1
|
Cogliati M, Cudicio A, Benedini M, Cabral HV, Negro F, Reggiani C, Orizio C. Influence of age on force and re-lengthening dynamics after tetanic stimulation withdrawal in the tibialis anterior muscle. Eur J Appl Physiol 2023; 123:1825-1836. [PMID: 37071199 PMCID: PMC10363076 DOI: 10.1007/s00421-023-05198-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE During alternate movements across a joint, the changeover from one direction of rotation to the opposite may be influenced by the delay and rate of tension reduction and the compliance to re-lengthening of the previously active muscle group. Given the aging process may affect the above-mentioned factors, this work aimed to compare the dynamics of both the ankle torque decline and muscle re-lengthening, mirrored by mechanomyogram (MMG), in the tibialis anterior because of its important role in gait. METHODS During the relaxation phase, after a supramaximal 35 Hz stimulation applied at the superficial motor point, in 20 young (Y) and 20 old (O) subjects, the torque (T) and MMG dynamics characteristics were measured. RESULTS The T and MMG analysis provided: (I) the beginning of the decay after cessation of stimulation (T: 22.51 ± 5.92 ms [Y] and 51.35 ± 15.21 ms [O]; MMG: 27.38 ± 6.93 ms [Y] and 61.41 ± 18.42 ms [O]); (II) the maximum rate of reduction (T: - 110.4 ± 45.56 Nm/s [Y] and - 52.72 ± 32.12 Nm/s [O]; MMG: - 24.47 ± 10.95 mm/s [Y] and - 13.76 ± 6.54 mm/s [O]); (III) the muscle compliance, measuring the MMG reduction of every 10% reduction of torque (bin 20-10%: 15.69 ± 7.5[Y] and 10.8 ± 3.3 [O]; bin 10-0%: 22.12 ± 10.3 [Y] and 17.58 ± 5.6 [O]). CONCLUSION Muscle relaxation results are different in Y and O and can be monitored by a non-invasive method measuring physiological variables of torque and re-lengthening dynamics at the end of the electromechanical coupling previously induced by the neuromuscular stimulation.
Collapse
Affiliation(s)
- M. Cogliati
- Department of Clinical and Experimental Sciences, University of Brescia Viale Europa, 11, 25123 Brescia, Italy
| | - A. Cudicio
- Department of Clinical and Experimental Sciences, University of Brescia Viale Europa, 11, 25123 Brescia, Italy
| | - M. Benedini
- Department of Clinical and Experimental Sciences, University of Brescia Viale Europa, 11, 25123 Brescia, Italy
| | - H. V. Cabral
- Department of Clinical and Experimental Sciences, University of Brescia Viale Europa, 11, 25123 Brescia, Italy
| | - F. Negro
- Department of Clinical and Experimental Sciences, University of Brescia Viale Europa, 11, 25123 Brescia, Italy
- Centre of Research on the Neuromuscular Function and the Adapted Motor Activity, University of Brescia Viale Europa, 11, 25123 Brescia, Italy
| | - C. Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Science and Research Center, ZRS, Koper, Slovenia
| | - C. Orizio
- Department of Clinical and Experimental Sciences, University of Brescia Viale Europa, 11, 25123 Brescia, Italy
- Centre of Research on the Neuromuscular Function and the Adapted Motor Activity, University of Brescia Viale Europa, 11, 25123 Brescia, Italy
| |
Collapse
|
2
|
FUKUHARA S, OKA H. Pedaling stroke length effects on the muscle mechanical and electrical activity during recumbent cycling. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2021. [DOI: 10.23736/s0393-3660.20.04516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Uwamahoro R, Sundaraj K, Subramaniam ID. Assessment of muscle activity using electrical stimulation and mechanomyography: a systematic review. Biomed Eng Online 2021; 20:1. [PMID: 33390158 PMCID: PMC7780389 DOI: 10.1186/s12938-020-00840-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
