1
|
Clavé P, Fabries P, Beauchamps V, Pontiggia A, David L, Van Beers P, Guillard M, Tavard B, Malgoyre A, Koulmann N, Gomez-Merino D, Sauvet F, Chennaoui M, Charlot K. Isolated and Combined Effects of Moderate Normobaric Hypoxia and Sleep Restriction on Energy Intake and Food Reward. Int J Sport Nutr Exerc Metab 2025; 35:51-60. [PMID: 39527952 DOI: 10.1123/ijsnem.2024-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Hypoxia (HY) and sleep deprivation have opposite effects on appetite. As HY may alter sleep, it may be informative to assess the accumulative effects of these two stressors on hunger, energy intake (EI), and food reward. Seventeen young, active, healthy males completed four 5-hr sessions in normoxia (NO) or normobaric HY (FIO2 = 13.6%, ∼3,500 m) after a night of habitual sleep (HS; total sleep time >6 hr) or sleep restriction (SR; total sleep time <3 hr). Subjective appetite was assessed regularly using visual analogic scales and EI during an ad libitum lunch after 3.5 hr of exposure. Food reward was assessed using the Leeds Food Preference Questionnaire just before the lunch. As expected, EI was lower for the HY-HS (4.32 ± 0.71 MJ; p = .048) and HY-SR (4.16 ± 0.68 MJ, p = .013) sessions than the NO-HS (4.90 ± 0.84 MJ) session without acute mountain sickness-related gastrointestinal symptoms. No significant effect of SR alone was observed (NO-SR: 4.40 ± 0.68 MJ). Subjective appetite was not affected. Explicit liking for high-fat foods was higher with SR than HS (main effect: p = .002) and implicit wanting for high-fat foods was higher for the NO-SR, HY-HS, and HY-SR sessions than the NO-HS session (p < .006). Thus, acute SR did not modify subjective appetite or EI despite the increasing food reward for high-fat foods and did not alter the HY-induced changes of appetite or food reward.
Collapse
Affiliation(s)
- Paco Clavé
- Département universitaire de médecine générale, Aix-Marseille Univ, Marseille, France
- Hôpital d'Instruction des Armées Sainte-Anne, Toulon, France
- École du Val-de-Grâce (EVDG), Paris, France
| | - Pierre Fabries
- École du Val-de-Grâce (EVDG), Paris, France
- Département de Recherche, Expertise et Formation Aéromédicales, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny Cedex, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Vincent Beauchamps
- École du Val-de-Grâce (EVDG), Paris, France
- Département de Recherche, Expertise et Formation Aéromédicales, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny Cedex, France
- URP 7330 VIFASOM, Hôpital Hôtel-Dieu, Université Paris Cité, Paris, France
| | - Anaïs Pontiggia
- Département de Recherche, Expertise et Formation Aéromédicales, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny Cedex, France
- URP 7330 VIFASOM, Hôpital Hôtel-Dieu, Université Paris Cité, Paris, France
| | - Louis David
- École du Val-de-Grâce (EVDG), Paris, France
- Hôpital d'Instruction des Armées Clermont-Tonnerre, Brest, France
| | - Pascal Van Beers
- Département de Recherche, Expertise et Formation Aéromédicales, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny Cedex, France
- URP 7330 VIFASOM, Hôpital Hôtel-Dieu, Université Paris Cité, Paris, France
| | - Mathias Guillard
- Département de Recherche, Expertise et Formation Aéromédicales, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny Cedex, France
- URP 7330 VIFASOM, Hôpital Hôtel-Dieu, Université Paris Cité, Paris, France
| | - Blandine Tavard
- Centre Interarmées du Soutien « Equipements Commissariats », Service du commissariat des armées, Rambouillet, France
| | - Alexandra Malgoyre
- École du Val-de-Grâce (EVDG), Paris, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, IRBA, Brétigny Cedex, France
| | - Nathalie Koulmann
- École du Val-de-Grâce (EVDG), Paris, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Danielle Gomez-Merino
- Département de Recherche, Expertise et Formation Aéromédicales, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny Cedex, France
- URP 7330 VIFASOM, Hôpital Hôtel-Dieu, Université Paris Cité, Paris, France
| | - Fabien Sauvet
- École du Val-de-Grâce (EVDG), Paris, France
- Département de Recherche, Expertise et Formation Aéromédicales, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny Cedex, France
- URP 7330 VIFASOM, Hôpital Hôtel-Dieu, Université Paris Cité, Paris, France
| | - Mounir Chennaoui
- URP 7330 VIFASOM, Hôpital Hôtel-Dieu, Université Paris Cité, Paris, France
| | - Keyne Charlot
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, IRBA, Brétigny Cedex, France
| |
Collapse
|
2
|
Murphey JT, Temple JL, Hostler D. Taste and Appetite at Altitude: A Comprehensive Review of Sensory and Hunger Modulation in High-Altitude Environments. High Alt Med Biol 2024. [PMID: 39122250 DOI: 10.1089/ham.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024] Open
Abstract
Introduction: Individuals living or working at high altitudes typically experience altered taste perceptions and reduced appetite. These changes can lead to nutritional deficiencies, affecting the energy balance and body composition. Methods: We conducted a nonsystematic review of PubMed to explore these phenomena and expound on their findings to offer additional insights. Results: Changes in taste and perception are common and typically lead to loss of mass. There are limited practical solutions to mitigate these challenges. Discussion: Gradual acclimatization and tailored nutritional strategies are required to enhance health and performance in high-altitude environments. This review provides critical insights into the intersection of altitude, nutrition, and health.
