1
|
Protzen G, Matoso B, Doma K, de Oliveira S, Boullosa D. Does the Repeated-Bout Effect Influence Post-Activation Performance Enhancement in Recreational Runners? RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:945-952. [PMID: 38959957 DOI: 10.1080/02701367.2024.2353719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/23/2024] [Indexed: 07/05/2024]
Abstract
Purpose: This study examined how a low dose of an eccentric-oriented lunge exercise could induce the repeated-bout effect (RBE) and affect the subsequent post-activation performance enhancement (PAPE) in recreational runners. Methods: Twenty male recreational runners (32.1 ± 2.8 years; 173.4 ± 6.1 cm; 73.3 ± 11.5 kg; 57.8 ± 7.2 mL·kg-1·min-1) were divided into control (N = 10) and experimental (N = 10) groups. In the first and fourth weeks, the groups were assessed for jump capacity, dynamic balance, and submaximal running kinematics before and after an incremental shuttle-run test until exhaustion. The experimental group was also submitted to two sessions of the eccentric-oriented lunge exercise (3 sets of 10 repetitions with 2 min of passive recovery) in the second and third weeks. Results: We observed that the first session promoted muscle damage, which was significantly (p < .05) reduced after the second training session, thus indicating an RBE. Meanwhile, there was no effect of the RBE on dynamic balance and submaximal running kinematics in the post-intervention. However, there was a significant increase in countermovement jump height (p = .008) for the experimental group when compared to the control group, although no PAPE was observed. Conclusions: The current results demonstrate that a simple, low-dose eccentric-oriented exercise may induce an RBE, leading to reduced muscle damage and a possibly improved lower limbs' muscle power in recreational runners. However, the absence of PAPE effects suggests that the RBE may not directly influence the potentiation/fatigue balance after fatiguing running exercises.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Boullosa
- University of León
- Federal University of Mato Grosso do Sul
- James Cook University
| |
Collapse
|
2
|
Devantier-Thomas B, Deakin GB, Crowther F, Schumann M, Doma K. The Impact of Exercise-Induced Muscle Damage on Various Cycling Performance Metrics: A Systematic Review and Meta-Analysis. J Strength Cond Res 2024; 38:1509-1525. [PMID: 38241464 DOI: 10.1519/jsc.0000000000004629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
ABSTRACT Devantier-Thomas, B, Deakin, GB, Crowther, F, Schumann, M, and Doma, K. The impact of exercise-induced muscle damage on various cycling performance metrics: a systematic review and meta-analysis. J Strength Cond Res 38(8): 1509-1525, 2024-This systematic review and meta-analysis examined the impact of exercise-induced muscle damage (EIMD) on cycling performance. The primary outcome measure was cycling performance, whereas secondary outcome measures included creatine kinase (CK), delayed-onset muscle soreness (DOMS), and muscular contractions. Data were extracted and quantified through forest plots to report on the standardized mean difference and p values. The meta-analysis showed no significant change in oxygen consumption at 24-48 hours ( p > 0.05) after the muscle damage protocol, although ventilation and rating of perceived exertion significantly increased ( p < 0.05) during submaximal cycling protocols. Peak power output during both sprint and incremental cycling performance was significantly reduced ( p < 0.05), but time-trial and distance-trial performance showed no change ( p > 0.05). Measures of CK and DOMS were significantly increased ( p < 0.05), whereas muscular force was significantly reduced following the muscle-damaging protocols ( p < 0.05), confirming that cycling performance was assessed during periods of EIMD. This systematic review showed that EIMD affected both maximal and submaximal cycling performance. Therefore, coaches should consider the effect of EIMD on cycling performance when implementing unaccustomed exercise into a cycling program. Careful consideration should be taken to ensure that additional training does not impair performance and endurance adaptation.
Collapse
Affiliation(s)
- Baily Devantier-Thomas
- James Cook University, College of Healthcare Sciences, Sports and Exercise Science, Townsville, Australia; and
| | - Glen B Deakin
- James Cook University, College of Healthcare Sciences, Sports and Exercise Science, Townsville, Australia; and
| | - Fiona Crowther
- James Cook University, College of Healthcare Sciences, Sports and Exercise Science, Townsville, Australia; and
| | | | - Kenji Doma
- James Cook University, College of Healthcare Sciences, Sports and Exercise Science, Townsville, Australia; and
| |
Collapse
|
3
|
Llanos-Lagos C, Ramirez-Campillo R, Moran J, Sáez de Villarreal E. The Effect of Strength Training Methods on Middle-Distance and Long-Distance Runners' Athletic Performance: A Systematic Review with Meta-analysis. Sports Med 2024; 54:1801-1833. [PMID: 38627351 PMCID: PMC11258194 DOI: 10.1007/s40279-024-02018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND The running performance of middle-distance and long-distance runners is determined by factors such as maximal oxygen uptake (VO2max), velocity at VO2max (vVO2max), maximum metabolic steady state (MMSS), running economy, and sprint capacity. Strength training is a proven strategy for improving running performance in endurance runners. However, the effects of different strength training methods on the determinants of running performance are unclear. OBJECTIVE The aim of this systematic review with meta-analysis was to compare the effect of different strength training methods (e.g., high load, submaximal load, plyometric, combined) on performance (i.e., time trial and time until exhaustion) and its determinants (i.e., VO2max, vVO2max, MMSS, sprint capacity) in middle-distance and long-distance runners. METHODS A systematic search was conducted across electronic databases (Web of Science, PubMed, SPORTDiscus, SCOPUS). The search included articles indexed up to November 2022, using various keywords combined with Boolean operators. The eligibility criteria were: (1) middle- and long-distance runners, without restriction on sex or training/competitive level; (2) application of a strength training method for ≥ 3 weeks, including high load training (≥ 80% of one repetition maximum), submaximal load training (40-79% of one repetition maximum), plyometric training, and combined training (i.e., two or more methods); (3) endurance running training control group under no strength training or under strength training with low loads (< 40% of one repetition maximum); (4) running performance, VO2max, vVO2max, MMSS and/or sprint capacity measured before and after a strength training intervention program; (5) randomized and non-randomized controlled studies. The certainty of evidence was assessed using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. A random-effects meta-analysis and moderator analysis were performed using Comprehensive meta-analysis (version 3.3.0.70). RESULTS The certainty of the evidence was very low to moderate. The studies included 324 moderately trained, 272 well trained, and 298 highly trained athletes. The strength training programs were between 6 and 40 weeks duration, with one to four intervention sessions per week. High load and combined training methods induced moderate (effect size = - 0.469, p = 0.029) and large effect (effect size = - 1.035, p = 0.036) on running performance, respectively. While plyometric training was not found to have a significant effect (effect size = - 0.210, p = 0.064). None of the training methods improved VO2max, vVO2max, MMSS, or sprint capacity (all p > 0.072). Moderators related to subject (i.e., sex, age, body mass, height, VO2max, performance level, and strength training experience) and intervention (i.e., weeks, sessions per week and total sessions) characteristics had no effect on running performance variables or its determinants (all p > 0.166). CONCLUSIONS Strength training with high loads can improve performance (i.e., time trial, time to exhaustion) in middle-distance and long-distance runners. A greater improvement may be obtained when two or more strength training methods (i.e., high load training, submaximal load training and/or plyometric training) are combined, although with trivial effects on VO2max, vVO2max, MMSS, or sprint capacity.
Collapse
Affiliation(s)
- Cristian Llanos-Lagos
- Physical Performance Sports Research Center (PPSRC), Universidad Pablo de Olavide, 41704, Seville, Spain.
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, 7591538, Chile
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, CO43SQ, UK
| | - Eduardo Sáez de Villarreal
- Physical Performance Sports Research Center (PPSRC), Universidad Pablo de Olavide, 41704, Seville, Spain
| |
Collapse
|
4
|
Devantier-Thomas B, Deakin GB, Crowther F, Schumann M, Doma K. The repeated bout effect of traditional resistance training on cycling efficiency and performance. Eur J Appl Physiol 2024; 124:2005-2017. [PMID: 38376510 PMCID: PMC11199296 DOI: 10.1007/s00421-024-05422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/14/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE This study examined the repeated bout effect of two resistance training bouts on cycling efficiency and performance. METHODS Ten male resistance-untrained cyclists (age 38 ± 13 years; height 180.4 ± 7.0 cm; weight 80.1 ± 10.1; kg; VO2max 51.0 ± 7.6 ml.kg-1.min-1) undertook two resistance training bouts at six-repetition maximum. Blood creatine kinase (CK), delayed-onset of muscle soreness (DOMS), counter-movement jump (CMJ), squat jump (SJ), submaximal cycling and time-trial performance were examined prior to (Tbase), 24 (T24) and 48 (T48) h post each resistance training bout. RESULTS There were significantly lower values for DOMS (p = 0.027) after Bout 2 than Bout 1. No differences were found between bouts for CK, CMJ, SJ and submaximal cycling performance. However, jump height (CMJ and SJ) submaximal cycling measures (ventilation and perceived exertion) were impaired at T24 and T48 compared to Tbase (p < 0.05). Net efficiency during submaximal cycling improved at Bout 2 (23.8 ± 1.2) than Bout 1 (24.3 ± 1.0%). There were no changes in cycling time-trial performance, although segmental differences in cadence were observed between bouts and time (i.e. Tbase vs T24 vs T48; p < 0.05). CONCLUSION Cyclists improved their cycling efficiency from Bout 1 to Bout 2 possibly due to the repeated bout effect. However, cyclists maintained their cycling completion times during exercise-induced muscle damage (EIMD) in both resistance training bouts, possibly by altering their cycling strategies. Thus, cyclists should consider EIMD symptomatology after resistance training bouts, particularly for cycling-specific technical sessions, regardless of the repeated bout effect.