This research has proved that mechanomyographic (MMG) signals can be used for evaluating muscle performance. Stimulation of the lost physiological functions of a muscle using an electrical signal has been determined crucial in clinical and experimental settings in which voluntary contraction fails in stimulating specific muscles. Previous studies have already indicated that characterizing contractile properties of muscles using MMG through neuromuscular electrical stimulation (NMES) showed excellent reliability. Thus, this review highlights the use of MMG signals on evaluating skeletal muscles under electrical stimulation. In total, 336 original articles were identified from the Scopus and SpringerLink electronic databases using search keywords for studies published between 2000 and 2020, and their eligibility for inclusion in this review has been screened using various inclusion criteria. After screening, 62 studies remained for analysis, with two additional articles from the bibliography, were categorized into the following: (1) fatigue, (2) torque, (3) force, (4) stiffness, (5) electrode development, (6) reliability of MMG and NMES approaches, and (7) validation of these techniques in clinical monitoring. This review has found that MMG through NMES provides feature factors for muscle activity assessment, highlighting standardized electromyostimulation and MMG parameters from different experimental protocols. Despite the evidence of mathematical computations in quantifying MMG along with NMES, the requirement of the processing speed, and fluctuation of MMG signals influence the technique to be prone to errors. Interestingly, although this review does not focus on machine learning, there are only few studies that have adopted it as an alternative to statistical analysis in the assessment of muscle fatigue, torque, and force. The results confirm the need for further investigation on the use of sophisticated computations of features of MMG signals from electrically stimulated muscles in muscle function assessment and assistive technology such as prosthetics control.
Collapse
Affiliation(s)
- Raphael Uwamahoro
- Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Tunggal, Malaysia
- Regional Centre of Excellence in Biomedical Engineering and E-Health, University of Rwanda, PO BOX 4285, Kigali, Rwanda
| | - Kenneth Sundaraj
- Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Tunggal, Malaysia.
| | - Indra Devi Subramaniam
- Pusat Bahasa & Pembangunan Insan, Universiti Teknikal Malaysia Melaka, Tunggal, Malaysia
| |
Collapse
|
4
|
Son J, Rymer WZ. Longer electromechanical delay in paretic triceps surae muscles during voluntary isometric plantarflexion torque generation in chronic hemispheric stroke survivors. J Electromyogr Kinesiol 2020; 56:102475. [PMID: 33242750 DOI: 10.1016/j.jelekin.2020.102475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/16/2020] [Accepted: 09/17/2020] [Indexed: 11/28/2022] Open
Abstract
Electromechanical delay (EMD) is the time delay between the onset of muscle activity and the onset of force/joint torque. This delay appears to be linked to muscular contraction efficiency. However, to our knowledge, limited evidence is available regarding the magnitude of the EMD in stroke-impaired muscles. Accordingly, this study aims to quantify the EMD in both paretic and non-paretic triceps surae muscles of chronic hemispheric stroke survivors, and to investigate whether the EMD is related to voluntary force-generating capacity in this muscle group. Nine male chronic stroke survivors were asked to perform isometric plantarflexion contractions at different force levels and at different ankle joint angles ranging from maximum plantarflexion to maximum dorsiflexion. The surface electromyograms were recorded from triceps surae muscles. The longest EMD among triceps surae muscles was chosen as the EMD for each side. Our results revealed that the EMD in paretic muscles was significantly longer than in non-paretic muscles. Moreover, both paretic and non-paretic muscles showed a negative correlation between the EMD and maximum torque-generating capacity. In addition, there was a strong positive relationship between the EMD and shear wave speed in paretic muscles as well as a negative relationship between the EMD and passive ankle joint range of motion. These findings imply that the EMD may be a useful biomarker, in part, associated with contractile and material properties in stroke-impaired muscles.