Collapse
Affiliation(s)
- Joshua T Murphey
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jennifer L Temple
- Nutrition and Health Research Laboratory, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York, USA
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
3
|
Barclay H, Mukerji S, Kayser B, Fan JL. Appetite, Hypoxia, and Acute Mountain Sickness: A 10-Hour Normobaric Hypoxic Chamber Study. High Alt Med Biol 2023; 24:329-335. [PMID: 37566519 DOI: 10.1089/ham.2023.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Barclay, Holly, Saptarshi Mukerji, Bengt Kayser, and Jui-Lin Fan. Appetite, hypoxia and acute mountain sickness: A 10-hour normobaric hypoxic chamber study. High Alt Med Biol. 24:329-335, 2023. Background: The effects of hypoxia and acute mountain sickness (AMS) on appetite and food preferences are moot, especially during the early phase of hypoxic exposure. We examined the effects of a 10-hour hypoxic exposure on appetite and food preference. Methods: We assessed appetite (hunger, satisfaction, fullness, perceived appetite, and lost appetite), food preferences (sweet, salty, savory, and fatty), and AMS (Lake Louise score) with questionnaires in 27 healthy individuals (13 women) across 10-hour exposures to normobaric normoxia (fraction of inspired O2 [FiO2]: 0.21) and normobaric hypoxia (FiO2: 0.12, equivalent of 5,000 m) in a randomized, single-blinded manner. Results and Conclusions: Compared with normoxia, hypoxia decreased hunger and appetite (p = 0.040 and <0.001, respectively), which was mediated by a decreased desire for sweet, salty, and fatty foods (p < 0.05 for all). AMS was associated with a decreased desire for sweet (R = -0.438, p = 0.032) and salty foods (R = -0.460, p = 0.024) and greater loss of appetite (R = -0.619, p = 0.018). Our findings suggest that acute hypoxia rapidly suppresses appetite and that AMS development further amplifies anorexia. Clinical Trial Registration Number: ACTRN12618000548235.
Collapse
Affiliation(s)
- Holly Barclay
- Nelson Hospital, Te Whatu Ora-Health New Zealand, Ministry of Health, Nelson, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Saptarshi Mukerji
- Emergency Department, Hutt Hospital, Te Whatu Ora-Health New Zealand, Lower Hutt, New Zealand
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jui-Lin Fan
- Department of Physiology, Faculty of Medical and Health Sciences, Manaaki Manawa-The Centre for Heart Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Quist JS, Klein AB, Færch K, Beaulieu K, Rosenkilde M, Gram AS, Sjödin A, Torekov S, Stallknecht B, Clemmensen C, Blond MB. Effects of acute exercise and exercise training on plasma GDF15 concentrations and associations with appetite and cardiometabolic health in individuals with overweight or obesity - A secondary analysis of a randomized controlled trial. Appetite 2023; 182:106423. [PMID: 36563967 DOI: 10.1016/j.appet.2022.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Growth Differentiation Factor 15 (GDF15) is seemingly involved in appetite control. Acute exercise increases GDF15 concentrations in lean humans, but acute and long-term effects of exercise on GDF15 in individuals with overweight/obesity are unknown. We investigated the effects of acute exercise and exercise training on GDF15 concentrations in individuals with overweight/obesity and associations with appetite and cardiometabolic markers. 90 physically inactive adults (20-45 years) with overweight/obesity were randomized to 6-months habitual lifestyle (CON, n=16), or isocaloric exercise of moderate (MOD, n=37) or vigorous intensity (VIG, n=37), 5 days/week. Testing was performed at baseline, 3, and 6 months. Plasma GDF15 concentrations, other metabolic markers, and subjective appetite were assessed fasted and in response to acute exercise before an ad libitum meal. Cardiorespiratory fitness, body composition, insulin sensitivity, and intraabdominal adipose tissue were measured. At baseline, GDF15 increased 18% (95%CI: 4; 34) immediately after acute exercise and 32% (16; 50) 60 min post-exercise. Fasting GDF15 increased 21% (0; 46) in VIG after 3 months (p=0.045), but this attenuated at 6 months (13% (-11; 43), p=0.316) and was unchanged in MOD (11% (-6; 32), p=0.224, across 3 and 6 months). Post-exercise GDF15 did not change in MOD or VIG. GDF15 was not associated with appetite or energy intake. Higher GDF15 was associated with lower cardiorespiratory fitness, central obesity, dyslipidemia, and poorer glycemic control. In conclusion, GDF15 increased in response to acute exercise but was unaffected by exercise training. Higher GDF15 concentrations were associated with a less favorable cardiometabolic profile but not with markers of appetite. This suggests that GDF15 increases in response to acute exercise independent of training state. Whether this has an impact on free-living energy intake and body weight management needs investigation.
Collapse
Affiliation(s)
- Jonas Salling Quist
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark; Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, DK-2730, Herlev, Denmark; School of Psychology, Faculty of Medicine & Health, University of Leeds, Woodhouse Lane, West Yorkshire, LS2 9JT, Leeds, United Kingdom.
| | - Anders Bue Klein
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, DK-2200, Copenhagen N, Denmark
| | - Kristine Færch
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark; Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, DK-2730, Herlev, Denmark
| | - Kristine Beaulieu
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, DK-2730, Herlev, Denmark; School of Psychology, Faculty of Medicine & Health, University of Leeds, Woodhouse Lane, West Yorkshire, LS2 9JT, Leeds, United Kingdom
| | - Mads Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark
| | - Anne Sofie Gram
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Fredederiksberg C, Denmark
| | - Signe Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark
| | - Bente Stallknecht
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, DK-2200, Copenhagen N, Denmark
| | - Martin Bæk Blond
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark; Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, DK-2730, Herlev, Denmark
| |
Collapse
|
5
|
Gatterer H, Roche J, Turner R, Vinetti G, Roveri G, Schlittler M, Kob M, Walzl A, Dal Cappello T, Debevec T, Siebenmann C. Changes in body mass, appetite-related hormones, and appetite sensation in women during 4 days of hypobaric hypoxic exposure equivalent to 3,500-m altitude. J Appl Physiol (1985) 2023; 134:133-141. [PMID: 36476162 PMCID: PMC9829471 DOI: 10.1152/japplphysiol.00369.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Altitude exposure may suppress appetite and hence provide a viable weight-loss strategy. While changes in food intake and availability as well as physical activity may contribute to altered appetite at altitude, herein we aimed to investigate the isolated effects of hypobaric hypoxia on appetite regulation and sensation. Twelve healthy women (age: 24.0 ± 4.2 years, body mass: 60.6 ± 7.0 kg) completed two 4-day sojourns in a hypobaric chamber, one in normoxia [PB = 761 mmHg, 262 m (NX)] and one in hypobaric hypoxia [PB = 493 mmHg (HH)] equivalent to 3,500-m altitude. Energy intake was standardized 4 days prior and throughout both sojourns. Plasma concentrations of leptin, acylated ghrelin, cholecystokinin (CCK), and cytokine growth differentiation factor 15 (GDF15) were determined every morning. Before and after breakfast, lunch, and dinner, appetite was assessed using visual analog scales. Body mass was significantly decreased following HH but not NX (-0.71 ± 0.32 kg vs. -0.05 ± 0.54 kg, condition: P < 0.001). Compared to NX, acylated ghrelin decreased throughout the HH sojourn (condition × time: P = 0.020), while leptin was higher throughout the entire HH sojourn (condition: P < 0.001). No differences were observed in CCK and GDF15 between the sojourns. Feelings of satiety and fullness were higher (condition: P < 0.001 and P = 0.013, respectively), whereas prospective food consumption was lower in HH than in NX (condition: P < 0.001). Our findings suggest that hypoxia exerts an anorexigenic effect on appetite-regulating hormones, suppresses subjective appetite sensation, and can induce weight loss in young healthy women. Among the investigated hormones, acylated ghrelin and leptin most likely explain the observed HH-induced appetite suppression.NEW & NOTEWORTHY This study investigated the effects of hypoxia on appetite regulation in women while strictly controlling for diet, physical activity, menstrual cycle, and environmental conditions. In young women, 4 days of altitude exposure (3,500 m) decreases body weight and circulating acylated ghrelin levels while preserving leptin concentrations. In line with the hormonal changes, altitude exposure induces alterations in appetite sensation, consisting of a decreased feeling of hunger and prospective food intake and an increased feeling of fullness and satiety.
