1
|
Yin M, Deng S, Chen Z, Zhang B, Zheng H, Bai M, Li H, Zhang X, Deng J, Liu Q, Little JP, Li Y. Exercise snacks are a time-efficient alternative to moderate-intensity continuous training for improving cardiorespiratory fitness but not maximal fat oxidation in inactive adults: a randomized controlled trial. Appl Physiol Nutr Metab 2024; 49:920-932. [PMID: 38569204 DOI: 10.1139/apnm-2023-0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The aims of this study were (1) to determine how stair-climbing-based exercise snacks (ES) compared to moderate-intensity continuous training (MICT) for improving cardiorespiratory fitness (CRF), and (2) to explore whether ES could improve maximal fat oxidation rate (MFO) in inactive adults. Healthy, young, inactive adults (n: 42, age: 21.6 ± 2.3 years, BMI: 22.5 ± 3.6 kg·m-2, peak oxygen uptake (VO2peak): 33.6 ± 6.3 mL·kg-1·min-1) were randomly assigned to ES, MICT, or Control. ES (n = 14) and MICT (n = 13) groups performed three sessions per week over 6 weeks, while the control group (n = 15) maintained their habitual lifestyle. ES involved 3 × 30 s "all-out" stair-climbing (6 flight, 126 steps, and 18.9 m total height) bouts separated by >1 h rest, and MICT involved 40 min × 60%-70% HRmax stationary cycling. A significant group × time interaction was found for relative VO2peak (p < 0.05) with ES significantly increasing by 7% compared to baseline (MD = 2.5 mL·kg-1·min-1 (95% CI = 1.2, 3.7), Cohen's d = 0.44), while MICT had no significant effects (MD = 1.0 mL·kg-1·min-1 (-1.1, 3.2), Cohen's d = 0.17), and Control experienced a significant decrease (MD = -1.7 mL·kg-1·min-1 (-2.9, -0.4), Cohen's d = 0.26). MFO was unchanged among the three groups (group × time interaction, p > 0.05 for all). Stair climbing-based ES are a time-efficient alternative to MICT for improving CRF among inactive adults, but the tested ES intervention appears to have limited potential to increase MFO.
Collapse
Affiliation(s)
- Mingyue Yin
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Shengji Deng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Zhili Chen
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Boyi Zhang
- Department of Physical Education, Exercise and Health Technology Center, Shanghai Jiao Tong University, Shanghai, China
| | - Huakun Zheng
- School of Physical Education, Sichuan Agriculture University, Yaan, China
| | - Mingyang Bai
- School of Physical Education, Sichuan Agriculture University, Yaan, China
| | - Hansen Li
- Department of Physical Education, Southwest University, Chongqing, China
| | - Xing Zhang
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jianfeng Deng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qian Liu
- School of Physical Education, Sichuan Agriculture University, Yaan, China
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
| | - Yongming Li
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
- China Institute of Sport Science, Beijing, China
| |
Collapse
|
2
|
Atakan MM, Guzel Y, Shrestha N, Kosar SN, Grgic J, Astorino TA, Turnagol HH, Pedisic Z. Effects of high-intensity interval training (HIIT) and sprint interval training (SIT) on fat oxidation during exercise: a systematic review and meta-analysis. Br J Sports Med 2022; 56:bjsports-2021-105181. [PMID: 35859145 DOI: 10.1136/bjsports-2021-105181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the effects of high-intensity interval training (HIIT) and sprint interval training (SIT) on fat oxidation during exercise (FatOx) and how they compare with the effects of moderate-intensity continuous training (MICT). DESIGN Systematic review and meta-analysis. DATA SOURCES Academic Search Ultimate, CINAHL, Networked Digital Library of Theses and Dissertations, Open Access Theses and Dissertations, OpenDissertations, PubMed/MEDLINE, Scopus, SPORTDiscus and Web of Science. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Studies using a between-group design, involving adult participants who were not trained athletes, and evaluating effects of HIIT or SIT on FatOx (vs no exercise or MICT) were included. RESULTS Eighteen studies of fair-to-good quality were included; nine comparing HIIT or SIT with no exercise and eleven comparing HIIT or SIT with MICT. A significant pooled effect of these types of interval training on FatOx was found (mean difference in g/min (MD)=0.08; 95% confidence interval (CI) 0.04 to 0.12; p<0.001). Significant effects were found for exercise regimens lasting ≥4 weeks, and they increased with every additional week of training (β=0.01; 95% CI 0.00 to 0.02; p=0.003). HIIT and/or SIT were slightly more effective than MICT (MD=0.03; 95% CI 0.01 to 0.05; p=0.005). The effects on FatOx were larger among individuals with overweight/obesity. CONCLUSION Engaging in HIIT or SIT can improve FatOx, with larger effects expected for longer training regimens and individuals with overweight/obesity. While some effects seem small, they may be important in holistic approaches to enhance metabolic health and manage obesity.