Collapse
Affiliation(s)
- Jongsang Son
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago), Chicago, IL, United States; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - William Zev Rymer
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago), Chicago, IL, United States; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
5
|
Cè E, Coratella G, Bisconti AV, Venturelli M, Limonta E, Doria C, Rampichini S, Longo S, Esposito F. Neuromuscular versus Mechanical Stretch-induced Changes in Contralateral versus Ipsilateral Muscle. Med Sci Sports Exerc 2020; 52:1294-1306. [PMID: 31913244 DOI: 10.1249/mss.0000000000002255] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Whether or not the homologous contralateral muscle (CM) undergoes stretch-induced force reduction as the stretched muscle (SM) is still unclear. The neuromuscular and mechanical factors underlying the force reduction in CM and SM were investigated. METHODS Twenty-one participants underwent unilateral knee extensors passive stretching. In both CM and SM, before, immediately after (POST), 5 (POST5), and 10 min (POST10) after passive stretching, maximum voluntary contraction (MVC), peak force (pF), and voluntary activation (VA) were measured. During MVC, the electromyographic and mechanomyographic root mean square (EMG RMS and MMG RMS, respectively) was calculated in rectus femoris, vastus lateralis, and vastus medialis, together with M-wave. The total electromechanical delay (EMD), divided in time delay (Δt) EMG-MMG and Δt MMG-F was calculated. RESULTS In CM at POST, the decrease in MVC (-11%; 95% confidence interval [CI], -13 to -9; effect size [ES], -2.27) was accompanied by a fall in VA (-7%; 95% CI, -9 to -4; ES, -2.29), EMG RMS (range, -22% to -11%; ES, -3.92 to -2.25), MMG RMS (range, -10% to -8%; ES, -0.52 to -0.39) and an increase in Δt EMG-MMG (≈+10%; ES, 0.73 to 0.93). All changes returned to baseline at POST5. In SM, decrease in MVC (-19%; 95% CI, -24 to -18; ES, -3.08), pF (-25%; 95% CI, -28 to -22; ES, -4.90), VA (-10%; 95% CI, -11 to -9; ES, -5.71), EMG RMS (≈-33%; ES, -5.23 to -3.22) and rise in MMG RMS (range, +25% to +32%; ES, 4.21 to 4.98) and EMD (≈+28%; ES, 1.59 to 1.77) were observed at POST and persisted at POST10. No change in M-wave occurred. CONCLUSIONS The contralateral central motor drive stretch-induced inhibition seems to account for the force reduction in CM. In SM, both central inhibition and mechanical factors concurred.
Collapse
Affiliation(s)
| | - Giuseppe Coratella
- Department of Biomedical Sciences for Health (SCIBIS), Università degli Studi di Milano, Milan, ITALY
| | | | | | - Eloisa Limonta
- Department of Biomedical Sciences for Health (SCIBIS), Università degli Studi di Milano, Milan, ITALY
| | - Christian Doria
- Department of Biomedical Sciences for Health (SCIBIS), Università degli Studi di Milano, Milan, ITALY
| | - Susanna Rampichini
- Department of Biomedical Sciences for Health (SCIBIS), Università degli Studi di Milano, Milan, ITALY
| | - Stefano Longo
- Department of Biomedical Sciences for Health (SCIBIS), Università degli Studi di Milano, Milan, ITALY
| | | |
Collapse
|
6
|
Schaefer L, Bittmann F. Mechanotendography in Achillodynia shows reduced oscillation variability of pre-loaded Achilles tendon: a pilot study. Eur J Transl Myol 2020. [DOI: 10.4081/ejtm.2020.8983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study focuses on an innovative approach in measuring the mechanical oscillations of pre-loaded Achilles tendon by using Mechanotendography (MTG) during application of a short yet powerful mechanical pressure impact. This was applied on the forefoot from the plantar side in direction of dorsiflexion, while the subject stood on the ball of the forefoot on one leg. Participants with Achilles tendinopathy (AT; n = 10) were compared to healthy controls (Con; n = 10). Five trials were performed on each side of the body. For evaluation, two intervals after the impulse began (0-100ms; 30-100ms) were cut from the MTG and pressure raw signals. The intrapersonal variability between the five trials in both intervals were evaluated using the arithmetic mean and coefficient of variation of the mean correlation (Spearman rank correlation) and the normalized averaged mean distances, respectively. The AT-group showed a significantly reduced variability in MTG compared to the Con-group (from p = 0.006 to p = 0.028 for different parameters). The 95% confidence intervals (CI) of MTG results were disjoint, whereas the 95% CIs of the pressure signals were similar (p = 0.192 to p = 0.601). We suggest from this work that the variability of mechanical tendon oscillations could be an indicative parameter of an altered Achilles tendon functionality.