Collapse
Affiliation(s)
- Hannes Gatterer
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy,2Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL–Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Johanna Roche
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Rachel Turner
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giovanni Vinetti
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giulia Roveri
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy,3Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Maja Schlittler
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Michael Kob
- 4Division of Clinical Nutrition, Bolzano Regional Hospital, Bolzano, Italy
| | - Anna Walzl
- 5Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Tomas Dal Cappello
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Tadej Debevec
- 6Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia,7Department of Automation, Biocybernetics, and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | | |
Collapse
|
6
|
Pramsohler S, Burtscher M, Rausch L, Netzer NC. Weight Loss and Fat Metabolism during Multi-Day High-Altitude Sojourns: A Hypothesis Based on Adipocyte Signaling. Life (Basel) 2022; 12:life12040545. [PMID: 35455035 PMCID: PMC9026814 DOI: 10.3390/life12040545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Several publications and random observations have reported weight loss in high-altitude sojourners of both sexes. This could be a result of multiple adaptations, which hypoxia and mountaineering provoke on a cellular and organic level. Several publications have discussed the effect on appetite-regulating hormones to be one of the main contributing factors. We aimed to review the available data and show the current state of knowledge regarding nutritional aspects in high altitude with a special focus on fatty dietary forms. To reach this aim we conducted a literature search via PubMed according to the PRISMA 2020 protocol to identify relevant studies. We found that very few studies cover this field with scientifically satisfying evidence. For final analysis, reviews as well as papers that were not clearly related to the topic were excluded. Six articles were included discussing hormonal influences and the impact of exercise on appetite regulation as well as genetic factors altering metabolic processes at altitude. Leptin expression seems to be the biggest contributor to appetite reduction at altitude with an initial increase followed by a decrease in the course of time at high altitude. Its expression is greatly dependent on the amount of white adipose tissue. Since the expression of leptin is associated with an increased β-oxidation of fatty acids, a high-fat diet could be advantageous at a certain time point in the course of high-altitude sojourns.
Collapse
Affiliation(s)
- Stephan Pramsohler
- Hermann Buhl Institute for Hypoxia and Sleep Medicine Research, 83043 Bad Aibling, Germany;
- Institute of Sports Science, University Innsbruck, 6020 Innsbruck, Austria; (M.B.); (L.R.)
- Department Medicine, Division of Sports Medicine and Rehabilitation, University Hospitals, 89070 Ulm, Germany
- Correspondence: ; Tel.: +49-(0)163-628-6366
| | - Martin Burtscher
- Institute of Sports Science, University Innsbruck, 6020 Innsbruck, Austria; (M.B.); (L.R.)
| | - Linda Rausch
- Institute of Sports Science, University Innsbruck, 6020 Innsbruck, Austria; (M.B.); (L.R.)
| | - Nikolaus C. Netzer
- Hermann Buhl Institute for Hypoxia and Sleep Medicine Research, 83043 Bad Aibling, Germany;
- Institute of Sports Science, University Innsbruck, 6020 Innsbruck, Austria; (M.B.); (L.R.)
- Department Medicine, Division of Sports Medicine and Rehabilitation, University Hospitals, 89070 Ulm, Germany
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bozen, Italy
| |
Collapse
|
7
|
Chen CY, Chou CC, Lin KX, Mündel T, Chen MT, Liao YH, Tsai SC. A Sports Nutrition Perspective on the Impacts of Hypoxic High-Intensity Interval Training (HIIT) on Appetite Regulatory Mechanisms: A Narrative Review of the Current Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031736. [PMID: 35162760 PMCID: PMC8835478 DOI: 10.3390/ijerph19031736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 01/11/2023]
Abstract
High-intensity interval training (HIIT) and low-oxygen exposure may inhibit the secretion of appetite-stimulating hormones, suppress appetite, and inhibit dietary intake. Physiological changes affecting appetite are frequent and include appetite hormone (ghrelin, leptin, PYY, and GLP-1) effects and the subjective loss of appetite, resulting in nutritional deficiencies. This paper is a narrative review of the literature to verify the HIIT effect on appetite regulation mechanisms and discusses the possible relationship between appetite effects and the need for high-intensity exercise training in a hypoxic environment. We searched MEDLINE/PubMed and the Web of Science databases, as well as English articles (gray literature by Google Scholar for English articles) through Google Scholar, and the searched studies primarily focused on the acute effects of exercise and hypoxic environmental factors on appetite, related hormones, and energy intake. In a general normoxic environment, regular exercise habits may have accustomed the athlete to intense training and, therefore, no changes occurred in their subjective appetite, but there is a significant effect on the appetite hormones. The higher the exercise intensity and the longer the duration, the more likely exercise is to cause exercise-induced appetite loss and changes in appetite hormones. It has not been clear whether performing HIIT in a hypoxic environment may interfere with the exerciser’s diet or the nutritional supplement intake as it suppresses appetite, which, in turn, affects and interferes with the recovery efficiency after exercise. Although appetite-regulatory hormones, the subjective appetite, and energy intake may be affected by exercise, such as hypoxia or hypoxic exercise, we believe that energy intake should be the main observable indicator in future studies on environmental and exercise interventions.