Collapse
Affiliation(s)
- Baily Devantier-Thomas
- James Cook Drive, Rehab Sciences Building (DB-43), James Cook University, Townsville, QLD, 4811, Australia
| | - Glen B Deakin
- James Cook Drive, Rehab Sciences Building (DB-43), James Cook University, Townsville, QLD, 4811, Australia
| | - Fiona Crowther
- James Cook Drive, Rehab Sciences Building (DB-43), James Cook University, Townsville, QLD, 4811, Australia
| | - Moritz Schumann
- Department of Sports Medicine and Exercise Therapy, Chemnitz University of Technology, Chemnitz, Germany
| | - Kenji Doma
- James Cook Drive, Rehab Sciences Building (DB-43), James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
5
|
Llanos-Lagos C, Ramirez-Campillo R, Moran J, Sáez de Villarreal E. Effect of Strength Training Programs in Middle- and Long-Distance Runners' Economy at Different Running Speeds: A Systematic Review with Meta-analysis. Sports Med 2024; 54:895-932. [PMID: 38165636 PMCID: PMC11052887 DOI: 10.1007/s40279-023-01978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Running economy is defined as the energy demand at submaximal running speed, a key determinant of overall running performance. Strength training can improve running economy, although the magnitude of its effect may depend on factors such as the strength training method and the speed at which running economy is assessed. AIM To compare the effect of different strength training methods (e.g., high loads, plyometric, combined methods) on the running economy in middle- and long-distance runners, over different running speeds, through a systematic review with meta-analysis. METHODS A systematic search was conducted across several electronic databases including Web of Science, PubMed, SPORTDiscus, and SCOPUS. Using different keywords and Boolean operators for the search, all articles indexed up to November 2022 were considered for inclusion. In addition, the PICOS criteria were applied: Population: middle- and long-distance runners, without restriction on sex or training/competitive level; Intervention: application of a strength training method for ≥ 3 weeks (i.e., high loads (≥ 80% of one repetition maximum); submaximal loads [40-79% of one repetition maximum); plyometric; isometric; combined methods (i.e., two or more methods); Comparator: control group that performed endurance running training but did not receive strength training or received it with low loads (< 40% of one repetition maximum); Outcome: running economy, measured before and after a strength training intervention programme; Study design: randomized and non-randomized controlled studies. Certainty of evidence was assessed with the GRADE approach. A three-level random-effects meta-analysis and moderator analysis were performed using R software (version 4.2.1). RESULTS The certainty of the evidence was found to be moderate for high load training, submaximal load training, plyometric training and isometric training methods and low for combined methods. The studies included 195 moderately trained, 272 well trained, and 185 highly trained athletes. The strength training programmes were between 6 and 24 weeks' duration, with one to four sessions executed per week. The high load and combined methods induced small (ES = - 0.266, p = 0.039) and moderate (ES = - 0.426, p = 0.018) improvements in running economy at speeds from 8.64 to 17.85 km/h and 10.00 to 14.45 km/h, respectively. Plyometric training improved running economy at speeds ≤ 12.00 km/h (small effect, ES = - 0.307, p = 0.028, β1 = 0.470, p = 0.017). Compared to control groups, no improvement in running economy (assessed speed: 10.00 to 15.28 and 9.75 to 16.00 km/h, respectively) was noted after either submaximal or isometric strength training (all, p > 0.131). The moderator analyses showed that running speed (β1 = - 0.117, p = 0.027) and VO2max (β1 = - 0.040, p = 0.020) modulated the effect of high load strength training on running economy (i.e., greater improvements at higher speeds and higher VO2max). CONCLUSIONS Compared to a control condition, strength training with high loads, plyometric training, and a combination of strength training methods may improve running economy in middle- and long-distance runners. Other methods such as submaximal load training and isometric strength training seem less effective to improve running economy in this population. Of note, the data derived from this systematic review suggest that although both high load training and plyometric training may improve running economy, plyometric training might be effective at lower speeds (i.e., ≤ 12.00 km/h) and high load strength training might be particularly effective in improving running economy (i) in athletes with a high VO2max, and (ii) at high running speeds. PROTOCOL REGISTRATION The original protocol was registered ( https://osf.io/gyeku ) at the Open Science Framework.
Collapse
Affiliation(s)
- Cristian Llanos-Lagos
- Physical Performance Sports Research Center (PPSRC), Universidad Pablo de Olavide, 41704, Seville, Spain
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538, Santiago, Chile
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, CO43SQ, UK
| | - Eduardo Sáez de Villarreal
- Physical Performance Sports Research Center (PPSRC), Universidad Pablo de Olavide, 41704, Seville, Spain.
| |
Collapse
|
6
|
Simmons R, Leicht A, Sinclair W, Bowman P, Dobbin M, Doma K. Acute Response to Training after Returning from the Off-Season in Elite Rugby League Athletes. J Hum Kinet 2024; 92:133-146. [PMID: 38736597 PMCID: PMC11079931 DOI: 10.5114/jhk/185442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/27/2024] [Indexed: 05/14/2024] Open
Abstract
The purposes of this study were to quantify the physiological response to the initial two-week preseason period in elite male rugby league (RL) athletes, and to determine if a repeated bout effect (RBE) occurs. Eighteen RL players were monitored for the initial two-week preseason period. Blood samples were collected on days (D)1, D2, D4, D5, D8, D9, D11 and D12 to measure creatine kinase (CK). Neuromuscular power was assessed on D1, D5, D8 and D12. During field-based sessions, the external training load was quantified using global positioning system technology, whilst the internal load was quantified using the training impulse and the session rating of perceived exertion. Resistance-based gym session volume was quantified by total repetitions x weight lifted. Perceived measures of fatigue and muscle soreness were assessed on all training days. Two-way (day x week) repeated measures analysis of variance and Bonferroni's corrected post-hoc tests identified significant changes. There were no significant changes in CK activity (649.2 ± 255.0 vs. 673.8 ± 299.1 µL; p = 0.63) or internal training load measures from week 1 to week 2. External training load measures including total distance (4138.1 ± 198.4 vs. 4525.0 ± 169.2 m; p < 0.001) and repeated high-intensity efforts (12.6 ± 1.8 vs. 17.5 ± 1.8 au; p < 0.001) significantly increased in week 2 compared to week 1. Internal training loads and CK activity did not change in response to an increase in external training loads during the initial preseason. The current results provide support for a 'real world' perspective of the RBE phenomenon that may be more applicable for team sport practitioners.
Collapse
Affiliation(s)
- Ryan Simmons
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Townsville, Australia
| | - Anthony Leicht
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Townsville, Australia
| | - Wade Sinclair
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Townsville, Australia
- North Queensland Cowboys Rugby League Football Club, Townsville, Australia
| | - Paul Bowman
- North Queensland Cowboys Rugby League Football Club, Townsville, Australia
| | | | - Kenji Doma
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Townsville, Australia
- Orthopeadic Institute of Queensland, Townsville, Australia
| |
Collapse
|
7
|
Doma K, Matoso B, Protzen G, Singh U, Boullosa D. The Repeated Bout Effect of Multiarticular Exercises on Muscle Damage Markers and Physical Performances: A Systematic Review and Meta-Analyses. J Strength Cond Res 2023; 37:2504-2515. [PMID: 38015738 DOI: 10.1519/jsc.0000000000004628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
ABSTRACT Doma, K, Matoso, B, Protzen, G, Singh, U, and Boullosa, D. The repeated bout effect of multiarticular exercises on muscle damage markers and physical performances: a systematic review and meta-analyses. J Strength Cond Res 37(12): 2504-2515, 2023-This systematic review and meta-analysis compared muscle damage markers and physical performance measures between 2 bouts of multiarticular exercises and determined whether intensity and volume of muscle-damaging exercises affected the outcomes. The eligibility criteria consisted of (a) healthy male and female adults; (b) multiarticular exercises to cause muscle damage across 2 bouts; (c) outcome measures were compared at 24-48 hours after the first and second bouts of muscle-damaging exercise; (d) at least one of the following outcome measures: creatine kinase (CK), delayed onset of muscle soreness (DOMS), muscle strength, and running economy. Study appraisal was conducted using the Kmet tool, whereas forest plots were derived to calculate standardized mean differences (SMDs) and statistical significance and alpha set a 0.05. After screening, 20 studies were included. The levels of DOMS and CK were significantly greater during the first bout when compared with the second bout at T24 and T48 (p < 0.001; SMD = 0.51-1.23). Muscular strength and vertical jump performance were significantly lower during the first bout compared with the second bout at T24 and T48 (p ≤ 0.05; SMD = -0.27 to -0.40), whereas oxygen consumption and rating of perceived exertion were significantly greater during the first bout at T24 and T48 (p < 0.05; SMD = 0.28-0.65) during running economy protocols. The meta-analyses were unaffected by changes in intensity and volume of muscle-damaging exercises between bouts. Multiarticular exercises exhibited a repeated bout effect, suggesting that a single bout of commonly performed exercises involving eccentric contractions may provide protection against exercise-induced muscle damage for subsequent bouts.
Collapse
Affiliation(s)
- Kenji Doma
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia
- Orthopeadic Research Institute of Queensland, Townsville, Australia
| | - Bruno Matoso
- Integrated Institute of Health, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Gabriel Protzen
- Physical Education College, Federal University of Pelotas, Pelotas, Brazil; and
| | - Utkarsh Singh
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia
| | - Daniel Boullosa
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia
- Integrated Institute of Health, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
- Faculty of Physical Activity and Sports Sciences, Universidad de León, Ponferrada, Spain
| |
Collapse
|
8
|
Boyd L, Deakin GB, Devantier-Thomas B, Singh U, Doma K. The Effects of Pre-conditioning on Exercise-Induced Muscle Damage: A Systematic Review and Meta-analysis. Sports Med 2023; 53:1537-1557. [PMID: 37160563 PMCID: PMC10356650 DOI: 10.1007/s40279-023-01839-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Several studies have utilised isometric, eccentric and downhill walking pre-conditioning as a strategy for alleviating the signs and symptoms of exercise-induced muscle damage (EIMD) following a bout of damaging physical activity. OBJECTIVES This systematic review and meta-analysis examined the effects of pre-conditioning strategies on indices of muscle damage and physical performance measures following a second bout of strenuous physical activity. DATA SOURCES PubMed, CINAHL and Scopus. ELIGIBILITY CRITERIA Studies meeting the PICO (population, intervention/exposure, comparison, and outcome) criteria were included in this review: (1) general population or "untrained" participants with no contraindications affecting physical performance; (2) studies with a parallel design to examine the prevention and severity of muscle-damaging contractions; (3) outcome measures were compared using baseline and post-intervention measures; and (4) outcome measures included any markers of indirect muscle damage and muscular contractility measures. PARTICIPANTS Individuals with no resistance training experiences in the previous 6 or more months. INTERVENTIONS A single bout of pre-conditioning exercises consisting of eccentric or isometric contractions performed a minimum of 24 h prior to a bout of damaging physical activity were compared to control interventions that did not perform pre-conditioning prior to damaging physical activity. STUDY APPRAISAL Kmet appraisal system. SYNTHESIS METHODS Quantitative analysis was conducted using forest plots to examine standardised mean differences (SMD, i.e. effect size), test statistics for statistical significance (i.e. Z-values) and between-study heterogeneity by inspecting I2. RESULTS Following abstract and full-text screening, 23 articles were included in this paper. Based on the meta-analysis, the pre-conditioning group exhibited lower levels of creatine kinase at 24 h (SMD = - 1.64; Z = 8.39; p = 0.00001), 48 h (SMD = - 2.65; Z = 7.78; p = 0.00001), 72 h (SMD = - 2.39; Z = 5.71; p = 0.00001) and 96 h post-exercise (SMD = - 3.52; Z = 7.39; p = 0.00001) than the control group. Delayed-onset muscle soreness was also lower for the pre-conditioning group at 24 h (SMD = - 1.89; Z = 6.17; p = 0.00001), 48 h (SMD = - 2.50; Z = 7.99; p = 0.00001), 72 h (SMD = - 2.73; Z = 7.86; p = 0.00001) and 96 h post-exercise (SMD = - 3.30; Z = 8.47; p = 0.00001). Maximal voluntary contraction force was maintained and returned to normal sooner in the pre-conditioning group than in the control group, 24 h (SMD = 1.46; Z = 5.49; p = 0.00001), 48 h (SMD = 1.59; Z = 6.04; p = 0.00001), 72 h (SMD = 2.02; Z = 6.09; p = 0.00001) and 96 h post-exercise (SMD = 2.16; Z = 5.69; p = 0.00001). Range of motion was better maintained by the pre-conditioning group compared with the control group at 24 h (SMD = 1.48; Z = 4.30; p = 0.00001), 48 h (SMD = 2.20; Z = 5.64; p = 0.00001), 72 h (SMD = 2.66; Z = 5.42; p = 0.00001) and 96 h post-exercise (SMD = 2.5; Z = 5.46; p = 0.00001). Based on qualitative analyses, pre-conditioning activities were more effective when performed at 2-4 days before the muscle-damaging protocol compared with immediately prior to the muscle-damaging protocol, or 1-3 weeks prior to the muscle-damaging protocol. Furthermore, pre-conditioning activities performed using eccentric contractions over isometric contractions, with higher volumes, greater intensity and more lengthened muscle contractions provided greater protection from EIMD. LIMITATIONS Several outcome measures showed high inter-study heterogeneity. The inability to account for differences in durations between pre-conditioning and the second bout of damaging physical activity was also limiting. CONCLUSIONS Pre-conditioning significantly reduced the severity of creatine kinase release, delayed-onset muscle soreness, loss of maximal voluntary contraction force and the range of motion decrease. Pre-conditioning may prevent severe EIMD and accelerate recovery of muscle force generation capacity.
