1
|
Çakaloğlu E, Yüksel HS, Şahin FN, Güler Ö, Arslanoğlu E, Yamak B, Aydoğmuş M, Yaşar OM, Gürkan AC, Söyler M, Ceylan L, Küçük H. The Acute Effects of Moderate-Intensity Aerobic Exercise on Core Executive Functions in Healthy Older Adults: A Systematic Review. Life (Basel) 2025; 15:230. [PMID: 40003639 PMCID: PMC11856442 DOI: 10.3390/life15020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
There is growing interest in examining acute effects of exercise on cognitive functions and neurocognitive outcomes. These behavioral and neurocognitive outcomes have been most frequently investigated in healthy young individuals, but relatively few studies have examined healthy older adults. This study aimed to systematically review the effects of acute moderate-intensity aerobic exercise (MIAE) on core executive functions, including inhibition, working memory, and cognitive flexibility, in healthy older adults. A database search of PubMed, Scopus, and Web of Science was conducted using a systematic search strategy. Acute MIAE interventions assessing core executive functions using randomized or stratified controlled trials investigating healthy older adults were reviewed. Eleven studies were identified, and the behavioral results from all included studies revealed that acute MIAE can improve core executive functions in healthy adults. However, incompatible results were observed in activated areas of the prefrontal cortex following MIAE in older adults. The limited number of studies investigating the effects of MIAE on core executive functions in older healthy adults with moderate overall quality restricts the conclusions. Therefore, more robust quality studies using neuroimaging techniques to investigate core executive functions, especially working memory and cognitive flexibility, are needed to explain the neural and behavioral mechanisms.
Collapse
Affiliation(s)
- Erdem Çakaloğlu
- Faculty of Sport Sciences, Ankara University, Golbasi, Ankara 06830, Türkiye; (E.Ç.); (H.S.Y.); (F.N.Ş.); (Ö.G.)
| | - Hidayet Suha Yüksel
- Faculty of Sport Sciences, Ankara University, Golbasi, Ankara 06830, Türkiye; (E.Ç.); (H.S.Y.); (F.N.Ş.); (Ö.G.)
| | - Fatma Neşe Şahin
- Faculty of Sport Sciences, Ankara University, Golbasi, Ankara 06830, Türkiye; (E.Ç.); (H.S.Y.); (F.N.Ş.); (Ö.G.)
| | - Özkan Güler
- Faculty of Sport Sciences, Ankara University, Golbasi, Ankara 06830, Türkiye; (E.Ç.); (H.S.Y.); (F.N.Ş.); (Ö.G.)
| | - Erkal Arslanoğlu
- Faculty of Sport Sciences, Sinop University, Sinop 57000, Türkiye;
| | - Bade Yamak
- Yasar Dogu Faculty of Sport Sciences, Ondokuz Mayis University, Samsun 55200, Türkiye;
| | - Mert Aydoğmuş
- Department of Coaching Education, Hasan Dogan Faculty of Sport Sciences, Karabuk University, Karabuk 78050, Türkiye;
| | - Onur Mutlu Yaşar
- Faculty of Health Sciences, Izmir Demokrasi University, Izmir 35140, Türkiye;
| | - Alper Cenk Gürkan
- Department of Vocational School of Health Services, Gazi University, Ankara 06830, Türkiye
| | - Mehmet Söyler
- Social Sciences Vocational High School, Cankiri Karatekin University, Cankiri 18200, Türkiye;
| | - Levent Ceylan
- Faculty of Sport Sciences, Hitit University, Corum 19030, Türkiye;
| | - Hamza Küçük
- Yasar Dogu Faculty of Sport Sciences, Ondokuz Mayis University, Samsun 55200, Türkiye;
| |
Collapse
|
2
|
De Wachter J, Proost M, Habay J, Verstraelen M, Díaz-García J, Hurst P, Meeusen R, Van Cutsem J, Roelands B. Prefrontal Cortex Oxygenation During Endurance Performance: A Systematic Review of Functional Near-Infrared Spectroscopy Studies. Front Physiol 2021; 12:761232. [PMID: 34764885 PMCID: PMC8576380 DOI: 10.3389/fphys.2021.761232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/27/2021] [Indexed: 01/17/2023] Open
Abstract
Introduction: A myriad of factors underlie pacing-/exhaustion-decisions that are made during whole-body endurance performance. The prefrontal cortex (PFC) is a brain region that is crucial for decision-making, planning, and attention. PFC oxygenation seems to be a mediating factor of performance decisions during endurance performance. Nowadays, there is no general overview summarizing the current knowledge on how PFC oxygenation evolves during whole-body endurance performance and whether this is a determining factor. Methods: Three electronic databases were searched for studies related to the assessment of PFC oxygenation, through near-IR spectroscopy (NIRS), during endurance exercise. To express PFC oxygenation, oxygenated (HbO2) and deoxygenated hemoglobin (HHb) concentrations were the primary outcome measures. Results: Twenty-eight articles were included. Ten articles focused on assessing prefrontal oxygenation through a maximal incremental test (MIT) and 18 focused on using endurance tasks at workloads ranging from low intensity to supramaximal intensity. In four MIT studies