation in NTG patients and healthy controls. METHODS We performed cold-water provocation in 14 eyes of 14 NTG patients and 15 eyes of 15 age-matched control subjects. Laser speckle flowgraphy-derived tissue-area mean blur rate (MT), skin blood flowmetry-derived pulse wave amplitude (PA), nailfold capillaroscopy-derived nailfold capillary diameter, and other clinical parameters were recorded at baseline and 4 and 6 min after the cold stimulus. We compared changes (as percentages) in these variables in the NTG and control subjects with a linear mixed-effects model and evaluated correlations between these changes with Spearman's rank correlation coefficient. RESULTS The interaction term between the NTG group (reference, control group) and the 4-min protocol step (reference, baseline) significantly affected the changes in MT, nailfold capillary diameter and PA (β = -9.51%, P = 0.017, β = -20.32%, P = 0.002; β = + 18.06%, P = 0.017, respectively). The change in MT was positively correlated with the change in nailfold capillary diameter, and negatively correlated with the change in PA (r = 0.39, P = 0.036; r = -0.40, P = 0.031, respectively). CONCLUSION NTG patients showed abnormal vasoconstriction in the ONH and nailfold and vasodilation in the facial skin in response to cold-water provocation.
Collapse
Affiliation(s)
- Nana Takahashi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Naoki Kiyota
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Mai Yamazaki
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Seiryo Eye Clinic, Miyagi, Japan
| | - Takayuki Nishimura
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hisae Aoyagi
- Department of Health Science Research Planning Division, Rohto Pharmaceutical Co., Ltd, Osaka, Japan
| | - Miwako Shidomi
- Department of Health Science Research Planning Division, Rohto Pharmaceutical Co., Ltd, Osaka, Japan
| | - Tomohiro Tsuda
- Department of Internal Medicine and Food Development Division, Rohto Pharmaceutical Co., Ltd, Osaka, Japan
| | - Toshihiko Ohtsuka
- Department of Advanced Development, Casio Computer Co., Ltd, Tokyo, Japan
| | - Takahiro Tomida
- Department of Advanced Development, Casio Computer Co., Ltd, Tokyo, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan.
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan.
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| |
Collapse
|
3
|
Stress estimation by the prefrontal cortex asymmetry: Study on fNIRS signals. J Affect Disord 2023; 325:151-157. [PMID: 36627057 DOI: 10.1016/j.jad.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND Functional near-infrared spectroscopy (fNIRS) is a non-invasive technique frequently used to measure the brain hemodynamic activity in applications to evaluate affective disorders and stress. Using two wavelengths of light, it is possible to monitor relative changes in the concentrations of oxyhemoglobin and deoxyhemoglobin. Besides, the spatial asymmetry in the prefrontal cortex activity has been correlated with the brain response to stressful situations. METHODS We measured prefrontal cortex activity with a NIRS multi-distance device during a baseline period, under stressful conditions (e.g., social stress), and after a recovery phase. We calculated a laterality index for the contaminated brain signal and for the brain signal where we removed the influence of extracerebral hemodynamic activity by using a short channel. RESULTS There was a significant right lateralization during stress when using the contaminated signals, consistent with previous investigations, but this significant difference disappeared using the corrected signals. Indeed, exploration of the susceptibility to contamination of the different channels showed non-homogeneous spatial patterns, which would hint at detection of stress from extracerebral activity from the forehead. LIMITATIONS There was no recovery phase between the social and the arithmetic stressor, a cumulative effect was not considered. CONCLUSIONS Extracerebral hemodynamic activity provided insights into the pertinence of short channel corrections in fNIRS studies dealing with emotions. It is important to consider this issue in clinical applications including modern monitoring systems based on fNIRS technique to assess emotional states in affective disorders.
Collapse
|
4
|
The sensory and affective components of pain differentially shape pupillary dilatation during cold pressor tests. Auton Neurosci 2023; 246:103084. [PMID: 36934567 DOI: 10.1016/j.autneu.2023.103084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Nociceptive and affective stimuli increase reflex sympathetic outflow to the pupils. To investigate effects of stimulus intensity, unpleasantness and distress on these pupillary reflexes, and to assess their stability, healthy participants immersed their hand in ice-water three times (for 20, 40 and 60 s; or 60, 40 and 20 s; or three times for 60 s) (N = 21 in each condition). Each ice-water immersion was preceded by a 90 s warm water immersion. To evaluate phasic sympathetic influences on pupil diameter, pupillary re-dilatation after 1 s of bright light was assessed during the last 10 s of each immersion. By-and-large, pain ratings and pupil diameter were greater during longer than shorter ice-water immersions, and ice-water immersions facilitated pupillary re-dilatation after the flash stimulus. However, mean pupil diameter during ice- and warm water immersions, minor ipsilateral amplification of the pupillary response, and ratings of pain unpleasantness and distress decreased across the experiment. Together, these findings suggest that nociceptive input increased sympathetic pupillary tone and amplified phasic increases in sympathetic activity after exposure to light. However, tonic sympathetic influences on pupil diameter and lateralization decreased across repeated immersions, possibly as novel or threatening aspects of the experience declined. Pupillary nociceptive and affective reflexes involve the locus coeruleus, an integral component of neural circuits that heighten cortical arousal and regulate pain. As these reflexes appear to reflect different aspects of sensory and affective processing, their combined assessment might increase the sensitivity and specificity of tests of locus coeruleus function in patients with suspected deficits.