Collapse
Affiliation(s)
- Chung-Yu Chen
- Department of Exercise and Health Sciences, University of Taipei, Taipei City 111, Taiwan;
| | - Chun-Chung Chou
- Physical Education Office, National Taipei University of Technology, Taipei City 106, Taiwan;
| | - Ke-Xun Lin
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei City 112, Taiwan;
| | - Toby Mündel
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North 4442, New Zealand;
| | - Mu-Tsung Chen
- Department of Food and Beverage Management, Shih Chien University, Taipei City 104, Taiwan;
| | - Yi-Hung Liao
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei City 112, Taiwan;
- Correspondence: (Y.-H.L.); (S.-C.T.)
| | - Shiow-Chwen Tsai
- Institute of Sports Sciences, University of Taipei, Taipei City 111, Taiwan
- Correspondence: (Y.-H.L.); (S.-C.T.)
| |
Collapse
|
8
|
Urdampilleta A, León-Guereño P, Calleja-González J, Roche E, Mielgo-Ayuso J. Inclusion of resistance routines in a hypoxia training program does not interfere with prevention of acute mountain sickness. PHYSICIAN SPORTSMED 2021; 49:151-157. [PMID: 32578478 DOI: 10.1080/00913847.2020.1786344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Acclimatization strategies have been shown to be the best solutions to avoid acute mountain sickness. In this context, we have designed a protocol performed in hypoxia that includes resistance routines in combination with classical endurance training exercises with mountain trekking at mid altitude. METHODS Thirty-two volunteers preparing different mountain expeditions participated in the study distributed into two groups. One group trained at 2000 m, while another group trained at 4500-5800 m of simulated altitude in a hypoxic chamber. Acute mountain sickness was monitored by answering the Lake Louise Scale questionnaire during 2 sleeping sessions at 4800 m of simulated altitude at the beginning and at the end of the study. At the same time, oxygen saturation was determined in both groups to monitor physiologic adaptation. Data were also collected from the base camps in each expedition before ascension. RESULTS Acute mountain sickness incidence in the hypoxic group decreased from 100% at the beginning to 12% of individuals at the end of the training period, and it was 25% at the base camps of expeditions. On the other hand, the control group passed from 100% to 88% of individuals at the end of the intervention and 70% at the base camps. At the same time, acute mountain sickness severity was mild in the experimental group compared to moderate-severe in the control group. These data were supported by the oxygen saturation values, indicating adequate adaptation changes for altitude in the hypoxic group. CONCLUSION The inclusion of resistance workouts in combination with endurance exercises, all performed in hypoxic conditions, does not interfere with an optimal adaptation to altitude and to prevent acute mountain sickness.
Collapse
Affiliation(s)
| | | | - Julio Calleja-González
- Department of Physical Education and Sports, University of Basque Country (UPV-EHU), Vitoria, Spain
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernandez (Elche). Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain.,CIBERobn (Fisiopatología De La Obesidad Y La Nutrición CB12/03/30038) Instituto De Salud Carlos III, Spain
| | - Juan Mielgo-Ayuso
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Physical Therapy, University of Valladolid, Soria, Spain
| |
Collapse
|
9
|
Negative energy balance during military training: The role of contextual limitations. Appetite 2021; 164:105263. [PMID: 33862189 DOI: 10.1016/j.appet.2021.105263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 12/25/2022]
Abstract
During multiday training exercises, soldiers almost systematically face a moderate-to-large energy deficit, affecting their body mass and composition and potentially their physical and cognitive performance. Such energy deficits are explained by their inability to increase their energy intake during these highly demanding periods. With the exception of certain scenarios in which rations are voluntarily undersized to maximize the constraints, the energy content of the rations are often sufficient to maintain a neutral energy balance, suggesting that other limitations are responsible for such voluntary and/or spontaneous underconsumption. In this review, the overall aim was to present an overview of the impact of military training on energy balance, a context that stands out by its summation of specific limitations that interfere with energy intake. We first explore the impact of military training on the various components of energy balance (intake and expenditure) and body mass loss. Then, the role of the dimensioning of the rations (total energy content above or below energy expenditure) on energy deficits are addressed. Finally, the potential limitations inherent to military training (training characteristics, food characteristics, timing and context of eating, and the soldiers' attitude) are discussed to identify potential strategies to spontaneously increase energy intake and thus limit the energy deficit.