Collapse
|
7
|
Schaefer L, Bittmann F. Mechanotendography in Achillodynia shows reduced oscillation variability of pre-loaded Achilles tendon: a pilot study. Eur J Transl Myol 2020; 30:8983. [PMID: 32782763 PMCID: PMC7385694 DOI: 10.4081/ejtm.2019.8983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
The present study focuses on an innovative approach in measuring the mechanical oscillations of pre-loaded Achilles tendon by using Mechanotendography (MTG) during application of a short yet powerful mechanical pressure impact. This was applied on the forefoot from the plantar side in direction of dorsiflexion, while the subject stood on the ball of the forefoot on one leg. Participants with Achilles tendinopathy (AT; n = 10) were compared to healthy controls (Con; n = 10). Five trials were performed on each side of the body. For evaluation, two intervals after the impulse began (0-100ms; 30-100ms) were cut from the MTG and pressure raw signals. The intrapersonal variability between the five trials in both intervals were evaluated using the arithmetic mean and coefficient of variation of the mean correlation (Spearman rank correlation) and the normalized averaged mean distances, respectively. The AT-group showed a significantly reduced variability in MTG compared to the Con-group (from p = 0.006 to p = 0.028 for different parameters). The 95% confidence intervals (CI) of MTG results were disjoint, whereas the 95% CIs of the pressure signals were similar (p = 0.192 to p = 0.601). We suggest from this work that the variability of mechanical tendon oscillations could be an indicative parameter of an altered Achilles tendon functionality.
Collapse
Affiliation(s)
- Laura Schaefer
- Regulative Physiology and Prevention, Department of Sport and Health Sciences, University of Potsdam, Germany
| | - Frank Bittmann
- Regulative Physiology and Prevention, Department of Sport and Health Sciences, University of Potsdam, Germany
| |
Collapse
|
8
|
Vavrinsky E, Subjak J, Donoval M, Wagner A, Zavodnik T, Svobodova H. Application of Modern Multi-Sensor Holter in Diagnosis and Treatment. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2663. [PMID: 32392697 PMCID: PMC7273207 DOI: 10.3390/s20092663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Modern Holter devices are very trendy tools used in medicine, research, or sport. They monitor a variety of human physiological or pathophysiological signals. Nowadays, Holter devices have been developing very fast. New innovative products come to the market every day. They have become smaller, smarter, cheaper, have ultra-low power consumption, do not limit everyday life, and allow comfortable measurements of humans to be accomplished in a familiar and natural environment, without extreme fear from doctors. People can be informed about their health and 24/7 monitoring can sometimes easily detect specific diseases, which are normally passed during routine ambulance operation. However, there is a problem with the reliability, quality, and quantity of the collected data. In normal life, there may be a loss of signal recording, abnormal growth of artifacts, etc. At this point, there is a need for multiple sensors capturing single variables in parallel by different sensing methods to complement these methods and diminish the level of artifacts. We can also sense multiple different signals that are complementary and give us a coherent picture. In this article, we describe actual interesting multi-sensor principles on the grounds of our own long-year experiences and many experiments.