Collapse
Affiliation(s)
- Muhammed M Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Yasemin Guzel
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Nipun Shrestha
- Evidence Integration, NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Sukran N Kosar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Todd A Astorino
- Department of Kinesiology, California State University-San Marcos, San Marcos, California, USA
| | - Huseyin H Turnagol
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Zeljko Pedisic
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Ahmadi A, Rajabi H, Baker J. High-intensity interval training improves fat oxidation during submaximal exercise in active young men. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aimed to examine the effects of four-weeks high-intensity interval training (HIIT) on fat oxidation responses during submaximal exercise in active young men. For this purpose, 20 active young men (who participated in the exercise three times per week) were divided into two groups, including a training group (age: 19.3±0.48 years, V̇O2peak 2.9±0.35 l/min, n=10) and a control group (age: 19.7±0.67 years, V̇O2peak 2.7±0.26 l/min, n=10). The training group performed high-intensity interval training for three sessions per week. Specifically, each session included 8-11 intensive cycling efforts comprising of 60 s duration. A 75 s low pedalling rate (30 W) was used as an active recovery between the intervals. Furthermore, a V̇O2peak test was performed prior to, at the end of two weeks and after the training period. Also, a 60 min constant cycling protocol was performed at ~60% V̇O2peak, in addition to the V̇O2peak test, before and after the training protocol. To assess plasma free fatty acids and glucose, blood samples were taken during a 60-min aerobic exercise prior to and following the training period. An increase (17.8%) in V̇O2peak was observed for the HIIT group after the training period compared to the control group (P<0.05). The HIIT group performed the 60 min sub-maximal exercise test at a lower percentage of V̇O2peak, and decreases in the respiratory exchange ratio were greater in the HIIT group than in the control group (P<0.05). Compared to the pre-test values and control group results, the HIIT group used less carbohydrate and more lipid oxidation during submaximal exercise (P<0.05). The present study’s results indicate that short-term low volume HIIT can increase aerobic capacity and fat oxidation during submaximal exercise.