Collapse
|
10
|
Wang X, Lu Y, Zhu L, Zhang H, Feng L. Inhibition of miR-27b Regulates Lipid Metabolism in Skeletal Muscle of Obese Rats During Hypoxic Exercise by Increasing PPARγ Expression. Front Physiol 2020; 11:1090. [PMID: 32982800 PMCID: PMC7489097 DOI: 10.3389/fphys.2020.01090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Hypoxic exercise may represent a novel therapeutic strategy to reduce and prevent obesity through the regulation of lipid metabolism. During hypoxic exercise, the targeting of peroxisome proliferator-activated receptor gamma (PPARγ) by miR-27b has been proposed to be one of the mechanisms involved in the modulation of lipid metabolism. We have previously shown that miR-27b can repress PPARγ and lipid metabolism-associated factors, thereby affecting lipid metabolism during hypoxic exercise in a rat model of obesity. In the current study, we aimed to confirm the role of miR-27b in the regulation of lipid metabolism. First, miR-27b expression was either upregulated or downregulated through the injection of adeno-associated virus (AAV) 9 containing a miR-27b expression cassette or miR-27b-3p inhibitor, respectively, into the right gastrocnemius muscle of obese rats. The rats were then subjected to a 4-week program of hypoxic exercise, and a series of parameters related to lipid metabolism were systematically evaluated, including body composition, blood lipid levels, miR-27b RNA levels, and mRNA and protein levels of PPARγ and those of its downstream lipid metabolism-associated factors. No significant differences were found in body composition between rats expressing different levels of miR-27b. However, regarding blood lipids, miR-27b overexpression led to increased concentrations of triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and free fatty acids (FFAs), while inhibition of miR-27b decreased the total cholesterol (TC) level and increased that of high-density lipoprotein cholesterol (HDL-C). At the mRNA level, miR-27b overexpression downregulated the expression of Pparγ, but upregulated that of lipid metabolism-associated factors such as heart-type fatty acid-binding protein (H-FABP), fatty acid transport protein 1 (FATP1), adipose triglyceride lipase (ATGL), and lipoprotein lipase (LPL), whereas miR-27b inhibition elicited the opposite effect; however, inhibition of miR-27b led to elevated cholesterol 7 alpha-hydroxylase (CYP7A1) and fatty acid translocase 36 (CD36) levels. Similarly, at the protein level, miR-27b overexpression promoted a decrease in the concentration of PPARγ, whereas miR-27b inhibition led to an increase in PPARγ levels, as well as those of CYP7A1, CD36, ATGL, and LPL. Overall, our results indicated that hypoxic exercise regulates lipid metabolism via the miR-27b/PPARγ pathway and modulates ATGL and LPL expression through inducing their post-transcriptional modifications.
Collapse
Affiliation(s)
- Xuebing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,College of Physical Education, Guangxi University, Nanning, China
| | - Yingli Lu
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Lei Zhu
- School of Sports Science, Qufu Normal University, Qufu, China
| | - Haibo Zhang
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Lianshi Feng
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
11
|
Challenging energy balance - during sensitivity to food reward and modulatory factors implying a risk for overweight - during body weight management including dietary restraint and medium-high protein diets. Physiol Behav 2020; 221:112879. [PMID: 32199999 DOI: 10.1016/j.physbeh.2020.112879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 02/03/2023]
Abstract
Energy balance is a key concept in the etiology and prevalence of obesity and its co-morbidities, as well as in the development of possible treatments. If energy intake exceeds energy expenditure, a positive energy balance develops and the risk for overweight, obesity, and its co-morbidities increases. Energy balance is determined by energy homeostasis, and challenged by sensitivity to food reward, and to modulatory factors such as circadian misalignment, high altitude, environmental temperature, and physical activity. Food reward and circadian misalignment increase the risk for overweight and obesity, while high altitude, changes in environmental temperature, or physical activity modulate energy balance in different directions. Modulations by hypobaric hypoxia, lowering environmental temperature, or increasing physical activity have been hypothesized to contribute to body weight loss and management, yet no clear evidence has been shown. Dietary approach as part of a lifestyle approach for body weight management should imply reduction of energy intake including control of food reward, thereby sustaining satiety and fat free body mass, sustaining energy expenditure. Green tea catechins and capsaicin in red pepper in part meet these requirements by sustaining energy expenditure and increasing fat oxidation, while capsaicin also suppresses hunger and food intake. Protein intake of at least 0,8 g/kg body weight meets these requirements in that it, during decreased energy intake, increases food intake control including control of food reward, and counteracts adaptive thermogenesis. Prevention of overweight and obesity is underscored by dietary restraint, implying control of sensitivity to challenges to energy balance such as food reward and circadian misalignment. Treatment of overweight and obesity may be possible using a medium-high protein diet (0,8-1,2 g/kg), together with increased dietary restraint, while controlling challenges to energy balance.
Collapse
|
12
|
Griffiths A, Deighton K, Shannon OM, Boos C, Rowe J, Matu J, King R, O'Hara JP. Appetite and energy intake responses to breakfast consumption and carbohydrate supplementation in hypoxia. Appetite 2020; 147:104564. [PMID: 31870935 DOI: 10.1016/j.appet.2019.104564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE The purpose of experiment one was to determine the appetite, acylated ghrelin and energy intake response to breakfast consumption and omission in hypoxia and normoxia. Experiment two aimed to determine the appetite, acylated ghrelin and energy intake response to carbohydrate supplementation after both breakfast consumption and omission in hypoxia. METHODS In experiment one, twelve participants rested and exercised once after breakfast consumption and once after omission in normobaric hypoxia (4300 m: FiO2 ~11.7%) and normoxia. In experiment two, eleven participants rested and exercised in normobaric hypoxia (4300 m: FiO2 ~11.7%), twice after consuming a high carbohydrate breakfast and twice after breakfast omission. Participants consumed both a carbohydrate (1.2g·min-1 glucose) and a placebo beverage after breakfast consumption and omission. Measures of appetite perceptions and acylated ghrelin were taken at regular intervals throughout both experiments and an ad-libitum meal was provided post-exercise to quantify energy intake. RESULTS Breakfast consumption had no significant effect on post exercise energy intake or acylated ghrelin concentrations, despite reductions in appetite perceptions. As such, breakfast consumption increased total trial energy intake compared with breakfast omission in hypoxia (7136 ± 2047 kJ vs. 5412 ± 1652 kJ; p = 0.02) and normoxia (9276 ± 3058 vs. 6654 ± 2091 kJ; p < 0.01). Carbohydrate supplementation had no effect on appetite perceptions or acylated ghrelin concentrations after breakfast consumption or omission. As such, carbohydrate supplementation increased total energy intake after breakfast consumption (10222 ± 2831 kJ vs. 7695 ± 1970 kJ p < 0.01) and omission (8058 ± 2574 kJ vs. 6174 ± 2222 kJ p = 0.02). CONCLUSION Both breakfast consumption and carbohydrate supplementation provide beneficial dietary interventions for increasing energy intake in hypoxic conditions.