Collapse
Affiliation(s)
- Erik Vavrinsky
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia
| | - Jan Subjak
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
| | - Martin Donoval
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
| | - Alexandra Wagner
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia; (A.W.); (H.S.)
| | - Tomas Zavodnik
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (J.S.); (M.D.); (T.Z.)
| | - Helena Svobodova
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia; (A.W.); (H.S.)
| |
Collapse
|
9
|
Jacunski M, Rafferty GF. The effects of hypoxia and fatigue on skeletal muscle electromechanical delay. Exp Physiol 2020; 105:842-851. [PMID: 32134528 DOI: 10.1113/ep088180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the mechanisms underlying impaired muscular endurance and accelerated fatigue during acute hypoxia? What is the main finding and its importance? Hypoxia had no effect on the electrochemical latency associated with muscle contraction elicited by supramaximal electrical motor nerve stimulation in vivo. This provides greater insight into the effects of hypoxia and fatigue on the mechanisms of muscle contraction in vivo. ABSTRACT Acute hypoxia impairs muscle endurance and accelerates fatigue, but the underlying mechanisms, including any effects on muscle electrical activation, are incompletely understood. Electromyographic, mechanomyographic and force signals, elicited by common fibular nerve stimulation, were used to determine electromechanical delay (EMDTOT ) of the tibialis anterior muscle in normoxia and hypoxia ( F I O 2 0.125) at rest and following fatiguing ankle dorsiflexor exercise (60% maximum voluntary contraction, 5 s on, 3 s off) in 12 healthy participants (mean (SD) age 27.4 (9.0) years). EMDTOT was determined from electromyographic to force signal onset, electrical activation latency from electromyographic to mechanomyographic (EMDE-M ) and mechanical latency from mechanomyographic to force (EMDM-F ). Twitch force fell significantly following fatiguing exercise in normoxia (46.8 (14.7) vs. 20.6 (14.3) N, P = 0.0002) and hypoxia (52.9 (15.4) vs. 28.8 (15.2) N, P = 0.0006). No effect of hypoxia on twitch force at rest was observed. Fatiguing exercise resulted in significant increases in mean (SD) EMDTOT in normoxia (Δ 4.7 (4.57) ms P = 0.0152) and hypoxia (Δ 3.7 (4.06) ms P = 0.0384) resulting from increased mean (SD) EMDM-F only (normoxia Δ 4.1 (4.1) ms P = 0.0391, hypoxia Δ 3.4 (3.6) ms P = 0.0303). Mean (SD) EMDE-M remained unchanged during normoxic (Δ 0.6 (1.08) ms) and hypoxic (Δ 0.25 (0.75) ms) fatiguing exercise. No differences in percentage change from baseline for twitch force, EMDTOT , EMDE-M and EMDM-F between normoxic and hypoxic fatigue conditions were observed. Hypoxia in isolation or in combination with fatigue had no effect on the electrochemical latency associated with electrically evoked muscle contraction.
Collapse
Affiliation(s)
- Mark Jacunski
- Guy's, King's & St Thomas' School of Medical Education, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Gerrard F Rafferty
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
10
|
Cè E, Longo S, Limonta E, Coratella G, Rampichini S, Esposito F. Peripheral fatigue: new mechanistic insights from recent technologies. Eur J Appl Physiol 2019; 120:17-39. [DOI: 10.1007/s00421-019-04264-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
|
11
|
Chen B, Zi B, Qin L, Pan Q. State-of-the-art research in robotic hip exoskeletons: A general review. J Orthop Translat 2019; 20:4-13. [PMID: 31908928 PMCID: PMC6939102 DOI: 10.1016/j.jot.2019.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
Ageing population is now a global challenge, where physical deterioration is the common feature in elderly people. In addition, the diseases, such as spinal cord injury, stroke, and injury, could cause a partial or total loss of the ability of human locomotion. Thus, assistance is necessary for them to perform safe activities of daily living. Robotic hip exoskeletons are able to support ambulatory functions in elderly people and provide rehabilitation for the patients with gait impairments. They can also augment human performance during normal walking, loaded walking, and manual handling of heavy-duty tasks by providing assistive force/torque. In this article, a systematic review of robotic hip exoskeletons is presented, where biomechanics of the human hip joint, pathological gait pattern, and common approaches to the design of robotic hip exoskeletons are described. Finally, limitations of the available robotic hip exoskeletons and their possible future directions are discussed, which could serve a useful reference for the engineers and researchers to develop robotic hip exoskeletons with practical and plausible applications in geriatric orthopaedics. The translational potential of this article The past decade has witnessed a remarkable progress in research and development of robotic hip exoskeletons. Our aim is to summarize recent developments of robotic hip exoskeletons for the engineers, clinician scientists and rehabilitation personnel to develop efficient robotic hip exoskeletons for practical and plausible applications.