Collapse
|
5
|
Kurazumi T, Kato T, Konishi T, Ogawa Y, Iwasaki KI. Alteration in facial skin blood flow during acute exposure to -10 and -30° head-down tilt in young human volunteers. Exp Physiol 2022; 107:1432-1439. [PMID: 36183235 DOI: 10.1113/ep090734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Facial skin blood flow (SBF) might increase during head-down tilt (HDT). However, the effect of HDT on facial SBF remains controversial. In addition, the changes in facial SBF in the cheek (cheek SBF) during a steeper angle of HDT (>-12° HDT) have not been investigated. What is the main finding and its importance? This study showed that cheek SBF decreased during -30° HDT, alongside increased vascular resistance. Furthermore, vascular impedance was suggested to be elevated, accompanied by an increased hydrostatic pressure gradient caused by HDT. Constriction of the facial skin vascular bed and congestion of venous return owing to the steep angle of HDT can decrease facial SBF. ABSTRACT Head-down tilt (HDT) has been used to simulate microgravity in ground-based studies and clinical procedures including the Trendelenburg position or in certain surgical operations. Facial skin blood flow (SBF) might be altered by HDT, but the effect of a steeper angle of HDT (>-12° HDT) on facial SBF remains unclear. We examined alterations in facial SBF in the cheek (cheek SBF) using two different angles (-10 and -30°) of HDT and lying horizontal (0°) in a supine position for 10 min, to test the hypothesis that cheek SBF would increase with a steeper angle of HDT. Cheek SBF was measured continuously by laser Doppler flowmetry. Cheek skin vascular resistance and the pulsatility index of cheek SBF were calculated to assess the circulatory effects on the facial skin vascular bed in the cheek. Cheek SBF decreased significantly during -30° HDT. In addition, the resistance in cheek SBF increased significantly during -30° HDT. The pulsatility index of cheek SBF increased during both -10 and -30° HDT. Contrary to our hypothesis, cheek SBF decreased during -30° HDT along with increased skin vascular resistance. Vascular impedance, estimated by the pulsatility index in the cheek SBF, was elevated during both -10 and -30° HDT, and elevated vascular impedance would be related to increased hydrostatic pressure induced by HDT. Skin vascular constriction and venous return congestion would be induced by -30° HDT, leading to deceased cheek SBF. The present study suggested that facial SBF in the cheek decreased during acute exposure to a steep angle of HDT (∼-30° HDT).
Collapse
Affiliation(s)
- Takuya Kurazumi
- Department of Social Medicine, Division of Hygiene, Nihon University School of Medicine, Tokyo, Japan.,Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tomokazu Kato
- Department of Social Medicine, Division of Hygiene, Nihon University School of Medicine, Tokyo, Japan
| | - Toru Konishi
- Department of Social Medicine, Division of Hygiene, Nihon University School of Medicine, Tokyo, Japan.,Air Staff Office, Japan Air Self-Defense Force, Ministry of Defense, Tokyo, Japan
| | - Yojiro Ogawa
- Department of Social Medicine, Division of Hygiene, Nihon University School of Medicine, Tokyo, Japan
| | - Ken-Ichi Iwasaki
- Department of Social Medicine, Division of Hygiene, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Kiddle A, Barham H, Wegerif S, Petronzio C. Dynamic region of interest selection in remote photoplethysmography: proof of principle (Preprint). JMIR Form Res 2022; 7:e44575. [PMID: 36995742 PMCID: PMC10131655 DOI: 10.2196/44575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Remote photoplethysmography (rPPG) can record vital signs (VSs) by detecting subtle changes in the light reflected from the skin. Lifelight (Xim Ltd) is a novel software being developed as a medical device for the contactless measurement of VSs using rPPG via integral cameras on smart devices. Research to date has focused on extracting the pulsatile VS from the raw signal, which can be influenced by factors such as ambient light, skin thickness, facial movements, and skin tone. OBJECTIVE This preliminary proof-of-concept study outlines a dynamic approach to rPPG signal processing wherein green channel signals from the most relevant areas of the face (the midface, comprising the cheeks, nose, and top of the lip) are optimized for each subject using tiling and aggregation (T&A) algorithms. METHODS High-resolution 60-second videos were recorded during the VISION-MD study. The midface was divided into 62 tiles of 20×20 pixels, and the signals from multiple tiles were evaluated using bespoke algorithms through weighting according to signal-to-noise ratio in the frequency domain (SNR-F) score or segmentation. Midface signals before and after T&A were categorized by a trained observer blinded to the data processing as 0 (high quality, suitable for algorithm training), 1 (suitable for algorithm testing), or 2 (inadequate quality). On secondary analysis, observer categories were compared for signals predicted to improve categories following T&A based on the SNR-F score. Observer ratings and SNR-F scores were also compared before and after T&A for Fitzpatrick skin tones 5 and 6, wherein rPPG is hampered by light absorption by melanin. RESULTS The analysis used 4310 videos recorded from 1315 participants. Category 2 and 1 signals had lower mean SNR-F scores than category 0 signals. T&A improved the mean SNR-F score using all algorithms. Depending on the algorithm, 18% (763/4212) to 31% (1306/4212) of signals improved by at least one category, with up to 10% (438/4212) improving into category 0, and 67% (2834/4212) to 79% (3337/4212) remaining in the same category. Importantly, 9% (396/4212) to 21% (875/4212) improved from category 2 (not usable) into category 1. All algorithms showed improvements. No more than 3% (137/4212) of signals were assigned to a lower-quality category following T&A. On secondary analysis, 62% of signals (32/52) were recategorized, as predicted from the SNR-F score. T&A improved SNR-F scores in darker skin tones; 41% of signals (151/369) improved from category 2 to 1 and 12% (44/369) from category 1 to 0. CONCLUSIONS The T&A approach to dynamic region of interest selection improved signal quality, including in dark skin tones. The method was verified by comparison with a trained observer's rating. T&A could overcome factors that compromise whole-face rPPG. This method's performance in estimating VS is currently being assessed. TRIAL REGISTRATION ClinicalTrials.gov NCT04763746; https://clinicaltrials.gov/ct2/show/NCT04763746.