Collapse
Affiliation(s)
- Alex Griffiths
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Kevin Deighton
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Oliver M Shannon
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK; Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Leech Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| | - Chris Boos
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK; Department of Cardiology, Poole Hospital NHS Trust, Poole, BH15 2JB, UK.
| | - Joshua Rowe
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Jamie Matu
- School of Clinical and Applied Science, Leeds Beckett University, Leeds, LS1 3HE, UK.
| | - Roderick King
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - John P O'Hara
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| |
Collapse
|
13
|
Pereira LCR, Elliott SA, McCargar LJ, Bell RC, Robson PJ, Prado CM. Associations of appetite sensations and metabolic characteristics with weight retention in postpartum women. Appl Physiol Nutr Metab 2020; 45:875-885. [PMID: 32073907 DOI: 10.1139/apnm-2019-0809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Postpartum weight retention (PPWR) is an important risk factor for long-term obesity. Appetite may be a key factor regulating PPWR. The objectives of this study were to determine the associations between (i) PPWR and appetite; and (ii) appetite, lactation, and metabolic characteristics. Data from 49 women at 9 months postpartum contributed to this cross-sectional analysis. Energy expenditure was assessed in a whole-body calorimetry unit for 24 h. Appetite sensations were rated using visual analogue scales. Lactation (min/day) was measured using a 3-day breastfeeding diary. PPWR was negatively associated with fullness (β ± SE; R2 = -2.97 ± 0.72; 0.661; P < 0.001), and satiety (-2.75 ± 0.81; 0.617; P = 0.002), and was positively associated with hunger (2.19 ± 1.02; 0.548; P = 0.039), prospective food consumption (PFC; 2.19 ± 0.91; 0.562; P = 0.021), and composite appetite score (CAS; 0.34 ± 0.09; 0.632; P = 0.001). Lactation was associated with higher CAS (39.68 ± 15.56; 0.365; P = 0.015), hunger (3.56 ± 1.61; 0.308; P = 0.033), and PFC (4.22 ± 1.78; 0.314; P = 0.023), and with reduced sensations of fullness (-4.18 ± 1.94; 0.358; P = 0.038) and satiety (-3.83 ± 1.87; 0.295; P = 0.048). Lactation was associated with appetite, which in turn was related to PPWR. Appetite control should be explored to support postpartum weight management strategies. Novelty Postpartum weight retention was associated with appetite sensations, which were assessed throughout the day under conditions in which energy intake and expenditure were precisely matched. Lactation and other maternal metabolic factors, including carbohydrate oxidation and physical activity level may play a role in controlling appetite during the postpartum period.
Collapse
Affiliation(s)
- Leticia C R Pereira
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, 2-004 Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sarah A Elliott
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, 2-004 Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Linda J McCargar
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, 2-004 Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Rhonda C Bell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, 2-004 Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Paula J Robson
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, 2-004 Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada.,CancerControl Alberta, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| | - Carla M Prado
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, 2-004 Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | | |
Collapse
|
14
|
Margolis LM, Wilson MA, Whitney CC, Carrigan CT, Murphy NE, Radcliffe PN, Gwin JA, Church DD, Wolfe RR, Ferrando AA, Young AJ, Pasiakos SM. Acute hypoxia reduces exogenous glucose oxidation, glucose turnover, and metabolic clearance rate during steady-state aerobic exercise. Metabolism 2020; 103:154030. [PMID: 31778707 DOI: 10.1016/j.metabol.2019.154030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/30/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Exogenous carbohydrate oxidation is lower during steady-state aerobic exercise in native lowlanders sojourning at high altitude (HA) compared to sea level (SL). However, the underlying mechanism contributing to reduction in exogenous carbohydrate oxidation during steady-state aerobic exercise performed at HA has not been explored. OBJECTIVE To determine if alterations in glucose rate of appearance (Ra), disappearance (Rd) and metabolic clearance rate (MCR) at HA provide a mechanism for explaining the observation of lower exogenous carbohydrate oxidation compared to during metabolically-matched, steady-state exercise at SL. METHODS Using a randomized, crossover design, native lowlanders (n = 8 males, mean ± SD, age: 23 ± 2 yr, body mass: 87 ± 10 kg, and VO2peak: SL 4.3 ± 0.2 L/min and HA 2.9 ± 0.2 L/min) consumed 145 g (1.8 g/min) of glucose while performing 80-min of metabolically-matched (SL: 1.66 ± 0.14 V̇O2 L/min 329 ± 28 kcal, HA: 1.59 ± 0.10 V̇O2 L/min, 320 ± 19 kcal) treadmill exercise in SL (757 mmHg) and HA (460 mmHg) conditions after a 5-h exposure. Substrate oxidation rates (g/min) and glucose turnover (mg/kg/min) during exercise were determined using indirect calorimetry and dual tracer technique (13C-glucose oral ingestion and [6,6-2H2]-glucose primed, continuous infusion). RESULTS Total carbohydrate oxidation was higher (P < 0.05) at HA (2.15 ± 0.32) compared to SL (1.39 ± 0.14). Exogenous glucose oxidation rate was lower (P < 0.05) at HA (0.35 ± 0.07) than SL (0.44 ± 0.05). Muscle glycogen oxidation was higher at HA (1.67 ± 0.26) compared to SL (0.83 ± 0.13). Total glucose Ra was lower (P < 0.05) at HA (12.3 ± 1.5) compared to SL (13.8 ± 2.0). Exogenous glucose Ra was lower (P < 0.05) at HA (8.9 ± 1.3) compared to SL (10.9 ± 2.2). Glucose Rd was lower (P < 0.05) at HA (12.7 ± 1.7) compared to SL (14.3 ± 2.0). MCR was lower (P < 0.05) at HA (9.0 ± 1.8) compared to SL (12.1 ± 2.3). Circulating glucose and insulin concentrations were higher in response carbohydrate intake during exercise at HA compared to SL. CONCLUSION Novel results from this investigation suggest that reductions in exogenous carbohydrate oxidation at HA may be multifactorial; however, the apparent insensitivity of peripheral tissue to glucose uptake may be a primary determinate.