measuring HbO2, an increase of HbO2 was noticed at the respiratory compensation point (RCP), after which it decreased. HbO2 reached a steady state in the four studies and increased in one study until exhaustion. All studies found a decrease or steady state in HHb from the start until RCP and an increase to exhaustion. In regard to (non-incremental) endurance tasks, a general increase in PFC oxygenation was found while achieving a steady state at vigorous intensities. PCF deoxygenation was evident for near-to-maximal intensities at which an increase in oxygenation and the maintenance of a steady state could not be retained. Discussion/Conclusion: MIT studies show the presence of a cerebral oxygenation threshold (ThCox) at RCP. PFC oxygenation increases until the RCP threshold, thereafter, a steady state is reached and HbO2 declines. This study shows that the results obtained from MIT are transferable to non-incremental endurance exercise. HbO2 increases during low-intensity and moderate-intensity until vigorous-intensity exercise, and it reaches a steady state in vigorous-intensity exercise. Furthermore, ThCox can be found between vigorous and near-maximal intensities. During endurance exercise at near-maximal intensities, PFC oxygenation increases until the value exceeding this threshold, resulting in a decrease in PFC oxygenation. Future research should aim at maintaining and improving PFC oxygenation to help in improving endurance performance and to examine whether PFC oxygenation has a role in other performance-limiting factors.
Collapse
Affiliation(s)
- Jonas De Wachter
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias Proost
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jelle Habay
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias Verstraelen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jesús Díaz-García
- Faculty of Sport Sciences, University of Extremadura, Caceres, Spain
| | - Philip Hurst
- The School of Psychology & Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jeroen Van Cutsem
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium.,VIPER Research Unit, Royal Military Academy, Brussels, Belgium
| | - Bart Roelands
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Boutou AK, Dipla K, Zafeiridis A, Markopoulou A, Papadopoulos S, Kritikou S, Panagiotidou E, Stanopoulos I, Pitsiou G. A randomized placebo-control trial of the acute effects of oxygen supplementation on exercise hemodynamics, autonomic modulation, and brain oxygenation in patients with pulmonary hypertension. Respir Physiol Neurobiol 2021; 290:103677. [PMID: 33957299 DOI: 10.1016/j.resp.2021.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/05/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The integrative physiological effects of O2 treatment on patients with pulmonary hypertension (PH) during exercise, have not been fully investigated. We simultaneously evaluated, for the first time, the effect of oxygen supplementation on hemodynamic responses, autonomic modulation, tissue oxygenation, and exercise performance in patients with pulmonary arterial hypertension (PAH)/Chronic Thromboembolic PH(CTEPH). MATERIAL-METHODS In this randomized, cross-over, placebo-controlled trial, stable outpatients with PAH/CTEPH underwent maximal cardiopulmonary exercise testing, followed by two submaximal trials, during which they received supplementary oxygen (O2) or medical-air. Continuous, non-invasive hemodynamics were monitored via photophlythesmography. Cerebral and quadriceps muscle oxygenation were recorded via near-infrared spectroscopy. Autonomic function was assessed by heart rate variability; root mean square of successive differences (RMSSD) and standard-deviation-Poincare-plot (SD1) were used as indices of parasympathetic output. Baroreceptor sensitivity (BRS) was assessed throughout the protocols. RESULTS Nine patients (51.4 ± 9.4 years) were included. With O2-supplementation patients exercised for longer (p = 0.01), maintained higher cerebral oxygenated hemoglobin (O2Hb;p = 0.02) levels, exhibited an amelioration in cortical deoxygenation (HHb;p = 0.02), and had higher average cardiac output (CO) during exercise (p < 0.05), compared to medical air; with no differences in muscle oxygenation. With O2-supplementation patients exhibited higher BRS and sample-entropy throughout the protocol (p < 0.05) vs. medical air, and improved the blunted RMSSD, SD1 responses during exercise (p = 0.024). CONCLUSION We show that O2 administration improves BRS and autonomic function during submaximal exercise in PAH/CTEPH, without significantly affecting muscle oxygenation. The improved autonomic function, along with enhancements in cardiovascular function and cerebral oxygenation, probably contributes to increased exercise tolerance with O2-supplementation in PH patients.