Collapse
Affiliation(s)
- Lachlan Boyd
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, 1 James Cook Drive, Rehabilitation Sciences Building, Douglas, Townsville, QLD, 481, Australia
| | - Glen B Deakin
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, 1 James Cook Drive, Rehabilitation Sciences Building, Douglas, Townsville, QLD, 481, Australia
| | - Baily Devantier-Thomas
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, 1 James Cook Drive, Rehabilitation Sciences Building, Douglas, Townsville, QLD, 481, Australia
| | - Utkarsh Singh
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, 1 James Cook Drive, Rehabilitation Sciences Building, Douglas, Townsville, QLD, 481, Australia
| | - Kenji Doma
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, 1 James Cook Drive, Rehabilitation Sciences Building, Douglas, Townsville, QLD, 481, Australia.
| |
Collapse
|
9
|
Smith C, Doma K, Heilbronn B, Leicht A. Reliability of Force Plate Metrics During Standard Jump, Balance, and Plank Assessments in Military Personnel. Mil Med 2023; 188:e2058-e2066. [PMID: 36524866 PMCID: PMC10363007 DOI: 10.1093/milmed/usac387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 07/25/2023] Open
Abstract
INTRODUCTION Prevention of musculoskeletal injury is vital to the readiness, performance, and health of military personnel with the use of specialized systems (e.g., force plates) to assess risk and/or physical performance of interest. This study aimed to identify the reliability of one specialized system during standard assessments in military personnel. METHODS Sixty-two male and ten female Australian Army soldiers performed a two-leg countermovement jump (CMJ), one-leg CMJ, one-leg balance, and one-arm plank assessments using a Sparta Science force plate system across three testing sessions. Sparta Science (e.g., total Sparta, balance and plank scores, jump height, and injury risk) and biomechanical (e.g., average eccentric rate of contraction, average concentric force, and sway velocity) variables were recorded for all sessions. Mean ± SD, intraclass correlation coefficients (ICCs), coefficient of variation, and bias and limits of agreement were calculated for all variables. RESULTS Mean results were similar between sessions 2 and 3 (P > .05). The relative reliability for the Sparta Science (ICC = 0.28-0.91) and biomechanical variables (ICC = 0.03-0.85) was poor to excellent. The mean absolute reliability (coefficient of variation) for Sparta Science variables was similar to or lower than that of the biomechanical variables during the CMJ (1-10% vs. 3-7%), one-leg balance (4-6% vs. 9-14%), and one-arm plank (5-7% vs. 12-17%) assessments. The mean bias for most variables was small (<5% of the mean), while the limits of agreement varied with most unacceptable (±6-87% of the mean). CONCLUSIONS The reliability of most Sparta Science and biomechanical variables during standard assessments was moderate to good. The typical variability in metrics documented will assist practitioners with the use of emerging technology to monitor and assess injury risk and/or training interventions in military personnel.
Collapse
Affiliation(s)
- Chelsea Smith
- Royal Australian Army Medical Corps, Australian Army, Townsville, QLD 4811, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Kenji Doma
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Brian Heilbronn
- Royal Australian Army Medical Corps, Australian Army, Townsville, QLD 4811, Australia
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Anthony Leicht
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
10
|
The Acute Effect of Various Feedback Approaches on Sprint Performance, Motivation, and Affective Mood States in Highly Trained Female Athletes: A Randomized Crossover Trial. Int J Sports Physiol Perform 2023; 18:313-319. [PMID: 36750119 DOI: 10.1123/ijspp.2022-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 02/09/2023]
Abstract
PURPOSE This crossover trial compared the effects of varying feedback approaches on sprint performance, motivation, and affective mood states in female athletes. METHODS Eligibility criteria were being competitive female athletes, where participants completed sprint tests in 4 randomized feedback conditions on grass, including augmented feedback (sprint time; AUG-FB), technical feedback (cues; TECH-FB), a competition-driven drill (CDD) sprinting against an opponent, and a control condition (no feedback; CON). Participants completed a 20-m sprint (maximum sprint), 30-m curved agility sprint, and a repeated sprint ability test, with sprint times, motivation level, and mood states recorded. The participants were blinded from the number of trials during the repeated sprint ability test. RESULTS About 12 rugby league players completed all feedback conditions. The maximum sprint times were faster for AUG-FB (3.54 [0.16] s) and CDD (3.54 [0.16] s) compared with TECH-FB (3.64 [0.16] s), while there were no differences compared with CON (3.58 [0.17] s). The curved agility sprint times were faster for AUG-FB (5.42 [0.20] s) compared with TECH-FB (5.61 [0.21] s) and CON (5.57 [0.24] s), although CDD (5.38 [0.26] s) produced faster sprint times than TECH-FB. Effort and value were higher with AUG-FB (6.31 [0.68]; 6.53 [0.05]) compared with CON (5.99 [0.60]; 4.75 [2.07]), while CON exhibited lower enjoyment ratings (4.68 [0.95]) compared with other feedback conditions (AUG-FB: 5.54 [0.72]; CDD: 5.56 [0.67]; TECH-FB: 5.60 [0.56]). CONCLUSIONS Providing AUG-FB prior to sprint tasks enhances more immediate performance outcomes than TECH-FB. AUG-FB also benefited athlete enjoyment, task effort, and coaching value. Female athletes should receive AUG-FB in testing and training environments, to improve immediate physical performance and motivation.
Collapse
|
11
|
Burt D, Doma K, Connor J. The effects of exercise-induced muscle damage on varying intensities of endurance running performance: A systematic review and meta-analysis. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Acute Neuromuscular, Physiological and Performance Responses After Strength Training in Runners: A Systematic Review and Meta-Analysis. SPORTS MEDICINE - OPEN 2022; 8:105. [PMID: 35976540 PMCID: PMC9385928 DOI: 10.1186/s40798-022-00497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
Background Strength training (ST) is commonly used to improve muscle strength, power, and neuromuscular adaptations and is recommended combined with runner training. It is possible that the acute effects of the strength training session lead to deleterious effects in the subsequent running. The aim of this systematic review and meta-analysis was to verify the acute effects of ST session on the neuromuscular, physiological and performance variables of runners.
Methods Studies evaluating running performance after resistance exercise in runners in the PubMed and Scopus databases were selected. From 6532 initial references, 19 were selected for qualitative analysis and 13 for meta-analysis. The variables of peak torque (PT), creatine kinase (CK), delayed-onset muscle soreness (DOMS), rating of perceived exertion (RPE), countermovement jump (CMJ), ventilation (VE), oxygen consumption (VO2), lactate (La) and heart rate (HR) were evaluated.
Results The methodological quality of the included studies was considered reasonable; the meta-analysis indicated that the variables PT (p = 0.003), DOMS (p < 0.0001), CK (p < 0.0001), RPE (p < 0.0001) had a deleterious effect for the experimental group; for CMJ, VE, VO2, La, FC there was no difference. By qualitative synthesis, running performance showed a reduction in speed for the experimental group in two studies and in all that assessed time to exhaustion.
Conclusion The evidence indicated that acute strength training was associated with a decrease in PT, increases in DOMS, CK, RPE and had a low impact on the acute responses of CMJ, VE, VO2, La, HR and submaximal running sessions.
Collapse
|
13
|
Harrison DC, Doma K, Leicht AS, McGuckin TA, Woods CT, Connor JD. Repeated Bout Effect of Two Resistance Training Bouts on Bowling-Specific Performance in Male Cricketers. Sports (Basel) 2022; 10:sports10090126. [PMID: 36136381 PMCID: PMC9500931 DOI: 10.3390/sports10090126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
To examine the repeated bout effect (RBE) following two identical resistance bouts and its effect on bowling-specific performance in male cricketers. Male cricket pace bowlers (N = 10), who had not undertaken resistance exercises in the past six months, were invited to complete a familiarisation and resistance maximum testing, before participating in the study protocol. The study protocol involved the collection of muscle damage markers, a battery of anaerobic (jump and sprint), and a bowling-specific performance test at baseline, followed by a resistance training bout, and a retest of physical and bowling-specific performance at 24 h (T24) and 48 h (T48) post-training. The study protocol was repeated 7–10 days thereafter. Indirect markers of muscle damage were lower (creatine kinase: 318.7 ± 164.3 U·L−1; muscle soreness: 3 ± 1), whilst drop jump was improved (~47.5 ± 8.1 cm) following the second resistance training bout when compared to the first resistance training bout (creatine kinase: 550.9 ± 242.3 U·L−1; muscle soreness: 4 ± 2; drop jump: ~43.0 ± 9.7 cm). However, sport-specific performance via bowling speed declined (Bout 1: −2.55 ± 3.43%; Bout 2: 2.67 ± 2.41%) whilst run-up time increased (2.34 ± 3.61%; Bout 2: 3.84 ± 4.06%) after each bout of resistance training. Findings suggest that while an initial resistance training bout reduced muscle damage indicators and improved drop jump performance following a second resistance training bout, this RBE trend was not observed for bowling-specific performance. It was suggested that pace bowlers with limited exposure to resistance training should minimise bowling-specific practice for 1–2 days following the initial bouts of their resistance training program.