Collapse
|
7
|
Fu G, Zhou X, Wu SJ, Nikoo H, Panesar D, Zheng PP, Oatley K, Lee K. Discrete emotions discovered by contactless measurement of facial blood flows. Cogn Emot 2022; 36:1429-1439. [PMID: 36121056 DOI: 10.1080/02699931.2022.2124960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ABSTRACTExperiential and behavioural aspects of emotions can be measured readily but developing a contactless measure of emotions' physiological aspects has been a major challenge. We hypothesised that different emotion-evoking films can produce distinctive facial blood flow patterns that can serve as physiological signatures of discrete emotions. To test this hypothesis, we created a new Transdermal Optical Imaging system that uses a conventional video camera to capture facial blood flows in a contactless manner. Using this and deep machine learning, we analysed videos of the faces of people as they viewed film clips that elicited joy, sadness, disgust, fear or a neutral state. We found that each of these elicited a distinct blood flow pattern in the facial epidermis, and that Transdermal Optical Imaging is an effective contactless and inexpensive tool to the reveal physiological correlates of discrete emotions.
Collapse
Affiliation(s)
- Genyue Fu
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Xinyue Zhou
- School of Management, Zhejiang University, Hangzhou, People's Republic of China
| | - Si Jia Wu
- Department of Psychology, Hangzhou Normal University, Hangzhou, China.,Department of Applied Psychology and Human Development, University of Toronto, Toronto, Canada
| | - Hassan Nikoo
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Canada
| | - Darshan Panesar
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Canada
| | - Paul Pu Zheng
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Canada
| | - Keith Oatley
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Canada
| | - Kang Lee
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Zhang Y, Chen S, Ruan Y, Lin J, Li C, Li C, Xu S, Yan Z, Liu X, Miao P, Jia J. The Facial Skin Blood Flow Change of Stroke Patients with Facial Paralysis after Peripheral Magnetic Stimulation: A Pilot Study. Brain Sci 2022; 12:brainsci12101271. [PMID: 36291205 PMCID: PMC9599644 DOI: 10.3390/brainsci12101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Facial paralysis (FP) is a common symptom after stroke, which influences the quality of life and prognosis of patients. Recently, peripheral magnetic stimulation (PMS) shows potential effects on peripheral and central nervous system damage. However, the effect of PMS on FP after stroke is still unclear. Methods: In this study, we applied PMS on the facial nerve of nine stroke patients with FP. At the same time, laser speckle contrast imaging (LSCI) was used to explore the facial skin blood flow (SkBF) in 19 healthy subjects and nine stroke patients with FP before and after the PMS intervention. The whole face was divided into 14 regions to compare the SkBF in different sub-areas. Results: In baseline SkBF, we found that there were no significant differences in the SkBF between the left and right faces in the healthy subjects. However, there was a significant difference in the SkBF between the affected and unaffected faces in Region 7 (Chin area, p = 0.046). In the following five minutes after the PMS intervention (Pre_0–5 min), the SkBF increased in Region 5 (p = 0.014) and Region 7 (p = 0.046) and there was an increasing trend in Region 3 (p = 0.088) and Region 6 (p = 0.069). In the five to ten minutes after the intervention (Post_6–10 min), the SkBF increased in Region 5 (p = 0.009), Region 6 (p = 0.021) and Region 7 (p = 0.023) and there was an increasing trend in Region 3 (p = 0.080) and left and right whole face (p = 0.051). Conclusions: These pilot results indicate that PMS intervention could increase facial skin blood flow in stroke patients with FP. A further randomized controlled trial can be performed to explore its possible clinical efficacy.
Collapse
Affiliation(s)
- Yongli Zhang
- School of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Shugeng Chen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yinglu Ruan
- Department of Rehabilitation Medicine, Shanghai Jing’an District Central Hospital, Shanghai 200040, China
| | - Jiaying Lin
- School of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chengdong Li
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
| | - Chong Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Shuo Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhijie Yan
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiangyun Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Peng Miao
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
| | - Jie Jia
- School of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Rehabilitation Medicine, Shanghai Jing’an District Central Hospital, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- National Regional Medical Center, Fuzhou 350200, China
- Correspondence:
| |
Collapse
|
9
|
Mahmoudzadeh M, Wallois F, Tir M, Krystkowiak P, Lefranc M. Cortical hemodynamic mapping of subthalamic nucleus deep brain stimulation in Parkinsonian patients, using high-density functional near-infrared spectroscopy. PLoS One 2021; 16:e0245188. [PMID: 33493171 PMCID: PMC7833160 DOI: 10.1371/journal.pone.0245188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 12/23/2020] [Indexed: 12/02/2022] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for idiopathic Parkinson's disease. Despite recent progress, the mechanisms responsible for the technique's effectiveness have yet to be fully elucidated. The purpose of the present study was to gain new insights into the interactions between STN-DBS and cortical network activity. We therefore combined high-resolution functional near-infrared spectroscopy with low-resolution electroencephalography in seven Parkinsonian patients on STN-DBS, and measured cortical haemodynamic changes at rest and during hand movement in the presence and absence of stimulation (the ON-stim and OFF-stim conditions, respectively) in the off-drug condition. The relative changes in oxyhaemoglobin [HbO], deoxyhaemoglobin [HbR], and total haemoglobin [HbT] levels were analyzed continuously. At rest, the [HbO], [HbR], and [HbT] over the bilateral sensorimotor (SM), premotor (PM) and dorsolateral prefrontal (DLPF) cortices decreased steadily throughout the duration of stimulation, relative to the OFF-stim condition. During hand movement in the OFF-stim condition, [HbO] increased and [HbR] decreased concomitantly over the contralateral SM cortex (as a result of neurovascular coupling), and [HbO], [HbR], and [HbT] increased concomitantly in the dorsolateral prefrontal cortex (DLPFC)-suggesting an increase in blood volume in this brain area. During hand movement with STN-DBS, the increase in [HbO] was over the contralateral SM and PM cortices was significantly lower than in the OFF-stim condition, as was the decrease in [HbO] and [HbT] in the DLPFC. Our results indicate that STN-DBS is associated with a reduction in blood volume over the SM, PM and DLPF cortices, regardless of whether or not the patient is performing a task. This particular effect on cortical networks might explain not only STN-DBS's clinical effectiveness but also some of the associated adverse effects.