Collapse
Affiliation(s)
- Afroditi K Boutou
- Department of Respiratory Medicine, "G. Papanikolaou Hospital", Thessaloniki, Greece.
| | - Konstantina Dipla
- Exercise Physiology & Biochemistry Laboratory, Dept. of Sport Sciences at Serres, Aristotle University of Thessaloniki, Greece
| | - Andreas Zafeiridis
- Exercise Physiology & Biochemistry Laboratory, Dept. of Sport Sciences at Serres, Aristotle University of Thessaloniki, Greece
| | | | - Stavros Papadopoulos
- Exercise Physiology & Biochemistry Laboratory, Dept. of Sport Sciences at Serres, Aristotle University of Thessaloniki, Greece
| | - Stella Kritikou
- Exercise Physiology & Biochemistry Laboratory, Dept. of Sport Sciences at Serres, Aristotle University of Thessaloniki, Greece
| | - Evangelia Panagiotidou
- Respiratory Failure Department, "G. Papanikolaou" Hospital, Aristotle University of Thessaloniki, Greece
| | - Ioannis Stanopoulos
- Respiratory Failure Department, "G. Papanikolaou" Hospital, Aristotle University of Thessaloniki, Greece
| | - Georgia Pitsiou
- Respiratory Failure Department, "G. Papanikolaou" Hospital, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
4
|
Tari B, Vanhie JJ, Belfry GR, Shoemaker JK, Heath M. Increased cerebral blood flow supports a single-bout postexercise benefit to executive function: evidence from hypercapnia. J Neurophysiol 2020; 124:930-940. [PMID: 32755360 DOI: 10.1152/jn.00240.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A single bout of aerobic exercise improves executive function; however, the mechanism for the improvement remains unclear. One proposal asserts that an exercise-mediated increase in cerebral blood flow (CBF) enhances the efficiency of executive-related cortical structures. To examine this, participants completed separate 10-min sessions of moderate- to heavy-intensity aerobic exercise, a hypercapnic environment (i.e., 5% CO2), and a nonexercise and nonhypercapnic control condition. The hypercapnic condition was included because it produces an increase in CBF independent of metabolic demands. An estimate of CBF was achieved via transcranial Doppler ultrasound and near-infrared spectroscopy that provided measures of middle cerebral artery blood velocity (BV) and deoxygenated hemoglobin (HHb), respectively. Exercise intensity was adjusted to match participant-specific changes in BV and HHb associated with the hypercapnic condition. Executive function was assessed before and after each session via antisaccades (i.e., saccade mirror-symmetrical to a target) because the task is mediated via the same executive networks that demonstrate task-dependent modulation following single and chronic bouts of aerobic exercise. Results showed that hypercapnic and exercise conditions were associated with comparable BV and HHb changes, whereas the control condition did not produce a change in either metric. In terms of antisaccade performance, the exercise and hypercapnic, but not control, conditions demonstrated improved postcondition reaction times (RT), and the magnitude of the hypercapnic and exercise-based increase in estimated CBF was reliably related to the postcondition improvement in RT. Accordingly, results evince that an increase in CBF represents a candidate mechanism for a postexercise improvement in executive function.NEW & NOTEWORTHY Single-bout aerobic exercise "boosts" executive function, and increased cerebral blood flow (CBF) has been proposed as a mechanism for the benefit. In this study, participants completed 10 min of aerobic exercise and 10 min of inhaling a hypercapnic gas, a manipulation known to increase CBF independently of metabolic demands. Both exercise and hypercapnic conditions improved executive function for at least 20 min. Accordingly, an increase in CBF is a candidate mechanism for the postexercise improvement in executive function.
Collapse
Affiliation(s)
- Benjamin Tari
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - James J Vanhie
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Glen R Belfry
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Matthew Heath
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
New Directions in Exercise Prescription: Is There a Role for Brain-Derived Parameters Obtained by Functional Near-Infrared Spectroscopy? Brain Sci 2020; 10:brainsci10060342. [PMID: 32503207 PMCID: PMC7348779 DOI: 10.3390/brainsci10060342] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
In the literature, it is well established that regular physical exercise is a powerful strategy to promote brain health and to improve cognitive performance. However, exact knowledge about which exercise prescription would be optimal in the setting of exercise–cognition science is lacking. While there is a strong theoretical rationale for using indicators of internal load (e.g., heart rate) in exercise prescription, the most suitable parameters have yet to be determined. In this perspective article, we discuss the role of brain-derived parameters (e.g., brain activity) as valuable indicators of internal load which can be beneficial for individualizing the exercise prescription in exercise–cognition research. Therefore, we focus on the application of functional near-infrared spectroscopy (fNIRS), since this neuroimaging modality provides specific advantages, making it well suited for monitoring cortical hemodynamics as a proxy of brain activity during physical exercise.
Collapse
|