Collapse
Affiliation(s)
- Drew C. Harrison
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Kenji Doma
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
- Correspondence:
| | - Anthony S. Leicht
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health & Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Teneale A. McGuckin
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Carl T. Woods
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3011, Australia
| | - Jonathan D. Connor
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
14
|
Doma K, Ramachandran AK, Boullosa D, Connor J. The Paradoxical Effect of Creatine Monohydrate on Muscle Damage Markers: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:1623-1645. [PMID: 35218552 PMCID: PMC9213373 DOI: 10.1007/s40279-022-01640-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2022] [Indexed: 11/07/2022]
Abstract
Background Several studies have examined the effect of creatine monohydrate (CrM) on indirect muscle damage markers and muscle performance, although pooled data from several studies indicate that the benefits of CrM on recovery dynamics are limited. Objective This systematic review and meta-analysis determined whether the ergogenic effects of CrM ameliorated markers of muscle damage and performance following muscle-damaging exercises. Methods In total, 23 studies were included, consisting of 240 participants in the CrM group (age 23.9 ± 10.4 years, height 178 ± 5 cm, body mass 76.9 ± 7.6 kg, females 10.4%) and 229 participants in the placebo group (age 23.7 ± 8.5 years, height 177 ± 5 cm, body mass 77.0 ± 6.6 kg, females 10.0%). These studies were rated as fair to excellent following the PEDro scale. The outcome measures were compared between the CrM and placebo groups at 24–36 h and 48–90 h following muscle-damaging exercises, using standardised mean differences (SMDs) and associated p-values via forest plots. Furthermore, sub-group analyses were conducted by separating studies into those that examined the effects of CrM as an acute training response (i.e., after one muscle-damaging exercise bout) and those that examined the chronic training response (i.e., examining the acute response after the last training session following several weeks of training). Results According to the meta-analysis, the CrM group exhibited significantly lower indirect muscle damage markers (i.e., creatine kinase, lactate dehydrogenase, and/or myoglobin) at 48–90 h post-exercise for the acute training response (SMD − 1.09; p = 0.03). However, indirect muscle damage markers were significantly greater in the CrM group at 24 h post-exercise (SMD 0.95; p = 0.04) for the chronic training response. Although not significant, a large difference in indirect muscle damage markers was also found at 48 h post-exercise (SMD 1.24) for the chronic training response. The CrM group also showed lower inflammation for the acute training response at 24–36 h post-exercise and 48–90 h post-exercise with a large effect size (SMD − 1.38 ≤ d ≤ − 1.79). Similarly, the oxidative stress markers were lower for the acute training response in the CrM group at 24–36 h post-exercise and 90 h post-exercise, with a large effect size (SMD − 1.37 and − 1.36, respectively). For delayed-onset muscle soreness (DOMS), the measures were lower for the CrM group at 24 h post-exercise with a moderate effect size (SMD − 0.66) as an acute training response. However, the inter-group differences for inflammation, oxidative stress, and DOMS were not statistically significant (p > 0.05). Conclusion Overall, our meta-analysis demonstrated a paradoxical effect of CrM supplementation post-exercise, where CrM appears to minimise exercise-induced muscle damage as an acute training response, although this trend is reversed as a chronic training response. Thus, CrM may be effective in reducing the level of exercise-induced muscle damage following a single bout of strenuous exercises, although training-induced stress could be exacerbated following long-term supplementation of CrM. Although long-term usage of CrM is known to enhance training adaptations, whether the increased level of exercise-induced muscle damage as a chronic training response may provide potential mechanisms to enhance chronic training adaptations with CrM supplementation remains to be confirmed. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-022-01640-z.
Collapse
Affiliation(s)
- Kenji Doma
- James Cook Drive, Rehabilitation Sciences Building, College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, QLD, QLD481, Australia.
| | | | - Daniel Boullosa
- James Cook Drive, Rehabilitation Sciences Building, College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, QLD, QLD481, Australia.,Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Jonathan Connor
- James Cook Drive, Rehabilitation Sciences Building, College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, QLD, QLD481, Australia
| |
Collapse
|
15
|
Vajda M, Vanderka M, Buzgo G, Sedliak M, Kampmiller T. The effect of different training modalities on resting hormonal level in active young males. J Appl Biomed 2021; 19:83-90. [PMID: 34907707 DOI: 10.32725/jab.2021.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 03/08/2021] [Indexed: 11/05/2022] Open
Abstract
The purpose of this study was to determine the changes in the resting level of serum cortisol, testosterone and T/C ratio in response to different training modalities and their variations. A secondary purpose was to identify if the various six weeks training programs are an effective way to improve physical fitness. 86 regularly active young males were assigned to one of six groups: Endurance constant running (ECR), Endurance interval running (EIR), Resistance training (RT), Explosive training (ET), Speed-endurance 50 m running (SER50) and Speed-endurance 150 m running (SER150) training. The resting levels of testosterone, cortisol and T/C ratio, as well as physical fitness, were measured. The ECR, EIR, and RT training program decreased COR level (P < 0.05). An increase of the T/C ratio was observed in the ECR and EIR group (P < 0.05). Except for SER50, each training program improved physical fitness. Our results suggest that endurance and resistance training modalities performed with a moderate to vigorous intensity may be a usable way to manage the resting cortisol level and enhance physical fitness in active young males.
Collapse
Affiliation(s)
- Matej Vajda
- Comenius University in Bratislava, Faculty of Physical Education and Sports, Hamar Institute for Human Performance, Bratislava, Slovak Republic
| | - Marian Vanderka
- Comenius University in Bratislava, Faculty of Physical Education and Sports, Bratislava, Slovak Republic
| | - Gabriel Buzgo
- Comenius University in Bratislava, Faculty of Physical Education and Sports, Bratislava, Slovak Republic
| | - Milan Sedliak
- Comenius University in Bratislava, Faculty of Physical Education and Sports, Bratislava, Slovak Republic
| | - Tomas Kampmiller
- Comenius University in Bratislava, Faculty of Physical Education and Sports, Bratislava, Slovak Republic
| |
Collapse
|
16
|
Doma K, Singh U, Boullosa D, Connor JD. The effect of branched-chain amino acid on muscle damage markers and performance following strenuous exercise: a systematic review and meta-analysis. Appl Physiol Nutr Metab 2021; 46:1303-1313. [PMID: 34612716 DOI: 10.1139/apnm-2021-0110] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This systematic review and meta-analysis determined whether the ergogenic effects of branched-chain amino acids (BCAA) ameliorated markers of muscle damage and performance following strenuous exercise. In total, 25 studies were included, consisting of 479 participants (age 24.3 ± 8.3 years, height 1.73 ± 0.06 m, body mass 70.8 ± 9.5 kg, females 26.3%). These studies were rated as fair to excellent following the PEDro scale. The outcome measures were compared between the BCAA and placebo conditions at 24 and 48 hours following muscle-damaging exercises, using standardised mean differences and associated p-values via forest plots. Our meta-analysis demonstrated significantly lower levels of indirect muscle damage markers (creatine kinase, lactate dehydrogenase and myoglobin) at 48 hours post-exercise (standardised mean difference [SMD] = -0.41; p < 0.05) for the BCAA than placebo conditions, whilst muscle soreness was significant at 24 hours post-exercise (SMD = -0.28 ≤ d ≤ -0.61; p < 0.05) and 48 hours post-exercise (SMD = -0.41 ≤ d≤ -0.92; p < 0.01). However, no significant differences were identified between the BCAA and placebo conditions for muscle performance at 24 or 48 hours post-exercise (SMD = 0.08 ≤ d ≤ 0.21; p > 0.05). Overall, BCAA reduced the level of muscle damage biomarkers and muscle soreness following muscle-damaging exercises. However, the potential benefits of BCAA for muscle performance recovery is questionable and warrants further investigation to determine the practicality of BCAA for ameliorating muscle damage symptoms in diverse populations. PROSPERO registration number: CRD42020191248. Novelty: BCAA reduces the level of creatine kinase and muscle soreness following strenuous exercise with a dose-response relationship. BCAA does not accelerate recovery for muscle performance.
Collapse
Affiliation(s)
- Kenji Doma
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, Queensland, Australia
| | - Utkarsh Singh
- Sports Dynamix Private Limited, Chennai, Nadu, India
| | - Daniel Boullosa
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, Queensland, Australia.,INISA, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Jonathan Douglas Connor
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, Queensland, Australia
| |
Collapse
|
17
|
Doma K, Burt D, Connor JD. The acute effect of a multi-modal plyometric training session on field-specific performance measures. J Sports Med Phys Fitness 2021; 61:899-906. [PMID: 34296839 DOI: 10.23736/s0022-4707.20.11603-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Plyometric and resistance exercises are known to cause exercise-induced muscle damage (EIMD). Thus, this study examined the impact of EIMD on various field-specific performance measures following a training session that combined plyometric and resistance exercises. METHODS Nine competitive Ultimate Frisbee players undertook a training session consisting of several modes of plyometric and resistance exercises. Indirect markers of muscle damage (i.e., creatine kinase [CK] and delayed onset of muscle soreness [DOMS]) and field-specific performance measures (i.e., run-up vertical jump, standing broad jump, linear sprint and repeated agility) were measured prior to, 24 hours (T24) and 48 hours (T48) post training. RESULTS The combined plyometric and resistance training session significantly increased muscle damage markers at T24 (CK: 326.5±210.4% and DOMS: 343.3±181.6%) and T48 (CK: 969.2±1262.3% and DOMS: 371.1±179.3%). The jump performance measures were significantly reduced at T24 (run-up vertical jump -5.5±6.3% and standing broad jump -4.7±3.7%) and T48 (run-up vertical jump -4.2±5.1% and standing broad jump -5.0±4.4%). Furthermore, completion times for linear sprint performance was significantly increased at T24 (4.5±3.4%) and T48 (7.2±4.2%), whilst the average completion time for the repeated agility protocol was significantly increased at T24 (1.4±1.4%). CONCLUSIONS Competitive team sport athletes may require at least 48 hours of recovery when implementing field-based conditioning sessions after a training session that combines plyometrics and resistance exercises, particular if unfamiliar with such training modalities.