Collapse
Affiliation(s)
- A. Ahmadi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Mirdamad Street, 1544733111 Tehran, Iran
| | - H. Rajabi
- Department of Exercise physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Mirdamad Street, 1544733111 Tehran, Iran
| | - J.S. Baker
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China P.R
| |
Collapse
|
4
|
Corral-Pérez J, Velázquez-Díaz D, Perez-Bey A, Montes-de-Oca-García A, Fernandez-Santos JR, Amaro-Gahete FJ, Jiménez-Pavón D, Casals C, Ponce-González JG. Accelerometer-measured physical activity and sedentary time are associated with maximal fat oxidation in young adults. Eur J Sport Sci 2021; 22:1595-1604. [PMID: 34304714 DOI: 10.1080/17461391.2021.1953149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present work aimed to examine the association between physical activity (PA) and sedentary behaviour with maximal fat oxidation (MFO) in young individuals. A total of 77 active adults (30 women; 22.8 ± 4.5 years) were included in this cross-sectional study in which PA and sedentary behaviour were measured using accelerometers for 7 consecutive days. PA was classified into different intensities (i.e. light, moderate, vigorous, and moderate-to-vigorous) and sedentary behaviour into sedentary time (i.e. time, number of bouts, and length of bouts) and sedentary breaks (i.e. time, number of breaks, and length of breaks). MFO was determined using a graded cycloergometer test through indirect calorimetry and relativized to lean mass (MFOLM) and lean leg mass (MFOLL). Positive associations were found for light and vigorous PA in relation with MFO, MFOLM and MFOLL, independently of cofounders (P ≤ 0.01). Moreover, a negative association was found between MFO and MFOLM and the length of sedentary bouts which was accentuated after adjusting by cardiorespiratory fitness (P ≤ 0.05). These results suggest that light and vigorous PA and sedentary behaviour are related to MFO during exercise. Despite this, further interventional studies are needed to clarify if increments of light and vigorous PA could enhance MFO in different populations.
Collapse
Affiliation(s)
- Juan Corral-Pérez
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Daniel Velázquez-Díaz
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Alejandro Perez-Bey
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain.,GALENO Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain
| | - Adrián Montes-de-Oca-García
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Jorge R Fernandez-Santos
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain.,GALENO Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain
| | - Francisco J Amaro-Gahete
- EFFECTS-262 Research group, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain.,PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| | - David Jiménez-Pavón
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Cristina Casals
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Jesús G Ponce-González
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| |
Collapse
|
5
|
Astorino TA, Oriente C, Peterson J, Alberto G, Castillo EE, Vasquez-Soto U, Ibarra E, Guise V, Castaneda I, Marroquin JR, Dargis R, Thum JS. Higher Peak Fat Oxidation During Rowing vs. Cycling in Active Men and Women. J Strength Cond Res 2021; 35:9-15. [PMID: 33136770 DOI: 10.1519/jsc.0000000000003888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Astorino, TA, Oriente, C, Peterson, J, Alberto, G, Castillo, EE, Vasquez-Soto, U, Ibarra, E, Guise, V, Castaneda, I, Marroquin, JR, Dargis, R, and Thum, JS. Higher peak fat oxidation during rowing vs. cycling in active men and women. J Strength Cond Res 35(1): 9-15, 2021-This study compared fat and carbohydrate oxidation (CHOOx) between progressive rowing and cycling. Initially, 22 active healthy adults (age = 27 ± 8 years) performed incremental cycling and rowing to volitional fatigue to assess maximal oxygen uptake (V̇o2max) and maximal heart rate (HRmax). The order of 2 subsequent sessions was randomized, performed 2 hours postmeal, and included a warm-up followed by three 8-minute stages of rowing or cycling at 60-65, 70-75, and 80-85 %HRmax. During exercise, power output was modified to maintain work rate in the desired range. Gas exchange data and blood samples were obtained to measure fat and CHOOx and blood lactate concentration. Fat oxidation (FOx) increased during exercise (p < 0.001) and there was a main effect of mode (p = 0.03) but no modeXintensity interaction (p = 0.33). Peak FOx was higher in response to rowing vs. cycling (0.23 ± 0.09 g·min-1 vs. 0.18 ± 0.07 g·min-1, p = 0.01). Carbohydrate oxidation increased during exercise (p < 0.001) but there was no effect of mode (p = 0.25) or modeXintensity interaction (p = 0.08). Blood lactate concentration was lower (p = 0.007) at the end of rowing vs. cycling (3.1 ± 1.0 mM vs. 3.9 ± 1.6 mM, d = 1.1). Prolonged rowing having equivalent calorie expenditure and intensity vs. cycling elicits higher peak FOx, which is likely attributed to greater muscle mass used during rowing.