Collapse
Affiliation(s)
| | | | - Mélissa Tir
- Neurosurgery Department, CHU Amiens-Picardie, Amiens, France
| | - Pierre Krystkowiak
- Neurology Department, CHU Amiens-Picardie, Amiens, France
- Laboratory of Functional Neurosciences, University of Picardie Jules Verne, Amiens, France
| | - Michel Lefranc
- Neurosurgery Department, CHU Amiens-Picardie, Amiens, France
| |
Collapse
|
10
|
Irvine LE, Azizzadeh B, Kerulos JL, Nassif PS. Outcomes of a Treatment Protocol for Compromised Nasal Skin in Primary and Revision Open Rhinoplasty. Facial Plast Surg Aesthet Med 2020; 23:118-125. [PMID: 33054380 DOI: 10.1089/fpsam.2020.0181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Importance: This is the first study to review the incidence of nasal skin compromise after open rhinoplasty surgery and outcomes of treatment. Objectives: To determine whether risk of skin compromise after open rhinoplasty surgery can be predicted and whether our treatment protocol led to acceptable outcomes. Design, Setting, and Participants: This is a retrospective chart review of the senior author's private patients. In total, 384 rhinoplasty cases were reviewed and all cases with signs of vascular compromise requiring treatment were analyzed. Main Outcomes and Measures: Descriptive statistics were used to evaluate characteristics of patients who developed intra- and postoperative skin compromise, and unpaired two-tailed t-test was used to compare the characteristics of patients with and without compromised nasal skin when possible. Overall satisfaction results and complications in the skin compromise group were reported. Results: A total of 384 open rhinoplasties were performed by the senior author between October 1, 2015, and December 31, 2018. Of them, 109 were primary rhinoplasties and 275 were revision rhinoplasties. Of the 384 rhinoplasties, 27 (7%) had skin compromise leading to unplanned postoperative treatment. Two of the patients in the skin compromise group underwent primary surgeries (7.4%) and 25 underwent revision procedures (92.6%). Advanced age (p < 0.0001), prior or current history of smoking (p = 0.027), and greater number of prior rhinoplasty surgeries (p = 0.0002) were significantly correlated with risk of skin compromise. The average time to last follow-up in the skin compromise group was 392 days (range 15-1057 days). At their last follow-up, 12 patients had complete resolution of all signs of nasal skin compromise with no further treatment required (44.4%). The revision rate for patients experiencing skin compromise was 22.2%. One patient underwent revision surgery directly related to a complication of skin compromise and one is considering revision directly related to skin breakdown. Conclusions and Relevance: The rate of skin compromise after open rhinoplasty is low. Older patients and patients with more prior rhinoplasty surgeries may be at increased risk. Prompt treatment of compromised nasal blood supply after rhinoplasty surgery can salvage skin in most patients.
Collapse
Affiliation(s)
| | - Babak Azizzadeh
- Division of Head and Neck Surgery, David Geffen School of Medicine at the University of California, Los Angeles, California, USA.,Center for Advanced Facial Plastic Surgery, Beverly Hills, California, USA
| | - Julia L Kerulos
- Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Illinois at Chicago-College of Medicine, Chicago, Illinois, USA
| | - Paul S Nassif
- Nassif MD, Inc., and Associates, Beverly Hills, California, USA.,Department of Head and Neck Surgery, Keck School of Medicine at the University of Southern California, Los angeles, California, USA
| |
Collapse
|
11
|
Shirbani F, Hui N, Tan I, Butlin M, Avolio AP. Effect of Ambient Lighting and Skin Tone on Estimation of Heart Rate and Pulse Transit Time from Video Plethysmography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2642-2645. [PMID: 33018549 DOI: 10.1109/embc44109.2020.9176731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Video-based photoplethysmography (vPPG) enables remote and contactless detection of the peripheral pulse of blood flow. This provides a potential mean to extract heart rate (HR) and pulse transit time (PTT) for the purpose of remote health monitoring. The accuracy of average HR and PTT extracted from a two-minute vPPG recording has been investigated at six different lighting conditions among participants with a range of Fitzpatrick skin scores. 12 healthy volunteers (6 females, 27 ± 6 years) were recruited. The video, electrocardiogram and finger PPG were acquired from immobile resting subjects. The vPPG signals from red, green and blue channels, and a combination of those were investigated. The vPPG signals were extracted from two regions of interest (ROIs): one on the forehead and one on the palm of the left hand. The estimated HR error (HR-error) was significantly lower for vPPG from green channels in both ROIs (ROI1 [p<0.001], ROI2 [p<0.05]). The signal from ROI1 demonstrated lower HR-error than ROI2 (p<0.001). HR-error from the darkest lighting conditions (Lumen 1 and 2) were significantly higher than the others (p<0.05). Furthermore, HR-error showed a positive correlation with skin tone scores in every lighting condition. However, at brighter lighting intensity, HR-error was independent of the skin tone score. PTT calculated from vPPG (vPTT) were compared between the 6 levels of lightings and the result was significantly different (p<0.05). In darker lighting conditions, the vPTT increased. Pulse arrival time measured from PPG (PAT-PPG) was calculated, and a positive correlation was found between the ratio of vPTT/PAT-PPG and skin tone score at six different lightings. However, this dependency decreases in brighter lighting intensity. These results suggest that HR-error and the ratio of vPTT/PAT increase with darker skins and at darker backgrounds. However, at brighter lighting conditions, the skin tone score is not a confounder of vPPG accuracy.