Collapse
Affiliation(s)
- Kenji Doma
- Department of Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia -
| | - Dean Burt
- Department of Sport and Exercise Science, Staffordshire University, Staffordshire, UK
| | - Jonathan D Connor
- Department of Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia
| |
Collapse
|
18
|
Effect of Exercise-Induced Muscle Damage on Bowling-Specific Motor Skills in Male Adolescent Cricketers. Sports (Basel) 2021; 9:sports9070103. [PMID: 34357937 PMCID: PMC8309793 DOI: 10.3390/sports9070103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
The current study examined the acute effects of a bout of resistance training on cricket bowling-specific motor performance. Eight sub-elite, resistance-untrained, adolescent male fast bowlers (age 15 ± 1.7 years; height 1.8 ± 0.1 m; weight 67.9 ± 7.9 kg) completed a bout of upper and lower body resistance exercises. Indirect markers of muscle damage (creatine kinase [CK] and delayed onset of muscle soreness [DOMS]), anaerobic performance (15-m sprint and vertical jump), and cricket-specific motor performance (ball speed, run-up time, and accuracy) were measured prior to and 24 (T24) and 48 (T48) hours following the resistance training bout. The resistance training bout significantly increased CK (~350%; effect size [ES] = 1.89-2.24), DOMS (~240%; ES = 1.46-3.77) and 15-m sprint times (~4.0%; ES = 1.33-1.47), whilst significantly reducing vertical jump height (~7.0%; ES = 0.76-0.96) for up to 48 h. The ball speed (~3.0%; ES = 0.50-0.61) and bowling accuracy (~79%; ES = 0.39-0.70) were significantly reduced, whilst run-up time was significantly increased (~3.5%; ES = 0.36-0.50) for up to 24 h. These findings demonstrate that a bout of resistance training evokes exercise-induced muscle damage amongst sub-elite, adolescent male cricketers, which impairs anaerobic performance and bowling-specific motor performance measures. Cricket coaches should be cautious of incorporating bowling sessions within 24-h following a bout of resistance training for sub-elite adolescent fast bowlers, particularly for those commencing a resistance training program.
Collapse
|
19
|
Simmons R, Doma K, Sinclair W, Connor J, Leicht A. Acute Effects of Training Loads on Muscle Damage Markers and Performance in Semi-elite and Elite Athletes: A Systematic Review and Meta-analysis. Sports Med 2021; 51:2181-2207. [PMID: 34097298 DOI: 10.1007/s40279-021-01486-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The relationship between exercise-induced muscle damage (EIMD) indicators and acute training loads (TL) is yet to be reviewed extensively in semi-elite and elite athlete populations. OBJECTIVES The objectives of this systematic review and meta-analysis were threefold: (1) to evaluate studies of EIMD following the initial period of the preseason in semi-elite and elite athletes: (2) to examine acute physiological and performance responses across two periods of the season with similar TL; and (3) to examine acute physiological and performance responses to acute changes in TL during the season. METHODS The CINAHL, PubMed, Scopus, SPORTDiscus and Web of Science databases were systematically searched for studies that investigated: (1) semi-elite or elite athletes in team or individual sports following a periodised training programme; and (2) measured acute responses to training. Studies were excluded if: (1) conducted in animals; (2) non-English language; or (3) a conference abstract, review or case report. The Kmet Quality Scoring of Quantitative Studies tool was used for study appraisal. SYNTHESIS METHODS Data were quantitatively analysed by generating forest plots to report test statistics for statistical significance and inter-trial heterogeneity. RESULTS Of the included studies (n = 32), athletes experienced greater creatine kinase (CK) concentrations (Z = 4.99, p < 0.00001, I2 = 74%), inflammatory factors and other indirect measures of muscle damage in the initial phase of the preseason period compared to the off-season; there were no changes in CK (Z = 1.43, p = 0.15, I2 = 74%) across two time points of similar TL; and there were concurrent increases in CK with increases in TL (Z = 4.26, p < 0.0001, I2 = 36%) and vice versa (Z = 4.33, p < 0.0001, I2 = 79%).The qualitative analysis identified that the response of inflammatory factors and other indirect measures of muscle damage to changes in load were inconclusive. LIMITATIONS This review included varying age, sex, sports and competition levels. The group level meta-analysis failed to identify within-athlete or position-specific differences across time. CONCLUSION Blood biomarkers of EIMD may not differ across periods of similar TL, however can be considered a sensitive monitoring tool for assessing responses following acute TL changes in semi-elite and elite athletes.
Collapse
Affiliation(s)
- Ryan Simmons
- Sport and Exercise Science, James Cook University, Townsville, QLD, 4811, Australia. .,North Queensland Cowboys Rugby League Football Club, Townsville, Australia.
| | - Kenji Doma
- Sport and Exercise Science, James Cook University, Townsville, QLD, 4811, Australia.,Orthopaedic Research Institute of Queensland, Townsville, Australia
| | - Wade Sinclair
- Sport and Exercise Science, James Cook University, Townsville, QLD, 4811, Australia.,North Queensland Cowboys Rugby League Football Club, Townsville, Australia
| | - Jonathan Connor
- Sport and Exercise Science, James Cook University, Townsville, QLD, 4811, Australia
| | - Anthony Leicht
- Sport and Exercise Science, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
20
|
Muscle Damage, Soreness, and Stress During Preseason Training in Collegiate Swimmers. Clin J Sport Med 2021; 31:237-243. [PMID: 30870201 DOI: 10.1097/jsm.0000000000000736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/03/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND In 2014, 6 collegiate swimmers were hospitalized for symptomatic exertional rhabdomyolysis. OBJECTIVE To serially monitor and assess relationships between skeletal muscle membrane disruption, upper body soreness (UBS) and lower body soreness (LBS), and stress during the first 6 weeks (timepoints) of preseason training in collegiate male and female swimmers. DESIGN Prospective observational study. SETTING College/university. PARTICIPANTS Forty swimmers. INDEPENDENT VARIABLES Upper and lower body soreness rating (0-10); testosterone (T), cortisol (C), and T/C ratio. MAIN OUTCOME MEASURES Creatine kinase (CK) and myoglobin (over time) versus independent variables. RESULTS Weekly training load consisted of ∼87% swimming, ∼5% running, and ∼8% weight training, which increased from 15.8 hours to 20.5 total training hours per week over the first 6 weeks of training. Muscle damage in collegiate swimmers was modest and peaked after the first week of training (week 2) for men (CK = 438 ± 259 U/L; P < 0.0001; r2 = 0.28; myoglobin = 47 ± 18 ng/mL; P = 0.001; r2 = 0.22) and women (CK = 446 ± 723 U/L; P < 0.01; r2 = 0.13; myoglobin = 63 ± 140 ng/mL, not significant) with high variability. Data were presented as peak mean ± SD, significant P value, and r2 from repeated-measures analysis of variance. A temporal disconnect was noted between muscle damage and UBS, which peaked at week 5 in both men (5 ± 2; P < 0.0001; r2 = 0.44) and women (6 ± 2; P < 0.0001; r2 = 0.57). The serum cortisol level decreased over time, which peaked at week 1 (baseline) in men (15 ± 6 μg/dL; P = 0.0004; r2 = 0.38) and women (19 ± 10 μg/dL; P < 0.0001; r2 = 0.49). The testosterone level remained unchanged, which promoted an anabolic hormonal environment that peaked at week 6 (increasing T/C ratio) in men (58 ± 32; P = 0.0003; r2 = 0.31) and women (4 ± 3; P = 0.04; r2 = 0.18) despite gradual increases in training and soreness. CONCLUSIONS Muscle soreness does not parallel muscle membrane disruption. A 1-week "transition" period is required for muscles to adapt to intense/novel training.
Collapse
|
21
|
Effects of Exercise Sequence and Velocity Loss Threshold During Resistance Training on Following Endurance and Strength Performance During Concurrent Training. Int J Sports Physiol Perform 2021; 16:811-817. [PMID: 33547266 DOI: 10.1123/ijspp.2020-0483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE This study aimed to analyze the response to 4 concurrent training interventions differing in the training sequence and in the velocity loss (VL) threshold during strength training (20% vs 40%) on following endurance and strength performance. METHODS A randomized crossover research design was used. Sixteen trained men performed 4 training interventions consisting of endurance training (ET) followed by resistance training (RT), with 20% and 40% VL, respectively (ET + RT20 and ET + RT40), and RT with 20% and 40% VL, respectively, followed by ET (RT20 + ET and RT40 + ET). The ET consisted of running for 10 minutes at 90% of maximal aerobic velocity. The RT consisted of 3 squat sets with 60% of 1-repetition maximum. A 5-minute rest was given between exercises. The oxygen uptake throughout the ET and repetition velocity during RT were recorded. The blood lactate concentration, vertical jump, and squat velocity were measured at preexercise and after the endurance and strength exercises. RESULTS The RT40 + ET protocol showed an impaired running time along with higher ventilatory equivalents compared with those protocols that performed the ET without previous fatigue. No significant differences were observed in the repetitions per set performed for a given VL threshold, regardless of the exercise sequence. The protocols consisting of 40%VL induced greater reductions in jump height and squat velocity, along with elevated blood lactate concentration. CONCLUSIONS A high VL magnitude (40%VL) induced higher metabolic and mechanical stress, as well as greater residual fatigue, on the following ET performance.