Collapse
Affiliation(s)
- Lee M Margolis
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America.
| | - Marques A Wilson
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Claire C Whitney
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Christopher T Carrigan
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Nancy E Murphy
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Patrick N Radcliffe
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America; Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States of America
| | - Jess A Gwin
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America; Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States of America
| | - David D Church
- Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Robert R Wolfe
- Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Arny A Ferrando
- Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Andrew J Young
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America; Oak Ridge Institute of Science and Education, Oak Ridge, TN, United States of America
| | - Stefan M Pasiakos
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| |
Collapse
|
15
|
Song K, Zhang Y, Ga Q, Bai Z, Ge RL. Increased Insulin Sensitivity by High-Altitude Hypoxia in Mice with High-Fat Diet-Induced Obesity Is Associated with Activated AMPK Signaling and Subsequently Enhanced Mitochondrial Biogenesis in Skeletal Muscles. Obes Facts 2020; 13:455-472. [PMID: 32966981 PMCID: PMC7670386 DOI: 10.1159/000508112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND This study aimed to investigate whether and how high altitude-associated ambient hypoxia affects insulin sensitivity in mice fed a high-fat diet (HFD). METHODS Mice were randomly divided into a control group (with normal diet feeding and low-altitude housing), LA/HFD group (with HFD feeding and low-altitude housing), and HA/HFD group (with HFD feeding and high-altitude housing). RESULTS After 8 weeks, mice in the HA/HFD group showed improved insulin sensitivity-related indices compared with the LA/HFD group. In mice residing in a low-altitude region, HFD significantly impaired mitochondrial respiratory function and mitochondrial DNA content in skeletal muscles, which was partially reversed in mice in the HA/HFD group. In addition, the fatty acid oxidation-related enzyme gene CPT1 (carnitine palmitoyltransferase 1) and genes related to mitochondrial biogenesis such as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (Tfam) were upregulated in the skeletal muscles of mice housed at high altitude, in comparison to in the LA/HFD group. Furthermore, AMPK (adenosine monophosphate-activated protein kinase) signaling was activated in the skeletal muscles, as evidenced by a higher expression of phosphorylated AMPK (p-AMPK) and protein kinase B (p-AKT) in the HA/HFD group than in the LA/HFD group. CONCLUSION Our study suggests that high-altitude hypoxia improves insulin sensitivity in mice fed an HFD, which is associated with AMPK activation in the skeletal muscle and consequently enhanced mitochondrial biogenesis and fatty acid oxidation. This work provides a molecular explanation for why high altitude is associated with a reduced incidence of insulin resistance in the obese population.
Collapse
Affiliation(s)
- Kang Song
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China,
- Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China,
- Department of Endocrinology, Qinghai Provincial People's Hospital, Xining, China,
| | - Yifan Zhang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China
| | - Qin Ga
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China
| | - Zhenzhong Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China
| |
Collapse
|
16
|
Chronic Exposure to High Altitude: Synaptic, Astroglial and Memory Changes. Sci Rep 2019; 9:16406. [PMID: 31712561 PMCID: PMC6848138 DOI: 10.1038/s41598-019-52563-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/11/2019] [Indexed: 11/18/2022] Open
Abstract
Long-term operations carried out at high altitude (HA) by military personnel, pilots, and astronauts may trigger health complications. In particular, chronic exposure to high altitude (CEHA) has been associated with deficits in cognitive function. In this study, we found that mice exposed to chronic HA (5000 m for 12 weeks) exhibited deficits in learning and memory associated with hippocampal function and were linked with changes in the expression of synaptic proteins across various regions of the brain. Specifically, we found decreased levels of synaptophysin (SYP) (p < 0.05) and spinophilin (SPH) (p < 0.05) in the olfactory cortex, post synaptic density−95 (PSD-95) (p < 0.05), growth associated protein 43 (GAP43) (p < 0.05), glial fibrillary acidic protein (GFAP) (p < 0.05) in the cerebellum, and SYP (p < 0.05) and PSD-95 (p < 0.05) in the brainstem. Ultrastructural analyses of synaptic density and morphology in the hippocampus did not reveal any differences in CEHA mice compared to SL mice. Our data are novel and suggest that CEHA exposure leads to cognitive impairment in conjunction with neuroanatomically-based molecular changes in synaptic protein levels and astroglial cell marker in a region specific manner. We hypothesize that these new findings are part of highly complex molecular and neuroplasticity mechanisms underlying neuroadaptation response that occurs in brains when chronically exposed to HA.
Collapse
|
17
|
Pan W, Liu C, Zhang J, Gao X, Yu S, Tan H, Yu J, Qian D, Li J, Bian S, Yang J, Zhang C, Huang L, Jin J. Association Between Single Nucleotide Polymorphisms in PPARA and EPAS1 Genes and High-Altitude Appetite Loss in Chinese Young Men. Front Physiol 2019; 10:59. [PMID: 30778304 PMCID: PMC6369186 DOI: 10.3389/fphys.2019.00059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 12/24/2022] Open
Abstract
Appetite loss is a common symptom that occurs in high altitude (HA) for lowlanders. Previous studies indicated that hypoxia is the initiating vital factor of HA appetite loss. PPARA, EPAS1, EGLN1, HIF1A, HIF1AN, and NFE2L2 play important roles in hypoxic responses. We aimed to explore the association of these hypoxia-related gene polymorphisms with HA appetite loss. In this study, we enrolled 416 young men who rapidly ascended to Lhasa (3700 m) from Chengdu (<500m) by plane. PPARA, EPAS1, EGLN1, HIF1A, HIF1AN, and NFE2L2 were genotyped by MassARRAY. Appetite scores were measured to identify HA appetite loss. Logistic regression and multiple genetic models were tested to evaluate the association between the single nucleotide polymorphisms (SNPs) and risk of HA appetite loss in crude and adjusted (age and SaO2) analysis. Subsequently, Haploview software was used to analyze the linkage disequilibrium (LD), haplotype construction and the association of diverse haplotypes with the risk of HA appetite loss. Our results revealed that allele “A” in PPARA rs4253747 was significantly associated with the increased risk of HA appetite loss. Codominant, dominant, recessive, and log-additive models of PPARA rs4253747 showed the increased risk of HA appetite loss in the crude and adjusted analysis. However, only dominant, overdominant, and log-additive models of EPAS1 rs6756667 showed decreased risk of HA appetite loss in the crude and adjusted analysis. Moreover, the results from haplotype-based test showed that the rs7292407-rs6520015 haplotype “AC” was associated with HA appetite loss in the crude analysis rather than the adjusted analysis. In this study, we first established the association of SNPs in PPARA (rs4253747) and EPAS1 (rs6756667) genes with susceptibility to HA appetite loss in Han Chinese young men. These findings provide novel insights into understanding the mechanisms involved in HA appetite loss.