Collapse
|
12
|
Hayashi N, Kashima H, Ikemura T. Facial Blood Flow Responses to Dynamic Exercise. Int J Sports Med 2020; 42:241-245. [PMID: 32947640 DOI: 10.1055/a-1244-9870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We reported previously that a static handgrip exercise evoked regional differences in the facial blood flow. The present study examined whether regional differences in facial blood flow are also evoked during dynamic exercise. Facial blood flow was measured by laser speckle flowgraphy during 15 min of cycling exercise at heart rates of 120 bpm, 140 bpm and 160 bpm in 12 subjects. The facial vascular conductance index was calculated from the blood flow and mean arterial pressure. The regional blood flow and conductance index values were determined in the forehead, eyelid, nose, cheek, ear and lip. One-way ANOVA and Tukey's post-hoc test were used to examine effects of exercise intensity and target regions. The blood flow and conductance index in skin areas increased significantly with the exercise intensity. The blood flow and conductance index in the lip increased significantly at 120 bpm and 140 bpm compared to the control, while the values in the lip at 160 bpm did not change from the control values. These results suggest that the blood flow in facial skin areas, not in the lip, responds similarly to dynamic exercise, in contrast to the responses to static exercise.
Collapse
Affiliation(s)
- Naoyuki Hayashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Meguro-ku
| | - Hideaki Kashima
- School of Health Sciences, Prefectural University of Hiroshima, Hiroshima
| | - Tsukasa Ikemura
- Institute for Liberal Arts, Tokyo Institute of Technology, Meguro-ku.,College of Liberal Arts and Sciences, Kitasato University, Sagamihara
| |
Collapse
|
13
|
Chen W, Chen Z, Xiang Y, Deng C, Zhang H, Wang J. Simultaneous influence of sympathetic autonomic stress on Schlemm's canal, intraocular pressure and ocular circulation. Sci Rep 2019; 9:20060. [PMID: 31882796 PMCID: PMC6934569 DOI: 10.1038/s41598-019-56562-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/12/2019] [Indexed: 11/09/2022] Open
Abstract
This study aimed to investigate changes in Schlemm's canal, intraocular pressure and ocular blood circulation following the activation of the sympathetic nervous system. Twenty healthy volunteers were enrolled in this study. The cold pressor test (CPT) was adopted. Cross-sectional area of Schlemm's canal (SCAR), superficial and deep retinal vessel densities (s-RVD;d-RVD), pupil diameter (PD), intraocular pressure (IOP), mean ocular perfusion pressure (MOPP) and heart rate variability (HRV) were measured at three time-points: baseline (T0) and 5 min (T1) and 10 min (T2) after the CPT. After cold stimulation, LF/HF index (the ratio of low frenquency and high frenquency) increased significantly. IOP decreased from 16.9 ± 1.9 mmHg at baseline to 16.4 ± 2.7 mmHg at T1 and to 15.2 ± 2.7 mmHg at T2. The nasal cross-sectional area of SCAR (SCAR-n) increased from 6283.9 ± 2696.2 µm2 at baseline to 8392.9 ± 3258.7 µm2 at T1 and to 10422.0 ± 3643.8 µm2 at T2. The temporal cross-sectional area of SCAR (SCAR-t) increased from 6414.5 ± 2218.7 µm2 at baseline to 8610.8 ± 2317.1 µm2 at T1 and to 11544.0 ± 4129.2 µm2 at T2. The expansion of Schlemm's canal was observed after the CPT might be caused by sympathetic nerve stimulation, subsequently leading to decreased IOP.