Collapse
|
22
|
Doma K, Connor J, Gahreman D, Boullosa D, Ahtiainen JP, Nagata A. Resistance Training Acutely Impairs Agility and Spike-Specific Performance Measures in Collegiate Female Volleyball Players Returning from the Off-Season. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186448. [PMID: 32899731 PMCID: PMC7559839 DOI: 10.3390/ijerph17186448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 01/27/2023]
Abstract
This study examined the acute effects of resistance training (RT) on volleyball-specific performance. Sixteen female volleyball players undertook their initial, pre-season RT bout. Countermovement jump (CMJ), delayed onset of muscle soreness (DOMS), and sport-specific performances (i.e., run-up jump, agility, and spiking speed and accuracy) were measured before, 24 (T24), and 48 (T48) hours after RT. A significant increase in DOMS was observed at T24 and T48 (~207.6% ± 119.3%; p < 0.05; ES = 1.8 (95% CI: 0.94–2.57)), whilst agility was significantly impaired at T48 (1.7% ± 2.5%; p < 0.05; ES = 0.30 (95% CI: −0.99–0.40)). However, there were no differences in CMJ (~−2.21% ± 7.6%; p > 0.05; ES = −0.11 (95% CI: −0.80–0.58)) and run-up jump (~−1.4% ± 4.7%; p > 0.05; ES = −0.07 (95% CI: −0.76–0.63)). Spiking speed was significantly reduced (−3.5% ± 4.4%; p < 0.05; ES = −0.28 (95% CI: −0.43–0.97)), although accuracy was improved (38.3% ± 81.4%: p < 0.05) at T48. Thus, the initial, preseason RT bout compromised agility and spiking speed for several days post-exercise. Conversely, spiking accuracy improved, suggesting a speed–accuracy trade-off. Nonetheless, at least a 48-h recovery may be necessary after the initial RT bout for athletes returning from the off-season or injury.
Collapse
Affiliation(s)
- Kenji Doma
- College of Healthcare Sciences, James Cook University, Townsville 4811, Australia; (J.C.); (D.B.)
- Correspondence: ; Tel.: +61-747814952
| | - Jonathan Connor
- College of Healthcare Sciences, James Cook University, Townsville 4811, Australia; (J.C.); (D.B.)
| | - Daniel Gahreman
- College of Health and Human Sciences, Charles Darwin University, Darwin 0909, Australia;
| | - Daniel Boullosa
- College of Healthcare Sciences, James Cook University, Townsville 4811, Australia; (J.C.); (D.B.)
- INISA, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Juha P. Ahtiainen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland;
| | - Akinori Nagata
- Faculty of Social Welfare, Rissho University, Kumagaya 360-0194, Japan;
| |
Collapse
|
23
|
Nicholls A, Leicht A, Connor J, Halliday A, Doma K. Convergent validity and reliability of a novel repeated agility protocol in junior rugby league players. F1000Res 2020; 9:624. [PMID: 34804503 PMCID: PMC8577058 DOI: 10.12688/f1000research.23129.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 04/05/2024] Open
Abstract
Background: Rugby league involves repeated, complex, change-of-direction movements, although there are no test protocols that specifically assesses these physical fitness profiles. Thus, the current study examined the convergent validity and reliability of a repeated Illinois Agility (RIA) protocol in adolescent Rugby League players. Methods: Twenty-two junior Rugby League players completed 4 sessions with each separated by 7 days. Initially, physical fitness characteristics at baseline (i.e., multi-stage fitness, countermovement jump, 30-m sprint, single-effort agility and repeated sprint ability [RSA]) were assessed. The second session involved a familiarisation of RIA and repeated T-agility test (RTT) protocols. During the third and fourth sessions, participants completed the RIA and RTT protocols in a randomised, counterbalanced design to examine the validity and test-retest reliability of these protocols. Results: For convergent validity, significant correlations were identified between RIA and RTT performances (r= >0.80; p<0.05). For contributors to RIA performance, significant correlations were identified between all baseline fitness characteristics and RIA (r = >0.71; p < 0.05). Reliability of the RIA protocol was near perfect with excellent intra-class correlation coefficient (0.87-0.97), good ratio limits of agreement (×/÷ 1.05-1.06) and low coefficient of variations (1.77-1.97%). Conclusions: The current study has demonstrated the RIA to be a simple, valid and reliable field test that can provide coaches with information about their athlete's ability to sustain high intensity, multi-directional running efforts.
Collapse
Affiliation(s)
- Anthony Nicholls
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Anthony Leicht
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Jonathan Connor
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Aaron Halliday
- Physical Education, Kirwan State Highschool, Kirwan, Queensland, 4817, Australia
| | - Kenji Doma
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| |
Collapse
|
24
|
Nicholls A, Leicht A, Connor J, Halliday A, Doma K. Convergent validity and reliability of a novel repeated agility protocol in junior rugby league players. F1000Res 2020; 9:624. [PMID: 34804503 PMCID: PMC8577058 DOI: 10.12688/f1000research.23129.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 04/05/2024] Open
Abstract
Background:: Rugby league involves repeated, complex, and high intensity change-of-direction (COD) movements with no existing test protocols that specifically assesses these multiple physical fitness components simultaneously. Thus, the current study examined the convergent validity of a repeated Illinois Agility (RIA) protocol with the repeated T-agility protocol, and the repeatability of the RIA protocol in adolescent Rugby League players. Furthermore, aerobic capacity and anaerobic and COD performance were assessed to determine whether these physical qualities were important contributors to the RIA protocol. Methods: Twenty-two junior Rugby League players completed 4 sessions with each separated by 7 days. Initially, physical fitness characteristics at baseline (i.e., Beep test,, countermovement jump, 30-m sprint, single-effort COD and repeated sprint ability [RSA]) were assessed. The second session involved a familiarisation of RIA and repeated T-agility test (RTT) protocols. During the third and fourth sessions, participants completed the RIA and RTT protocols in a randomised, counterbalanced design to examine the validity and test-retest reliability of these protocols. Results: For convergent validity, significant correlations were identified between RIA and RTT performances (r= >0.80; p<0.05). For contributors to RIA performance, significant correlations were identified between all baseline fitness characteristics and RIA (r = >0.71; p < 0.05). Reliability of the RIA protocol was near perfect with excellent intra-class correlation coefficient (0.87-0.97), good ratio limits of agreement (×/÷ 1.05-1.06) and low coefficient of variations (1.8-2.0%). Conclusions: The current study has demonstrated the RIA to be a simple, valid and reliable field test for RL athletes that can provide coaches with information about their team's ability to sustain high intensity, multi-directional running efforts.
Collapse
Affiliation(s)
- Anthony Nicholls
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Anthony Leicht
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Jonathan Connor
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Aaron Halliday
- Physical Education, Kirwan State Highschool, Kirwan, Queensland, 4817, Australia
| | - Kenji Doma
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| |
Collapse
|
25
|
Nicholls A, Leicht A, Connor J, Halliday A, Doma K. Convergent validity and reliability of a novel repeated agility protocol in junior rugby league players. F1000Res 2020; 9:624. [PMID: 34804503 PMCID: PMC8577058 DOI: 10.12688/f1000research.23129.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 11/21/2022] Open
Abstract
Background: : Rugby league involves repeated, complex, and high intensity change-of-direction (COD) movements with no existing test protocols that specifically assesses these multiple physical fitness components simultaneously. Thus, the current study examined the convergent validity of a repeated Illinois Agility (RIA) protocol with the repeated T-agility protocol, and the repeatability of the RIA protocol in adolescent Rugby League players. Furthermore, aerobic capacity and anaerobic and COD performance were assessed to determine whether these physical qualities were important contributors to the RIA protocol. Methods: Twenty-two junior Rugby League players completed 4 sessions with each separated by 7 days. Initially, physical fitness characteristics at baseline (i.e., Multi-stage Shuttle test, countermovement jump, 30-m sprint, single-effort COD and repeated sprint ability [RSA]) were assessed. The second session involved a familiarisation of RIA and repeated T-agility test (RTT) protocols. During the third and fourth sessions, participants completed the RIA and RTT protocols in a randomised, counterbalanced design to examine the validity and test-retest reliability of these protocols. Results: For convergent validity, significant correlations were identified between RIA and RTT performances (r= >0.80; p<0.05). For contributors to RIA performance, significant correlations were identified between all baseline fitness characteristics and RIA (r = >0.71; p < 0.05). Reliability of the RIA protocol was near perfect with excellent intra-class correlation coefficient (0.87-0.97), good ratio limits of agreement (×/÷ 1.05-1.06) and low coefficient of variations (1.8-2.0%). Conclusions: The current study has demonstrated the RIA to be a simple, valid and reliable field test for RL athletes that can provide coaches with information about their team's ability to sustain high intensity, multi-directional running efforts.
Collapse
Affiliation(s)
- Anthony Nicholls
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Anthony Leicht
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Jonathan Connor
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| | - Aaron Halliday
- Physical Education, Kirwan State Highschool, Kirwan, Queensland, 4817, Australia
| | - Kenji Doma
- Sport & Exercise Science, James Cook University, Douglas, Queensland, 4814, Australia
| |
Collapse
|
26
|
Training Considerations for Optimising Endurance Development: An Alternate Concurrent Training Perspective. Sports Med 2020; 49:669-682. [PMID: 30847824 DOI: 10.1007/s40279-019-01072-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Whilst the "acute hypothesis" was originally coined to describe the detrimental effects of concurrent training on strength development, similar physiological processes may occur when endurance training adaptations are compromised. There is a growing body of research indicating that typical resistance exercises impair neuromuscular function and endurance performance during periods of resistance training-induced muscle damage. Furthermore, recent evidence suggests that the attenuating effects of resistance training-induced muscle damage on endurance performance are influenced by exercise intensity, exercise mode, exercise sequence, recovery and contraction velocity of resistance training. By understanding the influence that training variables have on the level of resistance training-induced muscle damage and its subsequent attenuating effects on endurance performance, concurrent training programs could be prescribed in such a way that minimises fatigue between modes of training and optimises the quality of endurance training sessions. Therefore, this review will provide considerations for concurrent training prescription for endurance development based on scientific evidence. Furthermore, recommendations will be provided for future research by identifying training variables that may impact on endurance development as a result of concurrent training.
Collapse
|
27
|
Arsoniadis GG, Bogdanis GC, Terzis G, Toubekis AG. Acute Resistance Exercise: Physiological and Biomechanical Alterations During a Subsequent Swim Training Session. Int J Sports Physiol Perform 2020; 15:105-112. [PMID: 31034259 DOI: 10.1123/ijspp.2018-0897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To examine the acute effect of dry-land strength training on physiological and biomechanical parameters in a subsequent swim training session. METHODS Twelve male swimmers (age: 19.0 [2.2] y, peak oxygen uptake: 65.5 [11.4] mL·kg-1·min-1) performed a 5 × 200-m test with progressively increasing intensity. Blood lactate (BL) concentration was measured after each 200-m bout, and the speed corresponding to 4 mmol·L-1 (V4) was calculated. In the experimental (EXP) and control (CON) conditions, swimmers participated in a swim training session consisting of 1000-m warm-up, a bout of 10-second tethered swimming sprint, and 5 × 400 m at V4. In EXP condition, swimmers completed a dry-land strength training session (load: 85% of 1-repetition maximum) 15 minutes before the swimming session. In CON condition, swimmers performed the swimming session only. Oxygen uptake, BL concentration, arm-stroke rate, arm-stroke length, and arm-stroke efficiency were measured during the 5 × 400 m. RESULTS Force in the 10-second sprint was not different between conditions (P = .61), but fatigue index was higher in the EXP condition (P = .03). BL concentration was higher in EXP condition and showed large effect size at the fifth 400-m repetition compared with CON condition (6.4 [2.7] vs 4.6 [2.8] mmol·L-1, d = 0.63). During the 5 × 400 m, arm-stroke efficiency remained unchanged, arm-stroke length was decreased from the third repetition onward (P = .01), and arm-stroke rate showed a medium increment in EXP condition (d = 0.23). CONCLUSIONS Strength training completed 15 minutes before a swim training session caused moderate changes in biomechanical parameters and increased BL concentration during swimming. Despite these changes, swimmers were able to maintain force and submaximal speed during the endurance training session.