Collapse
Affiliation(s)
- Todd A Astorino
- Department of Kinesiology, California State University, San Marcos, California
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Delivery of muscle-derived exosomal miRNAs induced by HIIT improves insulin sensitivity through down-regulation of hepatic FoxO1 in mice. Proc Natl Acad Sci U S A 2020; 117:30335-30343. [PMID: 33199621 DOI: 10.1073/pnas.2016112117] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Implementation of regular physical activity helps in the maintenance of a healthy metabolic profile both in humans and mice through molecular mechanisms not yet completely defined. Here, we show that high-intensity interval training (HIIT) modifies the microRNA (miRNA) profile of circulating exosomes in mice, including significant increases in miR-133a and miR-133b Importantly, treatment of sedentary mice with exosomes isolated from the plasma of trained mice improves glucose tolerance, insulin sensitivity, and decreases plasma levels of triglycerides. Moreover, exosomes isolated from the muscle of trained mice display similar changes in miRNA content, and their administration to sedentary mice reproduces the improvement of glucose tolerance. Exosomal miRNAs up-regulated by HIIT target insulin-regulated transcription factor forkhead box O1 (FoxO1) and, accordingly, expression of FoxO1 is decreased in the liver of trained and exosome-treated mice. Treatment with exosomes transfected with a miR-133b mimic or with a specific siRNA targeting FoxO1 recapitulates the metabolic effects observed in trained mice. Overall, our data suggest that circulating exosomes released by the muscle carry a specific miRNA signature that is modified by exercise and induce expression changes in the liver that impact whole-body metabolic profile.
Collapse
|
7
|
Amaro-Gahete FJ, De-la-O A, Jurado-Fasoli L, Sanchez-Delgado G, Ruiz JR, Castillo MJ. Metabolic rate in sedentary adults, following different exercise training interventions: The FIT-AGEING randomized controlled trial. Clin Nutr 2020; 39:3230-3240. [PMID: 32089371 DOI: 10.1016/j.clnu.2020.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/06/2020] [Accepted: 02/01/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS This study compares the influence of different exercise training programs on basal metabolic rate (BMR) and fat oxidation, in basal conditions (BFox) and during exercise (MFO), in sedentary, middle-aged adults. METHODS The study subjects of this 12 week-long, randomised controlled trial, were 71 middle-aged adults (age 53.5 ± 4.9 years; 52% women). Subjects were randomly assigned to one of the following groups: (1) no exercise, (2) concurrent training based on international physical activity recommendations (PAR group), (3) high intensity interval training (HIIT group), and (4) high intensity interval training plus whole-body electromyostimulation (HIIT + EMS group). Subject BMR, BFox and MFO were determined by indirect calorimetry before and after the intervention. RESULTS The HIIT + EMS subjects showed significant increases in BFox following the intervention compared with the control group (all P = 0.043); no such differences were seen in the PAR and HIIT compared with the control group (all P ≥ 0.1). A significant increase in post-intervention MFO was noted for the HIIT and HIIT + EMS group compared to the non-exercise control group (P < 0.05); no such difference was seen in the PAR group compared to the control group (all P ≥ 0.05). CONCLUSIONS Twelve weeks of high intensity interval training plus whole-body electromyostimulation may increase the BFox and MFO of middle-aged sedentary adults. These findings have important clinical implications; a well-designed high-intensity interval training program plus whole-body electromyostimulation might be followed to help combat the appearance of chronic metabolic diseases characterized by metabolic inflexibility in middle-aged sedentary adults, though it will be necessary to determine how long the effects last.