Collapse
Affiliation(s)
- Bing Chen
- School of Mechanical Engineering, Hefei University of Technology, Hefei, China
- Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, China University of Mining and Technology, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bin Zi
- School of Mechanical Engineering, Hefei University of Technology, Hefei, China
- Corresponding author. Hefei University of Technology, Room 301, Gewu Building, Tunxi Road, Hefei, Anhui Province, 230009, China.
| | - Ling Qin
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qiaosheng Pan
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
12
|
Lohr C, Schmidt T, Medina-Porqueres I, Braumann KM, Reer R, Porthun J. Diagnostic accuracy, validity, and reliability of Tensiomyography to assess muscle function and exercise-induced fatigue in healthy participants. A systematic review with meta-analysis. J Electromyogr Kinesiol 2019; 47:65-87. [DOI: 10.1016/j.jelekin.2019.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/16/2019] [Accepted: 05/03/2019] [Indexed: 02/04/2023] Open
|
13
|
Differences in electromechanical delay components induced by sex, age and physical activity level: new insights from a combined electromyographic, mechanomyographic and force approach. SPORT SCIENCES FOR HEALTH 2019. [DOI: 10.1007/s11332-019-00563-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Carr JC, Beck TW, Ye X, Wages NP. Mechanomyographic responses for the biceps brachii are associated with failure times during isometric force tasks. Physiol Rep 2018; 6:e13590. [PMID: 29464902 PMCID: PMC5820423 DOI: 10.14814/phy2.13590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 11/24/2022] Open
Abstract
In order to characterize the physiological adjustments within the neuromuscular system that contribute to task failure, this study examined the surface mechanomyographic (MMG) response during maximal and submaximal isometric force tasks of the elbow flexors sustained to failure. The time and frequency components of the MMG signal have shown to be influenced by motor unit activation patterns as well as tetanus. Therefore, it was hypothesized that the rate of change for the MMG response would associate with failure times and would be reduced to a similar degree between the two tasks. The isometric force tasks were performed by the dominant elbow flexors of twenty healthy males (age: 25 ± 4 years) and MMG was collected from the biceps brachii. Regression analyses were used to model the relationships between the rates of change for MMG versus failure times. There were high levels of interindividual variability in the response patterns, yet the models demonstrated significant negative associations between the rate of change for the MMG responses and failure times during both tasks (R2 = 0.41-0.72, P < 0.05). Similarly, the mean MMG amplitude and frequency values were reduced to comparable levels at the failure point of the two tasks. The results of this study demonstrated that force failure is associated with the rate of diminution in the properties of the muscle force twitch.