Collapse
Affiliation(s)
- Wei Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqi Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xiang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohua Deng
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Miyaji A, Hayashi S, Hayashi N. Regional differences in facial skin blood flow responses to thermal stimulation. Eur J Appl Physiol 2019; 119:1195-1201. [PMID: 30820660 DOI: 10.1007/s00421-019-04109-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE The facial skin blood flow (SkBF) shows regional differences in the responses to a given stimulation. The facial SkBFs, especially in the eyelid and nose exhibit unique response to physiological and psychological stimuli, but the mechanisms inducing those regional differences remain unclear. To investigate whether the regional differences in the local control of vasomotion in facial vessels correspond to the regional differences in facial SkBF response, we monitored the relative change of facial SkBF to regional thermal stimulation. We hypothesized that heat stimulation dilates the cutaneous vessels in the eyelid, while cold stimulation constricts those in the nose, which was based on previous findings METHODS: A thermal stimulator was used to apply temperature increase (from 20 to 40 °C at 2 °C/min) and decrease (from 40 to 20 °C at 2°C/min) in a randomized order to the right eyelid, nose, right cheek, and forehead of 14 healthy young males. The facial SkBF was measured for 10 s using laser-speckle flowgraphy when temperatures of 20 °C, 30 °C, and 40 °C had been applied for 30 s in both trials. RESULTS The SkBF in the eyelid did not change significantly during any thermal stimulation, and the nasal SkBF did not decrease significantly during cold stimulation. The SkBFs in the cheek and forehead increased significantly with the applied temperature. CONCLUSIONS These findings indicate that a large regional variation exists in facial skin blood flow response to local heating or cooling and that the regional variation did not correspond to the unique SkBF responses in the previous studies.
Collapse
Affiliation(s)
- Akane Miyaji
- Division of Medical Nutrition, Faculty of Healthcare, Tokyo Healthcare University, Setagaya, Tokyo, 154-8568, Japan.,Institute for Liberal Arts, Tokyo Institute of Technology, Meguro, Tokyo, 152-8852, Japan
| | - Shohei Hayashi
- Graduate School of Decision Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo, 152-8852, Japan
| | - Naoyuki Hayashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Meguro, Tokyo, 152-8852, Japan. .,Graduate School of Decision Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo, 152-8852, Japan.
| |
Collapse
|
15
|
Detecting Happiness Using Hyperspectral Imaging Technology. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2019; 2019:1965789. [PMID: 30766598 PMCID: PMC6350538 DOI: 10.1155/2019/1965789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 11/17/2022]
Abstract
Hyperspectral imaging (HSI) technology can be used to detect human emotions based on the power of material discrimination from their faces. In this paper, HSI is used to remotely sense and distinguish blood chromophores in facial tissues and acquire an evaluation indicator (tissue oxygen saturation, StO2) using an optical absorption model. This study explored facial analysis while people were showing spontaneous expressions of happiness during social interaction. Happiness, as a psychological emotion, has been shown to be strongly linked to other activities such as physiological reaction and facial expression. Moreover, facial expression as a communicative motor behavior likely arises from musculoskeletal anatomy, neuromuscular activity, and individual personality. This paper quantified the neuromotor movements of tissues surrounding some regions of interest (ROIs) on smiling happily. Next, we selected six regions—the forehead, eye, nose, cheek, mouth, and chin—according to a facial action coding system (FACS). Nineteen segments were subsequently partitioned from the above ROIs. The affective data (StO2) of 23 young adults were acquired by HSI while the participants expressed emotions (calm or happy), and these were used to compare the significant differences in the variations of StO2 between the different ROIs through repeated measures analysis of variance. Results demonstrate that happiness causes different distributions in the variations of StO2 for the above ROIs; these are explained in depth in the article. This study establishes that facial tissue oxygen saturation is a valid and reliable physiological indicator of happiness and merits further research.
Collapse
|
16
|
Liu J, Luo H, Zheng PP, Wu SJ, Lee K. Transdermal optical imaging revealed different spatiotemporal patterns of facial cardiovascular activities. Sci Rep 2018; 8:10588. [PMID: 30002447 PMCID: PMC6043515 DOI: 10.1038/s41598-018-28804-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/28/2018] [Indexed: 11/26/2022] Open
Abstract
Human cardiovascular activities are important indicators of a variety of physiological and psychological activities in human neuroscience research. The present proof-of-concept study aimed to reveal the spatiotemporal patterns of cardiovascular activities from the dynamic changes in hemoglobin concentrations in the face. We first recorded the dynamics of facial transdermal blood flow using a digital video camera and the Electrocardiography (ECG) signals using an ECG system simultaneously. Then we decomposed the video imaging data extracted from different sub-regions of a face into independent components using group independent component analysis (group ICA). Finally, the ICA components that included cardiovascular activities were identified by correlating their magnitude spectrum to those obtained from the ECG. We found that cardiovascular activities were associated with five independent components reflecting different spatiotemporal dynamics of facial blood flow changes. The strongest strengths of these ICA components were observed in the bilateral forehead, the left chin, and the left cheek, respectively. Our findings suggest that the cardiovascular activities presented different dynamic properties within different facial sub-regions, respectively. More broadly, the present findings point to the potential of the transdermal optical imaging technology as a new neuroscience methodology to study human physiology and psychology, noninvasively and remotely in a contactless manner.
Collapse
Affiliation(s)
- Jiangang Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China.
| | - Hong Luo
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China.
| | - Paul Pu Zheng
- Dr. Eric Jackman Institute of Child Study, University of Toronto, Toronto, Ontario, M5R 2X2, Canada.