Collapse
Affiliation(s)
- Wenxu Pan
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Chuan Liu
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Jihang Zhang
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Xubin Gao
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Shiyong Yu
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Hu Tan
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Jie Yu
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Dehui Qian
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Jiabei Li
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Shizhu Bian
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Jie Yang
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Chen Zhang
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Lan Huang
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Jun Jin
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| |
Collapse
|
18
|
Wang H, Zhu X, Xiang H, Liao Z, Gao M, Luo Y, Wu P, Zhang Y, Ren M, Zhao H, Xu M. Effects of altitude changes on mild-to-moderate closed-head injury in rats following acute high-altitude exposure. Exp Ther Med 2019; 17:847-856. [PMID: 30651871 DOI: 10.3892/etm.2018.7020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/12/2018] [Indexed: 11/05/2022] Open
Abstract
Mild-to-moderate closed-head injury (mmCHI) is an acute disease induced by high-altitudes. It is general practice to transfer patients to lower altitudes for treatment, but the pathophysiological changes at different altitudes following mmCHI remain unknown. The present study simulated acute high-altitude exposure (6,000 m above sea level) in rats to establish a model of mmCHI and recorded their vital signs. The rats were then randomly assigned into different altitude exposure groups (6,000, 4,500 and 3,000 m) and neurological severity score (NSS), body weight (BW), brain magnetic resonance imaging (MRI), brain water content (BWC) and the ratio of BW/BWC at 6, 12 and 24 h following mmCHI, and the glial fibrillary acidic protein levels were analysed in all groups. The results revealed that within the first 24 h following acute high-altitude exposure, mmCHI induced dehydration, brain oedema and neuronal damage. Brain injury in rats was significantly reversed following descent to 4,500 m compared with the results from 6,000 or 3,000 m. The results indicated that subjects should be transported as early as possible. Furthermore, avoiding large-span descent altitude was beneficial to reduce neurological impairment. The examination of brain-specific biomarkers and MRI may further be useful in determining the prognosis of high-altitude mmCHI. These results may provide guidance for rescuing high altitude injuries.
Collapse
Affiliation(s)
- Hao Wang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xiyan Zhu
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine, Third Military Medical University, Chongqing 400042, P.R. China
| | - Hongyi Xiang
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine, Third Military Medical University, Chongqing 400042, P.R. China
| | - Zhikang Liao
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine, Third Military Medical University, Chongqing 400042, P.R. China
| | - Mou Gao
- Affiliated Bayi Brain Hospital P.L.A Army General Hospital, Beijing 100038, P.R. China
| | - Yetao Luo
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Pengfei Wu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yihua Zhang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Mingliang Ren
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Hui Zhao
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine, Third Military Medical University, Chongqing 400042, P.R. China
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
19
|
Karl JP, Cole RE, Berryman CE, Finlayson G, Radcliffe PN, Kominsky MT, Murphy NE, Carbone JW, Rood JC, Young AJ, Pasiakos SM. Appetite Suppression and Altered Food Preferences Coincide with Changes in Appetite-Mediating Hormones During Energy Deficit at High Altitude, But Are Not Affected by Protein Intake. High Alt Med Biol 2018; 19:156-169. [PMID: 29431471 PMCID: PMC6014054 DOI: 10.1089/ham.2017.0155] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
Karl, J. Philip, Renee E. Cole, Claire E. Berryman, Graham Finlayson, Patrick N. Radcliffe, Matthew T. Kominsky, Nancy E. Murphy, John W. Carbone, Jennifer C. Rood, Andrew J. Young, and Stefan M. Pasiakos. Appetite suppression and altered food preferences coincide with changes in appetite-mediating hormones during energy deficit at high altitude, but are not affected by protein intake. High Alt Med Biol. 19:156-169, 2018.-Anorexia and unintentional body weight loss are common during high altitude (HA) sojourn, but underlying mechanisms are not fully characterized, and the impact of dietary macronutrient composition on appetite regulation at HA is unknown. This study aimed to determine the effects of a hypocaloric higher protein diet on perceived appetite and food preferences during HA sojourn and to examine longitudinal changes in perceived appetite, appetite mediating hormones, and food preferences during acclimatization and weight loss at HA. Following a 21-day level (SL) period, 17 unacclimatized males ascended to and resided at HA (4300 m) for 22 days. At HA, participants were randomized to consume measured standard-protein (1.0 g protein/kg/d) or higher protein (2.0 g/kg/d) hypocaloric diets (45% carbohydrate, 30% energy restriction) and engaged in prescribed physical activity to induce an estimated 40% energy deficit. Appetite, food preferences, and appetite-mediating hormones were measured at SL and at the beginning and end of HA. Diet composition had no effect on any outcome. Relative to SL, appetite was lower during acute HA (days 0 and 1), but not different after acclimatization and weight loss (HA day 18), and food preferences indicated an increased preference for sweet- and low-protein foods during acute HA, but for high-fat foods after acclimatization and weight loss. Insulin, leptin, and cholecystokinin concentrations were elevated during acute HA, but not after acclimatization and weight loss, whereas acylated ghrelin concentrations were suppressed throughout HA. Findings suggest that appetite suppression and altered food preferences coincide with changes in appetite-mediating hormones during energy deficit at HA. Although dietary protein intake did not impact appetite, the possible incongruence with food preferences at HA warrants consideration when developing nutritional strategies for HA sojourn.
Collapse
Affiliation(s)
- J. Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Renee E. Cole
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Claire E. Berryman
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Graham Finlayson
- School of Psychology, University of Leeds, Leeds, United Kingdom
| | - Patrick N. Radcliffe
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Matthew T. Kominsky
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Nancy E. Murphy
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - John W. Carbone
- Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
- School of Health Sciences, Eastern Michigan University, Ypsilanti, Michigan
| | | | - Andrew J. Young
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Stefan M. Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
20
|
Matu J, Gonzalez JT, Ispoglou T, Duckworth L, Deighton K. The effects of hypoxia on hunger perceptions, appetite-related hormone concentrations and energy intake: A systematic review and meta-analysis. Appetite 2018; 125:98-108. [DOI: 10.1016/j.appet.2018.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023]
|