Collapse
Affiliation(s)
- Francisco J Amaro-Gahete
- EFFECTS-262 Research Group, Department of Medical Physiology, School of Medicine, University of Granada, Spain; PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain.
| | - Alejandro De-la-O
- EFFECTS-262 Research Group, Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Lucas Jurado-Fasoli
- EFFECTS-262 Research Group, Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain; Pennington Biomedical Research Center, LA USA
| | - Jonatan R Ruiz
- PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain
| | - Manuel J Castillo
- EFFECTS-262 Research Group, Department of Medical Physiology, School of Medicine, University of Granada, Spain
| |
Collapse
|
8
|
Guio de Prada V, Ortega JF, Morales-Palomo F, Ramirez-Jimenez M, Moreno-Cabañas A, Mora-Rodriguez R. Women with metabolic syndrome show similar health benefits from high-intensity interval training than men. PLoS One 2019; 14:e0225893. [PMID: 31821339 PMCID: PMC6903716 DOI: 10.1371/journal.pone.0225893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
High-intensity interval training (HIIT), is effective to improve cardiorespiratory fitness (CRF) and metabolic syndrome (MetS) components in adults. However, it is unclear if CRF and MetS components respond similarly in men and women after HIIT. For 16 weeks, 63 women (53±7 years) and 56 men (55±8 years) with MetS underwent a three day/week HIIT program. Bodyweight and composition, VO2MAX, surrogate parameters of CRF (Ventilatory threshold (VT), oxygen uptake efficiency slope (OUES) and VE/VCO2 slope), maximal rate of fat oxidation (MFO), and MetS components were assessed before and after training. All reported variables were analyzed by split-plot ANOVA looking for time by sex interactions. Before training men had higher absolute values of VO2MAX (58.6%), and MFO (24.6%), while lower body fat mass (10.5%) than women (all P<0.05). After normalization by fat-free mass (FFM), VO2MAX remained 16.6% higher in men (P<0.05), whereas differences in MFO disappeared (P = 0.292). After intervention VO2MAX (P<0.001), VO2 at VT (P<0.001), OUES (P<0.001), and VE/VCO2 slope (P<0.001) increased without differences by sex (P>0.05). After training MetS Z-score (P<0.001) improved without differences between men and women (P>0.05). From the MetS components, only blood pressure (P<0.001) and waist circumference (P<0.001) improved across time, without differences by sex. In both, women and men, changes in OUES (r = 0.685 and r = 0.445, respectively), and VO2 at VT (r = 0.378, and r = 0.445, respectively), correlated with VO2MAX. While only bodyweight changes correlated with MetS Z-score changes (r = 0.372, and = 0.300, respectively). Despite baseline differences, 16-weeks of HIIT similarly improved MetS, cardiorespiratory and metabolic fitness in women and men with MetS. This suggests that there are no restrictions due to sex on the benefits derived from an intense exercise program in the health of MetS participants. Trial Registration: clinicaltrials.gov NCT03019796
Collapse
Affiliation(s)
- Valle Guio de Prada
- Sports Medicine Center, Diputacion de Toledo, Toledo, Spain
- Exercise Physiology Laboratory, University of Castilla-La Mancha, Toledo, Spain
| | | | | | | | | | - Ricardo Mora-Rodriguez
- Exercise Physiology Laboratory, University of Castilla-La Mancha, Toledo, Spain
- * E-mail:
| |
Collapse
|
9
|
Diurnal Variation of Maximal Fat-Oxidation Rate in Trained Male Athletes. Int J Sports Physiol Perform 2019; 14:1140-1146. [DOI: 10.1123/ijspp.2018-0854] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 11/18/2022]
Abstract
Purpose: To analyze the diurnal variation of maximal fat oxidation (MFO) and the intensity that elicits MFO (Fatmax) in trained male athletes. Methods: A total of 12 endurance-trained male athletes age 24.7 (4.1) y participated in the study. The authors measured MFO, Fatmax, maximum oxygen uptake (VO2max), and VO2 percentage at ventilatory threshold 2 with a graded exercise protocol performed on 2 days separated by 1 wk. One test was performed in the morning and the other in the afternoon. The authors assessed the participants’ chronotype using the HÖME questionnaire. Results: MFO and Fatmax were greater in the afternoon than in the morning (Δ = 13%, P < .001 and Δ = 6%, P = .001, respectively), whereas there were similar VO2max and ventilatory threshold 2 in the morning, than in the afternoon test (Δ = 0.2%, P = .158 and Δ = 7%, P = .650, respectively). There was a strong positive association between VO2max and MFO in both morning and afternoon assessments (R2 = .783, P = .001 and R2 = .663, P < .001, respectively). Similarly, there was a positive association between VO2max and Fatmax in both morning and afternoon assessments (R2 = .406, P = .024 and R2 = .414, P = .026, respectively). Conclusion: MFO and Fatmax may partially explain some of the observed diurnal variation in the performance of endurance sports.