| | - Si Jia Wu
- Dr. Eric Jackman Institute of Child Study, University of Toronto, Toronto, Ontario, M5R 2X2, Canada
| | - Kang Lee
- Dr. Eric Jackman Institute of Child Study, University of Toronto, Toronto, Ontario, M5R 2X2, Canada
| |
Collapse
|
17
|
Matsukawa K, Endo K, Ishii K, Ito M, Liang N. Facial skin blood flow responses during exposures to emotionally charged movies. J Physiol Sci 2018; 68:175-190. [PMID: 28110456 PMCID: PMC10717512 DOI: 10.1007/s12576-017-0522-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/10/2017] [Indexed: 11/28/2022]
Abstract
The changes in regional facial skin blood flow and vascular conductance have been assessed for the first time with noninvasive two-dimensional laser speckle flowmetry during audiovisually elicited emotional challenges for 2 min (comedy, landscape, and horror movie) in 12 subjects. Limb skin blood flow and vascular conductance and systemic cardiovascular variables were simultaneously measured. The extents of pleasantness and consciousness for each emotional stimulus were estimated by the subjective rating from -5 (the most unpleasant; the most unconscious) to +5 (the most pleasant; the most conscious). Facial skin blood flow and vascular conductance, especially in the lips, decreased during viewing of comedy and horror movies, whereas they did not change during viewing of a landscape movie. The decreases in facial skin blood flow and vascular conductance were the greatest with the comedy movie. The changes in lip, cheek, and chin skin blood flow negatively correlated (P < 0.05) with the subjective ratings of pleasantness and consciousness. The changes in lip skin vascular conductance negatively correlated (P < 0.05) with the subjective rating of pleasantness, while the changes in infraorbital, subnasal, and chin skin vascular conductance negatively correlated (P < 0.05) with the subjective rating of consciousness. However, none of the changes in limb skin blood flow and vascular conductance and systemic hemodynamics correlated with the subjective ratings. The mental arithmetic task did not alter facial and limb skin blood flows, although the task influenced systemic cardiovascular variables. These findings suggest that the more emotional status becomes pleasant or conscious, the more neurally mediated vasoconstriction may occur in facial skin blood vessels.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Kana Endo
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Momoka Ito
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nan Liang
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
18
|
Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy. Neuroimage 2016; 143:91-105. [PMID: 27591921 PMCID: PMC5139986 DOI: 10.1016/j.neuroimage.2016.08.058] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/29/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
Abstract
Haemodynamics-based neuroimaging is widely used to study brain function. Regional blood flow changes characteristic of neurovascular coupling provide an important marker of neuronal activation. However, changes in systemic physiological parameters such as blood pressure and concentration of CO2 can also affect regional blood flow and may confound haemodynamics-based neuroimaging. Measurements with functional near-infrared spectroscopy (fNIRS) may additionally be confounded by blood flow and oxygenation changes in extracerebral tissue layers. Here we investigate these confounds using an extended version of an existing computational model of cerebral physiology, ‘BrainSignals’. Our results show that confounding from systemic physiological factors is able to produce misleading haemodynamic responses in both positive and negative directions. By applying the model to data from previous fNIRS studies, we demonstrate that such potentially deceptive responses can indeed occur in at least some experimental scenarios. It is therefore important to record the major potential confounders in the course of fNIRS experiments. Our model may then allow the observed behaviour to be attributed among the potential causes and hence reduce identification errors. Confounding of fNIRS haemoglobin signals is simulated using a computational model. Model is extended to simulate scalp haemodynamics. Changes in blood pressure and CO2 can mimic and mask functional activation. Experimental recording of systemic factors is recommended to aid interpretation.
Collapse
|
19
|
Matsubayashi T, Cho KH, Jang HS, Murakami G, Yamamoto M, Abe SI. Significant Differences in Sympathetic Nerve Fiber Density Among the Facial Skin Nerves: A Histologic Study Using Human Cadaveric Specimens. Anat Rec (Hoboken) 2016; 299:1054-9. [PMID: 27072367 DOI: 10.1002/ar.23347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/03/2016] [Accepted: 02/22/2016] [Indexed: 12/24/2022]
Abstract
Sympathetic nerve fibers in the skin nerves are connected with vasomotor, thermoregulatory, sensory input modulatory, and immunologic events; however, to our knowledge, no histological information is available for skin nerves in the human face. Using specimens from 17 donated cadavers (mean age, 86 years), we measured a sectional area of tyrosine hydroxylase (TH)-positive fibers in (1) the frontal nerve (V1), (2) the infraorbital nerve (V2), (3) the mental nerve (V3), (4) the greater auricular nerve (C2), (5) the auriculotemporal nerve (ATN), and (6) the zygomatic branch of the facial nerve (VII). The V1, V2, and V3 were obtained at their entrances to the subcutaneous tissue from the bony canal or notch. The V1, C2, ATN, and/or VII usually contained abundant TH-positive fibers (almost 3%-8% of the nerve sectional area), whereas the V2 and V3 consistently carried few TH-positive fibers (<1%). The difference between these two groups was quite significant (P < 0.001). Thus, from the superior cervical ganglion, the sympathetic nerve fibers reached the forehead through the frontal nerve trunk, whereas artery-bounded fibers came to the cheek, nose, and mouth. The sympathetic palsy caused by trigeminal nerve involvement is mainly characterized by the symptoms seen in the distribution of the ophthalmic division of the trigeminal nerve, such as in Horner's syndrome. It suggests that the forehead and the other facial areas are representative parts of those different sympathetic innervations that could be useful for evaluating the sympathetic function of the face in various diseases. Anat Rec, 299:1054-1059, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Kwang Ho Cho
- Department of Neurology, Wonkwang University School of Medicine and Hospital, Institute of Wonkwang Medical Science, Iksan, Korea
| | - Hyung Suk Jang
- Division of Physical Therapy, Ongoul Rehabilitation Hospital, Jeonju, Korea
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Chiba City, Japan.,Division of Internal Medicine, Iwamizawa Kojin-Kai Hospital, Iwamizawa, Japan
| | | | - Shin-Ichi Abe
- Department of Anatomy, Tokyo Dental College, Chiba City, Japan
| |
Collapse
|
20
|
Differences in the Pulsatile Component of the Skin Hemodynamic Response to Verbal Fluency Tasks in the Forehead and the Fingertip. Sci Rep 2016; 6:20978. [PMID: 26905432 PMCID: PMC4764919 DOI: 10.1038/srep20978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/14/2016] [Indexed: 11/08/2022] Open
Abstract
Several studies have claimed that hemodynamic signals measured by near-infrared spectroscopy (NIRS) on the forehead exhibit different patterns during a verbal fluency task (VFT) in various psychiatric disorders, whereas many studies have noted that NIRS signals can reflect task-related changes in skin blood flow. If such a task-related skin hemodynamic response is also observed in the fingertip, a simpler biomarker may be developed. Furthermore, determining the difference in the response pattern may provide physiological insights into the condition. We found that the magnitude of the pulsatile component in skin hemodynamic signals increased on the forehead (p < 0.001 for N = 50, p = 0.073 for N = 8) but decreased on the fingertip (p < 0.001, N = 8) during the VFT, whereas the rate in both areas increased (p < 0.02, N = 8). We also did not find a repetition effect in both the rate and the magnitude on the fingertip, whereas the effect was present in the magnitude (p < 0.02, N = 8) but not in the rate on the forehead. These results suggest that the skin vasomotor system in the forehead could have a different vessel mechanism to psychological tasks compared to the fingertip.