Collapse
|
28
|
Mota GR, Rightmire ZB, Martin JS, McDonald JR, Kavazis AN, Pascoe DD, Gladden LB. Ischemic preconditioning has no effect on maximal arm cycling exercise in women. Eur J Appl Physiol 2019; 120:369-380. [PMID: 31813045 DOI: 10.1007/s00421-019-04281-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/30/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE We investigated the effect of ischemic preconditioning (IPC) on performance of a 3 min maximal effort arm ergometer test in young women. METHODS Twenty healthy women (23.1 (SD 3.3) years) performed a 3 min maximal effort arm cycling exercise, preceded by IPC on both arms or SHAM in a counterbalanced randomized crossover design. Both blood flow (via high resolution ultrasound; n = 17) and muscle oxygenation/deoxygenation (via near infrared spectroscopy; n = 5) were measured throughout the IPC/SHAM. Performance and perceptual/physiological (i.e., heart rate, blood lactate, rating of perceived exertion, and triceps brachialis oxygenation) parameters were recorded during the exercise test. RESULTS Occlusion during IPC completely blocked brachial artery blood flow, decreased oxygenated hemoglobin/myoglobin (Δ[oxy(Hb + Mb)]), and increased deoxygenated Hb/Mb (Δ[deoxy(Hb + Mb)]). There were no differences (P > 0.797) in performance (peak, mean, and end power output) or in any perceptual/physiological variables during the 3 min all-out test between IPC/SHAM. During exercise, Δ[oxy(Hb + Mb)] initially decreased with no differences (P ≥ 0.296) between conditions and returned towards baseline by the completion of the test while Δ[deoxy(Hb + Mb)] increased with no differences between conditions and remained elevated until completion of the test (P ≥ 0.755). CONCLUSIONS We verified the successful application of IPC via blood flow and NIRS measures but found no effects on performance of a 3 min maximal effort arm cranking test in young women.
Collapse
Affiliation(s)
- Gustavo R Mota
- Human Performance and Sport Research Group, Department of Sport Sciences, Institute of Health Sciences, Federal University of Triangulo Mineiro, Av. Tutunas, 490, Uberaba, MG, 38061-500, Brazil.
- School of Kinesiology, Auburn University, Auburn, AL, USA.
| | | | - Jeffrey S Martin
- School of Kinesiology, Auburn University, Auburn, AL, USA
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, USA
- Department of Physiology, Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN, USA
| | | | | | - David D Pascoe
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
29
|
Tsuk S, Netz Y, Dunsky A, Zeev A, Carasso R, Dwolatzky T, Salem R, Behar S, Rotstein A. The Acute Effect of Exercise on Executive Function and Attention: Resistance Versus Aerobic Exercise. Adv Cogn Psychol 2019; 15:208-215. [PMID: 32161629 PMCID: PMC6776756 DOI: 10.5709/acp-0269-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Acute aerobic exercise was shown to enhance such cognitive functions as executive function (EF) and attention. Acute resistance exercise was also shown to enhance cognitive functions, however, only few studies directly compared these two exercise modalities. The aim of this study was to evaluate the acute effect of a typical moderate intensity resistance exercise session as compared to a typical moderate intensity aerobic session, on executive function and attention. A counterbalanced repeated measures experimental design was applied. Forty physical education students (21 women; 19 men, age = 25.7±2.84 years) were tested before and after three sessions: aerobic, resistance, and control. Each session consisted of 30 minutes of exercise or a rest. Executive function and attention were assessed by components of the computerized Stroop Catch game and Go-NoGo cognitive tests. A two-way ANOVA showed a greater increase in attention scores after the resistance sessions (p < .05) compared to the control condition. Attention scores in the aerobic sessions showed a trend toward improvement but did not reach statistical significance. Scores of EF significantly increased, both after the resistance session and the aerobic session (p < .05), but not after rest in the control condition. Our findings show that an acute session of resistance exercise increased both Attention and EF test scores, while an aerobic exercise session improved only the EF scores.
Collapse
Affiliation(s)
- Sharon Tsuk
- The Zinman College of Physical Education and Sport Sciences, Wingate Institute, Israel
| | - Yael Netz
- The Zinman College of Physical Education and Sport Sciences, Wingate Institute, Israel
| | - Ayelet Dunsky
- The Zinman College of Physical Education and Sport Sciences, Wingate Institute, Israel
| | - Aviva Zeev
- The Zinman College of Physical Education and Sport Sciences, Wingate Institute, Israel
| | | | - Tzvi Dwolatzky
- Geriatric Unit, Rambam Health Care Campus; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, israel
| | - Riki Salem
- The Zinman College of Physical Education and Sport Sciences, Wingate Institute, Israel
| | - Shai Behar
- The Zinman College of Physical Education and Sport Sciences, Wingate Institute, Israel
| | - Arie Rotstein
- The Zinman College of Physical Education and Sport Sciences, Wingate Institute, Israel
| |
Collapse
|
30
|
Doma K, Nicholls A, Gahreman D, Damas F, Libardi CA, Sinclair W. The Effect of a Resistance Training Session on Physiological and Thermoregulatory Measures of Sub-maximal Running Performance in the Heat in Heat-Acclimatized Men. SPORTS MEDICINE-OPEN 2019; 5:21. [PMID: 31165339 PMCID: PMC6548784 DOI: 10.1186/s40798-019-0195-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND The current study examined the acute effects of a lower body resistance training (RT) session on physiological and thermoregulatory measures during a sub-maximal running protocol in the heat in heat-acclimatized men. Ten resistance-untrained men (age 27.4 ± 4.1 years; height 1.78 ± 0.06 m; body mass 76.8 ± 9.9 kg; peak oxygen uptake 48.2 ± 7.0 mL kg-1 min-1) undertook a high-intensity RT session at six-repetition maximum. Indirect muscle damage markers (i.e., creatine kinase [CK], delayed-onset muscle soreness [DOMS], and countermovement jump [CMJ]) were collected prior to, immediately post and 24 and 48 h after the RT session. The sub-maximal running protocol was performed at 70% of the ventilatory threshold, which was conducted prior to and 24 and 48 h following the RT session to obtain physiological and thermoregulatory measures. RESULTS The RT session exhibited significant increases in DOMS (p < 0.05; effect size [ES]: 1.41-10.53), whilst reduced CMJ (p < 0.05; ES: - 0.79-1.41) for 48 h post-exercise. There were no differences in CK (p > 0.05), although increased with moderate to large ES (0.71-1.12) for 48 h post-exercise. The physiological cost of running was increased for up to 48 h post-exercise (p < 0.05) with moderate to large ES (0.50-0.84), although no differences were shown in thermoregulatory measures (p > 0.05) with small ES (0.33). CONCLUSION These results demonstrate that a RT session impairs sub-maximal running performance for several days post-exercise, although thermoregulatory measures are unperturbed despite elevated muscle damage indicators in heat-acclimatized, resistance untrained men. Accordingly, whilst a RT session may not increase susceptibility to heat-related injuries in heat-acclimatized men during sub-maximal running in the heat, endurance sessions should be undertaken with caution for at least 48 h post-exercise following the initial RT session in resistance untrained men.
Collapse
Affiliation(s)
- Kenji Doma
- College of Healthcare Sciences, James Cook University, James Cook Drive, Rehab Sciences Building, Townsville, QLD, 4811, Australia.
| | - Anthony Nicholls
- College of Healthcare Sciences, James Cook University, James Cook Drive, Rehab Sciences Building, Townsville, QLD, 4811, Australia
| | - Daniel Gahreman
- Exercise and Sport Science, Charles Darwin University, Casuarina, Australia
| | - Felipe Damas
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Wade Sinclair
- College of Healthcare Sciences, James Cook University, James Cook Drive, Rehab Sciences Building, Townsville, QLD, 4811, Australia
| |
Collapse
|
31
|
Implications of Impaired Endurance Performance following Single Bouts of Resistance Training: An Alternate Concurrent Training Perspective. Sports Med 2018; 47:2187-2200. [PMID: 28702901 DOI: 10.1007/s40279-017-0758-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A single bout of resistance training induces residual fatigue, which may impair performance during subsequent endurance training if inadequate recovery is allowed. From a concurrent training standpoint, such carry-over effects of fatigue from a resistance training session may impair the quality of a subsequent endurance training session for several hours to days with inadequate recovery. The proposed mechanisms of this phenomenon include: (1) impaired neural recruitment patterns; (2) reduced movement efficiency due to alteration in kinematics during endurance exercise and increased energy expenditure; (3) increased muscle soreness; and (4) reduced muscle glycogen. If endurance training quality is consistently compromised during the course of a specific concurrent training program, optimal endurance development may be limited. Whilst the link between acute responses of training and subsequent training adaptation has not been fully established, there is some evidence suggesting that cumulative effects of fatigue may contribute to limiting optimal endurance development. Thus, the current review will (1) explore cross-sectional studies that have reported impaired endurance performance following a single, or multiple bouts, of resistance training; (2) identify the potential impact of fatigue on chronic endurance development; (3) describe the implications of fatigue on the quality of endurance training sessions during concurrent training, and (4) explain the mechanisms contributing to resistance training-induced attenuation on endurance performance from neurological, biomechanical and metabolic standpoints. Increasing the awareness of resistance training-induced fatigue may encourage coaches to consider modulating concurrent training variables (e.g., order of training mode, between-mode recovery period, training intensity, etc.) to limit the carry-over effects of fatigue from resistance to endurance training sessions.