Collapse
|
10
|
Amaro-Gahete FJ, Sanchez-Delgado G, Jurado-Fasoli L, De-la-O A, Castillo MJ, Helge JW, Ruiz JR. Assessment of maximal fat oxidation during exercise: A systematic review. Scand J Med Sci Sports 2019; 29:910-921. [PMID: 30929281 DOI: 10.1111/sms.13424] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 11/27/2022]
Abstract
Maximal fat oxidation during exercise (MFO) and the exercise intensity eliciting MFO (Fatmax ) are considered biological markers of metabolic health and performance. A wide range of studies have been performed to increase our knowledge about their regulation by exercise and/or nutritional intervention. However, numerous data collection and analysis approaches have been applied, which may have affected the MFO and Fatmax estimation. We aimed to systematically review the available studies describing and/or comparing different data collection and analysis approach factors that could affect MFO and Fatmax estimation in healthy individuals and patients. Two independent researchers performed the search. We included all original studies in which MFO and/or Fatmax were estimated by indirect calorimetry through an incremental graded exercise protocol published from 2002 to 2019. This systematic review provides key information about the factors that could affect MFO and Fatmax estimation: ergometer type, metabolic cart used, warm-up duration and intensity, stage duration and intensities imposed in the graded exercise protocol, time interval selected for data analysis, stoichiometric equation selected to estimate fat oxidation, data analysis approach, time of the day when the test was performed, fasting time/previous meal before the test, and testing days for MFO/Fatmax and maximal oxygen uptake assessment. We suggest that researchers measuring MFO and Fatmax should take into account these key methodological issues that can considerably affect the accuracy, validity, and reliability of the measurement. Likewise, when comparing different studies, it is important to check whether the above-mentioned key methodological issues are similar in such studies to avoid ambiguous and unacceptable comparisons.
Collapse
Affiliation(s)
- Francisco J Amaro-Gahete
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain.,PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Lucas Jurado-Fasoli
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Alejandro De-la-O
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Manuel J Castillo
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonatan R Ruiz
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
11
|
Chrzanowski-Smith OJ, Edinburgh RM, Betts JA, Stokes KA, Gonzalez JT. Evaluation of a graded exercise test to determine peak fat oxidation in individuals with low cardiorespiratory fitness. Appl Physiol Nutr Metab 2018; 43:1288-1297. [DOI: 10.1139/apnm-2018-0098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The maximal capacity to utilise fat (peak fat oxidation, PFO) may have implications for health and ultra-endurance performance and is commonly determined by incremental exercise tests employing 3-min stages. However, 3-min stages may be insufficient to attain steady-state gas kinetics, compromising test validity. We assessed whether 4-min stages produce steady-state gas exchange and reliable PFO estimates in adults with peak oxygen consumption < 40 mL·kg−1·min−1. Fifteen participants (9 females) completed a graded test to determine PFO and the intensity at which this occurred (FATMAX). Three short continuous exercise sessions (SCE) were then completed in a randomised order, involving completion of the graded test to the stage (i) preceding, (ii) equal to (SCEequal), or (iii) after the stage at which PFO was previously attained, whereupon participants then continued to cycle for 10 min at that respective intensity. Expired gases were sampled at minutes 3–4, 5–6, 7–8, and 9–10. Individual data showed steady-state gas exchange was achieved within 4 min during SCEequal. Mean fat oxidation rates were not different across time within SCEequal nor compared with the graded test at FATMAX (both p > 0.05). However, the graded test displayed poor surrogate validity (SCEequal, minutes 3–4 vs. 5–6, 7–8, and 9–10) and day-to-day reliability (minutes 3–4, SCEequal vs. graded test) to determine PFO, as evident by correlations (range: 0.47–0.83) and typical errors and 95% limits of agreement (ranges: 0.03–0.05 and ±0.09–0.15 g·min−1, respectively). In conclusion, intraindividual variation in PFO is substantial despite 4-min stages establishing steady-state gas exchange in individuals with low fitness. Individual assessment of PFO may require multiple assessments.