Collapse
|
21
|
Zaproudina N, Lipponen JA, Karjalainen PA, Kamshilin AA, Giniatullin R, Närhi M. Acral coldness in migraineurs. Auton Neurosci 2014; 180:70-73. [PMID: 24080404 DOI: 10.1016/j.autneu.2013.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/19/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
In search for new biomarkers of vascular disturbances accompanying migraine, we compared the facial and hand skin temperatures in 41 women, including 12 migraine patients during the headache-free period and 29 healthy controls. Compared to the controls, the acral skin temperatures were lower in migraineurs, especially in those with right-sided headache. Our findings suggest that migraine is associated with a peripheral coldness possibly due to abnormal autonomic vascular control. The cold nose and hands may represent easily assessable biomarkers of these disorders.
Collapse
Affiliation(s)
- Nina Zaproudina
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | - Jukka A Lipponen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Pasi A Karjalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Alexei A Kamshilin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Matti Närhi
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
22
|
Kashima H, Hamada Y, Hayashi N. Palatability of tastes is associated with facial circulatory responses. Chem Senses 2014; 39:243-8. [PMID: 24391145 DOI: 10.1093/chemse/bjt074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To examine whether various types of taste stimuli in the oral cavity elicit unique changes in facial skin blood flow (SkBF) according to the palatability perceived by an individual, the facial SkBF was observed by laser speckle flowgraphy in 15 healthy subjects (11 males and 4 females) before and during the ingestion of bitter tea, chilli sauce, coffee, orange juice, soup, and a water control. The heart rate, mean arterial pressure (MAP), and SkBF in the index finger were recorded continuously. Subjects reported their subjective palatability and taste intensity scores after each stimulus. The vascular conductance indexes (CIs) in the face and finger were calculated as ratios of SkBF to MAP. CI in the eyelid increased significantly in response to chilli sauce, orange juice, and soup, whereas CIs in the forehead, nose, and cheek decreased in response to bitter tea. There was a significant correlation between the palatability scores and CI values in the eyelid when changes induced by chilli sauce were excluded. These results suggest that the facial circulatory response reflects the degree of palatability of a foodstuff.
Collapse
Affiliation(s)
- Hideaki Kashima
- Graduate School of Decision Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1-W9-1, Meguro, Tokyo 152-8552, Japan.
| | | | | |
Collapse
|
23
|
Zaproudina N, Teplov V, Nippolainen E, Lipponen JA, Kamshilin AA, Närhi M, Karjalainen PA, Giniatullin R. Asynchronicity of facial blood perfusion in migraine. PLoS One 2013; 8:e80189. [PMID: 24324592 PMCID: PMC3851171 DOI: 10.1371/journal.pone.0080189] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/29/2013] [Indexed: 11/20/2022] Open
Abstract
Asymmetrical changes in blood perfusion and asynchronous blood supply to head tissues likely contribute to migraine pathophysiology. Imaging was widely used in order to understand hemodynamic variations in migraine. However, mapping of blood pulsations in the face of migraineurs has not been performed so far. We used the Blood Pulsation Imaging (BPI) technique, which was recently developed in our group, to establish whether 2D-imaging of blood pulsations parameters can reveal new biomarkers of migraine. BPI characteristics were measured in migraineurs during the attack-free interval and compared to healthy subjects with and without a family history of migraine. We found a novel phenomenon of transverse waves of facial blood perfusion in migraineurs in contrast to healthy subjects who showed synchronous blood delivery to both sides of the face. Moreover, the amplitude of blood pulsations was symmetrically distributed over the face of healthy subjects, but asymmetrically in migraineurs and subjects with a family history of migraine. In the migraine patients we found a remarkable correlation between the side of unilateral headache and the direction of the blood perfusion wave. Our data suggest that migraine is associated with lateralization of blood perfusion and asynchronous blood pulsations in the facial area, which could be due to essential dysfunction of the autonomic vascular control in the face. These findings may further enhance our understanding of migraine pathophysiology and suggest new easily available biomarkers of this pathology.
Collapse
Affiliation(s)
- Nina Zaproudina
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - Victor Teplov
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Ervin Nippolainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Jukka A. Lipponen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Alexei A. Kamshilin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Matti Närhi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - Pasi A. Karjalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- Department of Neurobiology, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|