Collapse
Affiliation(s)
- Joshua C. Carr
- Biophysics LaboratoryDepartment of Health & Exercise ScienceUniversity of OklahomaNormanOklahoma
| | - Travis W. Beck
- Biophysics LaboratoryDepartment of Health & Exercise ScienceUniversity of OklahomaNormanOklahoma
| | - Xin Ye
- Neuromuscular LaboratoryDepartment of Health, Exercise Science & Recreation ManagementUniversity of MississippiUniversityMississippi
| | - Nathan P. Wages
- Ohio Musculoskeletal and Neurological InstituteDepartment of Biomedical SciencesOhio UniversityAthensOhio
| |
Collapse
|
15
|
Cè E, Longo S, McCoy E, Bisconti AV, Tironi D, Limonta E, Rampichini S, Rabuffetti M, Esposito F. Acute effects of direct inhibitory pressure over the biceps brachii myotendinous junction on skeletal muscle activation and force output. J Electromyogr Kinesiol 2017; 37:25-34. [PMID: 28866370 DOI: 10.1016/j.jelekin.2017.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/27/2017] [Accepted: 08/08/2017] [Indexed: 01/21/2023] Open
Abstract
Force (F) reduction is reported with myotendinous junction (MTJ) manipulation. Autogenic inhibition reflex (AIR) activation is supposed to be the main mechanism. Still, its role remains unclear. The study aimed at assessing the effects of MTJ direct inhibitory pressure (DIP) on neuromuscular activation and F in the elbow flexor (agonist) and extensor (antagonist) muscles. After maximum voluntary contraction (MVC) assessment, thirty-five participants randomly performed submaximal contractions at 20, 40, 60, and 80% MVC. Electromyographic (EMG), mechanomyographic (MMG), and F signals were recorded. Protocol was repeated under (i) DIP (10-s pressure on the biceps brachii MTJ) with the elbow at 120° (DIP120), (ii) DIP with the elbow at 180° (DIP180), and (iii) without DIP (Ctrl). Electromechanical delay (EMD) components, EMG and MMG root mean square (RMS), and rate of force development (RFD) were calculated. Independently from the angle, DIP induced decrements in MVC, RFD, and RMS of EMG and MMG signals and lengthened the EMD components in agonist muscles (P<0.05). The DIP-induced decrease in F output of the agonist muscles seems to be possibly due to a concomitant impairment of the neuromuscular activation and a transient decrease in stiffness. After DIP, the antagonist muscle displayed no changes; therefore, the intervention of AIR remains questionable.
Collapse
Affiliation(s)
- Emiliano Cè
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy
| | - Stefano Longo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy.
| | - Emily McCoy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy; Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, United States
| | - Angela Valentina Bisconti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy
| | - Davide Tironi
- IRCCS Don Gnocchi Foundation, Via Capecelatro 66, 20148 Milan, Italy
| | - Eloisa Limonta
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy
| | - Susanna Rampichini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy
| | - Marco Rabuffetti
- IRCCS Don Gnocchi Foundation, Via Capecelatro 66, 20148 Milan, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy; IRCCS Don Gnocchi Foundation, Via Capecelatro 66, 20148 Milan, Italy
| |
Collapse
|
16
|
Mugali RR, Mansoor F, Parwiz S, Ahmad F, Safi N, Higgins-Steele A, Varkey S. Improving immunization in Afghanistan: results from a cross-sectional community-based survey to assess routine immunization coverage. BMC Public Health 2017; 17:290. [PMID: 28376806 PMCID: PMC5379688 DOI: 10.1186/s12889-017-4193-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
Background Despite progress in recent years, Afghanistan is lagging behind in realizing the full potential of immunization. The country is still endemic for polio transmission and measles outbreaks continue to occur. In spite of significant reductions over the past decade, the mortality rate of children under 5 years of age continues to remain high at 91 per 1000 live births. Methods The study was a descriptive community-based cross sectional household survey. The survey aimed to estimate the levels of immunization coverage at national and province levels. Specific objectives are to: establish valid baseline information to monitor progress of the immunization program; identify reasons why children are not immunized; and make recommendations to enhance access and quality of immunization services in Afghanistan. The survey was carried out in all 34 provinces of the country, with a sample of 6125 mothers of children aged 12–23 months. Results Nationally, 51% of children participating in the survey received all doses of each antigen irrespective of the recommended date of immunization or recommended interval between doses. About 31% of children were found to be partially vaccinated. Reasons for partial vaccination included: place to vaccinate child too far (23%), not aware of the need of vaccination (17%), no faith in vaccination (16%), mother was too busy (15%), and fear of side effects (11%). Conclusion The innovative mechanism of contracting out delivery of primary health care services in Afghanistan, including immunization, to non-governmental organizations is showing some positive results in quickly increasing coverage of essential interventions, including routine immunization. Much ground still needs to be covered with proper planning and management of resources in order to improve the immunization coverage in Afghanistan and increase survival and health status of its children.