Collapse
|
32
|
Pierce DR, Doma K, Raiff H, Golledge J, Leicht AS. Influence of Exercise Mode on Post-exercise Arterial Stiffness and Pressure Wave Measures in Healthy Adult Males. Front Physiol 2018; 9:1468. [PMID: 30459633 PMCID: PMC6232940 DOI: 10.3389/fphys.2018.01468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Exercise mode has been reported to be an important determinant of arterial stiffness and wave reflection changes following a brief bout of exercise with inconsistent results to date. This study examined the impact of exercise mode on arterial stiffness and pressure wave measures following acute aerobic exercise (AER), resistance exercise (RES), and a control (CON) condition with no exercise. Methods: In a randomized, cross-over, repeated measures design, 21 healthy adult males (26.7 ± 7.2 years) undertook three experimental intervention sessions: AER (30-min cycle ergometry at 70-75% maximum heart rate), RES (3 × 10 repetitions of six upper and lower body exercises at 80-90% of 10-repetition maximum) and CON (30-min seated rest). Measures of arterial stiffness and pressure waves, such as carotid-femoral pulse wave velocity (cf-PWV), augmentation index (AIx), AIx corrected for heart rate of 75 (AIx75), and forward wave (Pf), backward wave (Pb) and reflection magnitude, were assessed at Rest and at 10-min intervals for 60 min after the intervention sessions. Comparisons between interventions and over time were assessed via repeated measures ANOVA and post-hoc Tukey's tests. Results: No significant differences in cf-PWV were noted between the three interventions at rest or post-intervention. However, RES led to significantly greater post-intervention AIx, AIx75, Pf, and Pb compared to AER and CON with AIx75 also remaining significantly elevated throughout the post-intervention period. In contrast, AER resulted in a brief, significant elevation of AIx75 and no change in cf-PWV, Pf, Pb, and reflection magnitude. Conclusions: Exercise mode, specifically RES and AER, significantly influenced the time course of pressure wave reflection responses following a brief bout of exercise in healthy adult males. Distinct adjustments during exercise including changes in blood pressure and vasomotor tone may be key modulators of post-exercise arterial function. Identification of modal differences may assist in understanding the impact of exercise on cardiovascular function and the mechanisms by which exercise benefits vascular health.
Collapse
Affiliation(s)
- Doris R Pierce
- Sport & Exercise Science, James Cook University, Cairns, QLD, Australia
| | - Kenji Doma
- Sport & Exercise Science, James Cook University, Townsville, QLD, Australia
| | - Hayleigh Raiff
- Department of Health and Sport Science, University of Dayton, Dayton, OH, United States
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, QLD, Australia.,Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD, Australia
| | - Anthony S Leicht
- Sport & Exercise Science, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
33
|
Doma K, Leicht A, Sinclair W, Schumann M, Damas F, Burt D, Woods C. Impact of Exercise-Induced Muscle Damage on Performance Test Outcomes in Elite Female Basketball Players. J Strength Cond Res 2018; 32:1731-1738. [PMID: 28930877 DOI: 10.1519/jsc.0000000000002244] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Doma, K, Leicht, A, Sinclair, W, Schumann, M, Damas, F, Burt, D, and Woods, C. Impact of exercise-induced muscle damage on performance test outcomes in elite female basketball players. J Strength Cond Res 32(6): 1731-1738, 2018-The purpose of this study was 2-fold: first, to examine the impact of exercise-induced muscle damage (EIMD) on physical fitness qualities after a basketball-specific training session; second, to determine the reproducibility of the sport-specific performance measures in elite female basketball players. Ten elite female basketball players (age 25.6 ± 4.5 years; height 1.8 ± 0.7 m; and body mass 76.7 ± 8.3 kg) undertook a 90-minute training session involving repeated jumping, sprinting, and game-simulated training. Indirect muscle damage markers (i.e., countermovement jump, delayed onset of muscle soreness [DOMS], and creatine kinase [CK]) and sport-specific performances (i.e., change-of-direction [COD] test and suicide test [ST]) were measured before and 24 hours after training. These measures were also collected 1 week after training to determine the reproducibility of the basketball-specific performance measures. A significant reduction in lower-body power (-3.5 ± 3.6%; p ≤ 0.05), while a significant increase in DOMS (46.7 ± 26.3%; p ≤ 0.05) and CK (57.6 ± 23.1%; p ≤ 0.05) was observed 24 hours after exercise. The ST was also significantly increased (2.1 ± 1.8%; p ≤ 0.05), although no difference was observed for COD (0.1 ± 2.0%; p > 0.05). The intraclass correlation coefficient and coefficient of variation for the COD and ST were 0.81 and 0.90, respectively, and 1.9 and 1.5%, respectively. In conclusion, appropriate recovery should be considered the day after basketball-specific training sessions in elite basketball players. Furthermore, this study showed the usability of performance measures to detect changes during periods of EIMD, with acceptable reproducibility and minimal measurement error.
Collapse
Affiliation(s)
- Kenji Doma
- Sport & Exercise Science, James Cook University, Townsville, Australia
| | - Anthony Leicht
- Sport & Exercise Science, James Cook University, Townsville, Australia
| | - Wade Sinclair
- Sport & Exercise Science, James Cook University, Townsville, Australia
| | - Moritz Schumann
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
| | - Felipe Damas
- School of Physical Education and Sport, University of São Paolo, São Paolo, Brazil
| | - Dean Burt
- Sport and Exercise Science, Staffordshire University, Staffordshire, England
| | - Carl Woods
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
34
|
Doma K, Schumann M, Leicht AS, Heilbronn BE, Damas F, Burt D. The repeated bout effect of traditional resistance exercises on running performance across 3 bouts. Appl Physiol Nutr Metab 2017; 42:978-985. [PMID: 28553994 DOI: 10.1139/apnm-2017-0214] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study investigated the repeated bout effect of 3 typical lower body resistance-training sessions on maximal and submaximal effort running performance. Twelve resistance-untrained men (age, 24 ± 4 years; height, 1.81 ± 0.10 m; body mass, 79.3 ± 10.9 kg; peak oxygen uptake, 48.2 ± 6.5 mL·kg-1·min-1; 6-repetition maximum squat, 71.7 ± 12.2 kg) undertook 3 bouts of resistance-training sessions at 6-repetitions maximum. Countermovement jump (CMJ), lower-body range of motion (ROM), muscle soreness, and creatine kinase (CK) were examined prior to and immediately, 24 h (T24), and 48 h (T48) after each resistance-training bout. Submaximal (i.e., below anaerobic threshold (AT)) and maximal (i.e., above AT) running performances were also conducted at T24 and T48. Most indirect muscle damage markers (i.e., CMJ, ROM, and muscle soreness) and submaximal running performance were significantly improved (P < 0.05; 1.9%) following the third resistance-training bout compared with the second bout. Whilst maximal running performance was also improved following the third bout (P < 0.05; 9.8%) compared with other bouts, the measures were still reduced by 12%-20% versus baseline. However, the increase in CK was attenuated following the second bout (P < 0.05) with no further protection following the third bout (P > 0.05). In conclusion, the initial bout induced the greatest change in CK; however, at least 2 bouts were required to produce protective effects on other indirect muscle damage markers and submaximal running performance measures. This suggests that submaximal running sessions should be avoided for at least 48 h after resistance training until the third bout, although a greater recovery period may be required for maximal running sessions.
Collapse
Affiliation(s)
- Kenji Doma
- a College of Healthcare Sciences, James Cook University, Townsville QLD4811, Australia
| | - Moritz Schumann
- b Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne 50933, Germany
| | - Anthony Scott Leicht
- a College of Healthcare Sciences, James Cook University, Townsville QLD4811, Australia
| | | | - Felipe Damas
- c School of Physical Education and Sport, University of São Paulo, São Paulo 05508, Brazil
| | - Dean Burt
- d Sport and Exercise Science, Staffordshire University, Staffordshire WS12 4JH, England
| |
Collapse
|
35
|
Hayter KJ, Doma K, Schumann M, Deakin GB. The comparison of cold-water immersion and cold air therapy on maximal cycling performance and recovery markers following strength exercises. PeerJ 2016; 4:e1841. [PMID: 27069791 PMCID: PMC4824899 DOI: 10.7717/peerj.1841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/02/2016] [Indexed: 12/21/2022] Open
Abstract
This study examined the effects of cold-water immersion (CWI) and cold air therapy (CAT) on maximal cycling performance (i.e. anaerobic power) and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10) and female (n = 10) participants were randomised into either: CWI (15 min in 14 °C water to iliac crest) or CAT (15 min in 14 °C air) immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively). Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24), 48 (T48) and 72 (T72) h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05). However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90), T48 (8% ± 2%, ES = 0.64) and T72 (8% ± 7%, ES = 0.76). The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone.
Collapse
Affiliation(s)
- Kane J Hayter
- Sport and Exercise Science, James Cook University , Townsville, Queensland , Australia
| | - Kenji Doma
- Sport and Exercise Science, James Cook University , Townsville, Queensland , Australia
| | - Moritz Schumann
- Department of Biology of Physical Activity, University of Jyväskylä , Jyväskylä , Finland
| | - Glen B Deakin
- Sport and Exercise Science, James Cook University , Townsville, Queensland , Australia
| |
Collapse
|
36
|
Doma K, Deakin G. The Acute Effect of Concurrent Training on Running Performance Over 6 Days. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2015; 86:387-396. [PMID: 26241612 DOI: 10.1080/02701367.2015.1053104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
PURPOSE This study examined the effects of strength training on alternating days and endurance training on consecutive days on running performance for 6 days. METHODS Sixteen male and 8 female moderately trained individuals were evenly assigned into concurrent-training (CCT) and strength-training (ST) groups. The CCT group undertook strength training on alternating days combined with endurance training on consecutive days for 6 days. One week later, the CCT group conducted 3 consecutive days of endurance training only to determine whether fatigue would be induced with endurance training alone (CCT-Con). Endurance training was undertaken to induce endurance-training stimulus and to measure the cost of running (CR), rating of perceived exertion (RPE), and time to exhaustion (TTE). The ST group undertook 3 strength-training sessions on alternating days. Maximal voluntary contraction (MVC), rating of muscle soreness (RMS), and rating of muscle fatigue (RMF) were collected prior to each strength and endurance session. RESULTS For the CCT group, small differences were primarily found in CR and RPE (ES = 0.17-0.41). However, moderate-to-large reductions were found for TTE and MVC (ES = 0.65-2.00), whereas large increases in RMS and RMF (ES = 1.23-2.49) were found prior to each strength- and endurance-training session. Small differences were found in MVC for the ST group (ES = 0.11) and during CCT-Con for the CCT group (ES = 0.15-0.31). CONCLUSION Combining strength training on alternating days with endurance training on consecutive days impairs MVC and running performance at maximal effort and increases RMS and RMF over 6 days.
Collapse
|