Collapse
Affiliation(s)
- Oliver J. Chrzanowski-Smith
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Robert M. Edinburgh
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - James A. Betts
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Keith A. Stokes
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Javier T. Gonzalez
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
12
|
Methodological issues related to maximal fat oxidation rate during exercise. Eur J Appl Physiol 2018; 118:2029-2031. [DOI: 10.1007/s00421-018-3921-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 12/01/2022]
|
13
|
Maunder E, Plews DJ, Kilding AE. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front Physiol 2018; 9:599. [PMID: 29875697 PMCID: PMC5974542 DOI: 10.3389/fphys.2018.00599] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022] Open
Abstract
Using a short-duration step protocol and continuous indirect calorimetry, whole-body rates of fat and carbohydrate oxidation can be estimated across a range of exercise workloads, along with the individual maximal rate of fat oxidation (MFO) and the exercise intensity at which MFO occurs (Fatmax). These variables appear to have implications both in sport and health contexts. After discussion of the key determinants of MFO and Fatmax that must be considered during laboratory measurement, the present review sought to synthesize existing data in order to contextualize individually measured fat oxidation values. Data collected in homogenous cohorts on cycle ergometers after an overnight fast was synthesized to produce normative values in given subject populations. These normative values might be used to contextualize individual measurements and define research cohorts according their capacity for fat oxidation during exercise. Pertinent directions for future research were identified.
Collapse
Affiliation(s)
- Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | | | | |
Collapse
|
14
|
Changes in fat oxidation in response to various regimes of high intensity interval training (HIIT). Eur J Appl Physiol 2017; 118:51-63. [PMID: 29124325 DOI: 10.1007/s00421-017-3756-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/28/2017] [Indexed: 02/08/2023]
Abstract
Increased whole-body fat oxidation (FOx) has been consistently demonstrated in response to moderate intensity continuous exercise training. Completion of high intensity interval training (HIIT) and its more intense form, sprint interval training (SIT), has also been reported to increase FOx in different populations. An explanation for this increase in FOx is primarily peripheral adaptations via improvements in mitochondrial content and function. However, studies examining changes in FOx are less common in response to HIIT or SIT than those determining increases in maximal oxygen uptake which is concerning, considering that FOx has been identified as a predictor of weight gain and glycemic control. In this review, we explored physiological and methodological issues underpinning existing literature concerning changes in FOx in response to HIIT and SIT. Our results show that completion of interval training increases FOx in approximately 50% of studies, with the frequency of increased FOx higher in response to studies using HIIT compared to SIT. Significant increases in β-HAD, citrate synthase, fatty acid binding protein, or FAT/CD36 are likely responsible for the greater FOx seen in these studies. We encourage scientists to adopt strict methodological procedures to attenuate day-to-day variability in FOx, which is dramatic, and develop standardized procedures for assessing FOx, which may improve detection of changes in FOx in response to HIIT.
Collapse
|