Collapse
Affiliation(s)
- Raveesha R Mugali
- United Nations Children's Fund, UNOCA Compound, UNICEF Afghanistan Country Office, Jalalabad Road, Kabul, Afghanistan.
| | - Farooq Mansoor
- The Health Protection and Research Organization (HPRO), Kabul, Afghanistan
| | | | - Fazil Ahmad
- United Nations Children's Fund, UNOCA Compound, UNICEF Afghanistan Country Office, Jalalabad Road, Kabul, Afghanistan
| | | | - Ariel Higgins-Steele
- United Nations Children's Fund, UNOCA Compound, UNICEF Afghanistan Country Office, Jalalabad Road, Kabul, Afghanistan
| | - Sherin Varkey
- United Nations Children's Fund, UNOCA Compound, UNICEF Afghanistan Country Office, Jalalabad Road, Kabul, Afghanistan
| |
Collapse
|
17
|
Esposito F, Cè E, Rampichini S, Monti E, Limonta E, Fossati B, Meola G. Electromechanical delays during a fatiguing exercise and recovery in patients with myotonic dystrophy type 1. Eur J Appl Physiol 2017; 117:551-566. [PMID: 28194519 DOI: 10.1007/s00421-017-3558-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/24/2017] [Indexed: 01/08/2023]
Abstract
PURPOSE The partitioning of the electromechanical delay by an electromyographic (EMG), mechanomyographic (MMG) and force combined approach can provide further insight into the electrochemical and mechanical processes involved with skeletal muscle contraction and relaxation. The aim of the study was to monitor by this combined approach the changes in delays' electrochemical and mechanical components throughout a fatiguing task and during recovery in patients with myotonic dystrophy type 1 (DM1), who present at the skeletal muscle level fibres rearrangement, muscle weakness and myotonia, especially in the distal muscles. METHODS After assessing maximum voluntary contraction (MVC), 14 male patients with DM1 and 14 healthy controls (HC) performed a fatiguing exercise at 50% MVC until exhaustion. EMG, MMG, and force signals were recorded from tibialis anterior and vastus lateralis muscles. The electromechanical delay during contraction (DelayTOT) and relaxation (R-DelayTOT) components, EMG and MMG root mean square (RMS) and mean frequency (MF) were calculated off-line. RESULTS The fatiguing exercise duration was similar in both groups. In patients with DM1, delays components were significantly longer compared to HC, especially in the distal muscle during relaxation. Delays components recovered quickly from the fatiguing exercise in HC than in patients with DM1 in both muscles. CONCLUSIONS The alterations in delays observed in DM1 during the fatiguing exercise may indicate that also the lengthening of the electrochemical and mechanical processes during contraction and relaxation could play a role in explaining exercise intolerance in this pathology.
Collapse
Affiliation(s)
- Fabio Esposito
- Department of Biomedical Sciences for Health (SCIBIS), Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy. .,IRCCS Fondazione don Gnocchi, Centro di Medicina dello Sport, via Capecelatro 66, 20148, Milan, Italy.
| | - Emiliano Cè
- Department of Biomedical Sciences for Health (SCIBIS), Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Susanna Rampichini
- Department of Biomedical Sciences for Health (SCIBIS), Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Elena Monti
- Department of Biomedical Sciences for Health (SCIBIS), Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Eloisa Limonta
- Department of Biomedical Sciences for Health (SCIBIS), Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Barbara Fossati
- IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese (MI), Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health (SCIBIS), Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy.,IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese (MI), Italy
| |
Collapse
|